The Mu2e experiment

Zhengyun You, University of California, Irvine
On behalf of the Mu2e Collaboration

48th Fermilab Users Meeting
June 11, 2015
Flavor Violation

• Does Charged Lepton Flavor Violation (CLFV) exist?

Quarks Flavor Violation
Observed (CKM matrix)

Neutrino Flavor Violation
Observed (PMNS matrix)

Charged Lepton Flavor Violation
NOT observed!
• In the Standard Model, CLFV $<10^{-50}$ unmeasurable

CLFV Searches History

$BR(\mu \rightarrow e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U_{\mu i}^* U_{ei} \frac{\Delta m_{ii}^2}{M_W^2} \right|^2 < 10^{-54}$

• Observation of CLFV means new physics

• Current best limit
 MEG $<5.7 \times 10^{-13}$ (90% C.L.)

• Mu2e goal $<6 \times 10^{-17}$ (90% C.L.)

R. H. Bernstein & P. S. Cooper, Phys. Rept. 532 (2013) 27
CLFV and Theoretic Models

\[\mu^- + N \rightarrow e^- + N \]

One of the most effective channels

- ★★★★ Large effects
- ★★★ Visible, but small
- ★ No sizable effect

<table>
<thead>
<tr>
<th></th>
<th>AC</th>
<th>RVV2</th>
<th>AKM</th>
<th>5LL</th>
<th>FBMSSM</th>
<th>LHT</th>
<th>RS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D^0 - D^0)</td>
<td>★★★★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★★★</td>
<td>?</td>
</tr>
<tr>
<td>(\epsilon_K)</td>
<td>★</td>
<td>★★★</td>
<td>★★★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★★★</td>
</tr>
<tr>
<td>(S_{\nu\phi})</td>
<td>★★★</td>
<td>★★★</td>
<td>★★★</td>
<td>★</td>
<td>★</td>
<td>★★★</td>
<td>★★★</td>
</tr>
<tr>
<td>(S_{\delta K_S})</td>
<td>★★★</td>
<td>★★★</td>
<td>★</td>
<td>★★★</td>
<td>★★★</td>
<td>★</td>
<td>?</td>
</tr>
<tr>
<td>(A_{CP}(B \rightarrow X_d\gamma))</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★★★</td>
<td>★★★</td>
<td>★</td>
<td>?</td>
</tr>
<tr>
<td>(A_{\tau,K}(B \rightarrow K^+\mu^+\mu^-))</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★★★</td>
<td>★★★</td>
<td>★</td>
<td>?</td>
</tr>
<tr>
<td>(A_0(B \rightarrow K^+\mu^+\mu^-))</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★★★</td>
<td>?</td>
</tr>
<tr>
<td>(B \rightarrow K^{(*)}\nu\bar{\nu})</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>?</td>
</tr>
<tr>
<td>(B_\mu \rightarrow \mu^+\mu^-)</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
</tr>
<tr>
<td>(K^+ \rightarrow \pi^+\nu\bar{\nu})</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★★★</td>
<td>★★★</td>
</tr>
<tr>
<td>(K_L \rightarrow \pi^0\nu\bar{\nu})</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★★★</td>
<td>★★★</td>
</tr>
<tr>
<td>(\mu \rightarrow e\gamma)</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
</tr>
<tr>
<td>(\tau \rightarrow \mu\gamma)</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
</tr>
<tr>
<td>(\mu + N \rightarrow e + N)</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
</tr>
<tr>
<td>(d_{\mu})</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
</tr>
<tr>
<td>(d_e)</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
</tr>
<tr>
<td>((g-2)_\mu)</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
<td>★★★★★★★★★★★</td>
</tr>
</tbody>
</table>

Table 8: “DNA” of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models ★★★★ signals large effects, ★★★ visible but small effects and ★ implies that the given model does not predict sizable effects in that observable.

Altmannshofer et al., NPB 830, 17 (2010)
Probing new physics with CLFV

Effective Lagrangian

\[
L = \frac{m_\mu}{(\kappa + 1)\Lambda^2} \mu_R \sigma_{\mu\nu} e_L F_{\mu\nu} + \frac{\kappa}{(\kappa + 1)\Lambda^2} \mu_R \gamma_\mu e_L \sum_{q=u,d} \bar{q}_L \gamma^\mu q_L
\]

- Contact κ, mass scale Λ
- ‘Loops’, electromagnetic operator, $\kappa \ll 1$, can be probed by $\mu \to e\gamma$ and $\mu N \to eN$
- ‘Contact terms’, direct coupling between quarks and leptons, $\kappa \gg 1$, accessible by $\mu N \to eN$
- Mu2e will probe mass scale Λ 2,000 ~10,000 TeV
What to measure

- The ratio of muon to electron conversions to the number of muon captures by nuclei

\[
R_{\mu e} = \frac{\mu^- + A(Z,N) \rightarrow e^- + A(Z,N)}{\mu^- + A(Z,N) \rightarrow \nu_\mu + A(Z-1,N)}
\]

- Signal: Neutrinoless conversion of a muon to electron in the field of a nucleus

- Experimental signature
 - Mono-energetic electron
 - \(E_e = m_\mu - E_{\text{bind}} - E_{\text{recoil}}\)
 - For Al, \(E_e = 104.97\) MeV
Current Best Limit in $\mu N \rightarrow eN$

- Current best limit
 - by SINDRUM II at PSI
 - $R_{\mu e} (Au) < 7 \times 10^{-13}$ (90% C.L.)

- Au target: different electron energy endpoint than Al

Fig. 11. Momentum distributions of electrons and positrons for the two event classes. Measured distributions are compared with the results of simulations of muon decay in orbit and $\mu - e$ conversion.
The Mu2e Experiment

- Search for the conversion of $\mu N \rightarrow eN$ in the field of Aluminum nucleus
- Single event sensitivity (TDR)
 - $R_{\mu e} = 2.9 \times 10^{-17}$ (7 x 10^{-17} @ 90% C.L.)
- Statistics
 - Requires $\sim 10^{18}$ stopped muons
 - Requires $\sim 3.6 \times 10^{20}$ protons on target (POT)
 - 3 years data taking
- Requires background events negligible (<1 events)
- Discovery sensitivity: $R_{\mu e} > \text{few } 10^{-16}$
The Mu2e Collaboration

~160 People, 32 Institutions, 4 Countries
Proton Delivery & Muon Campus

- 8 GeV protons beam
- 3×10^7 protons per bunch
- Bunch spacing 1.7 μs
- Run simultaneously with NOvA
Overview of Mu2e Design

- **Production Solenoid**
 - Protons + target → π + X; π decay into muons
 - Solenoid reflect slow forward μ/π and contains backward μ/π

- **Transport Solenoid**
 - Filter low momentum μ⁻

- **Stopping Target, Detector Solenoid and Detectors**
 - Stop μ⁻ on Al foils and wait for them to decay
 - Tracks reconstructed by tracker and calorimeter, optimized for 105MeV
Pulsed Beam

- μ^- captured on stopping target to form muonic atoms ($\tau=864$ns)
- Wait for prompt backgrounds to decay
- Select tracks in search window, when π^- disappear
- Beam extinction $< 10^{-10}$ required to remove backgrounds between pulses
Tracker

- 5 mm diameter straw drift tubes
- 15 µm Mylar walls, filled with Ar/CO₂
- 18 stations, 2 planes/station, 6 panels/plane
- Blind to beam flash and >97% DIO
- Expect 100 µm hit resolution
Calorimeter

- Two disks composed of square BaF$_2$ crystals
- Provides independent energy (up to 5%), time (0.5ns) and position (1cm) measurements
- Particle ID, Cosmic Ray rejection, tracking seed
- Independent trigger
Background(1): Intrinsic

- Muon Decay-in-orbit (DIO)
 - $\mu \rightarrow e \nu_\mu \bar{\nu}_e$
 - Dominant background
 - 39% of stopped muons
 - DIO Rate $\sim (E_{\text{MAX}} - E_e)^5$, $E_{\text{MAX}} \sim 105$ MeV
 - Requires good energy resolution

- Radiative Muon Capture (RMC)
 - $\mu N \rightarrow \gamma \nu_\mu N'$
 - 61% of stopped muons
 - 3 MeV under DIO end point
 - Small contribution
Background(2): Prompt Backgrounds

- Radiative Pion Capture (RPC)
 - $\pi^- N \rightarrow \gamma N'$, $\gamma \rightarrow e^+ e^-$
 - $\pi^- N \rightarrow e^+ e^- N'$
 - 2% of captured π^-
 - Mitigate by waiting

- Beam and free decays
 - Beam Electrons
 - Muon Decay In Flight
 - Pion Decay In Flight

Delayed search time window help to mitigate prompt backgrounds
Background(3): Anti-protons

- 8GeV proton above anti-proton production threshold
 - $pp \to \bar{pppp}$,
 - Anti-proton annihilate, produce $\pi^0 \to e^+e^-$,
 - π^- contribute to RPC backgrounds
 - Anti-protons travel 10x more slowly
 - Do not decay, time rejection does not help

Add absorbers at some locations in the muon beamline to absorb anti-protons
Background(4): Cosmic Rays

- Cosmic ray background ~1 event / day
- Requires <10^{-4} inefficiency → 0.1 event in 3 years
- Cosmic Ray Veto (CRV) made of 4 layers of overlapping scintillators
- Surrounding DS & part of TS area
All Backgrounds

<table>
<thead>
<tr>
<th>Category</th>
<th>Background process</th>
<th>Estimated yield (events)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrinsic</td>
<td>Muon decay-in-orbit (DIO)</td>
<td>0.199 ± 0.092</td>
</tr>
<tr>
<td></td>
<td>Muon capture (RMC)</td>
<td>0.000 ±0.004</td>
</tr>
<tr>
<td>Late Arriving</td>
<td>Pion capture (RPC)</td>
<td>0.023 ± 0.006</td>
</tr>
<tr>
<td></td>
<td>Muon decay-in-flight (μ-DIF)</td>
<td><0.003</td>
</tr>
<tr>
<td></td>
<td>Pion decay-in-flight (π-DIF)</td>
<td>0.001 ± <0.001</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>Beam electrons</td>
<td>0.003 ± 0.001</td>
</tr>
<tr>
<td></td>
<td>Antiproton induced</td>
<td>0.047 ± 0.024</td>
</tr>
<tr>
<td></td>
<td>Cosmic ray induced</td>
<td>0.092 ± 0.020</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0.37 ± 0.10</td>
</tr>
</tbody>
</table>

Numbers normalized to 3 years run, \(3.6 \times 10^{20}\) POT events
Signal and Backgrounds

With 3.6×10^{20} POT, assuming $R_{\mu e} = 1 \times 10^{-16}$, expect 3.5 events in signal window

DIO yield = 0.20 events
Others \sim 0.17 events

Full Geant4 simulation and reconstruction
Background overlaid with signal
Mu2e Prototypes

Tests of a prototype tungsten production target at RAL.

Panel prototype (96 straws) for vacuum tests.

Prototype counter for cosmic veto.

TS Coll Module prototype at Fermilab.

Mu2e, Fermilab.
Mu2e Status

- TDR published in 2014
- DOE CD2/3b received in 2015
- Ground breaking in 2015
Mu2e Schedule

- CD-1: Superconductor R&D
- CD-3a: Solenoid Design
- CD-2/3b: Fabricate and QA Superconductor
- CD-3c: Detector Hall Construction
- Project Complete
 - KPPs satisfied
 - Solenoid Installation and Commissioning
 - Detector Construction
 - Cosmic Tests
 - Accelerator and Beamline

Timeline:
- FY14
- FY15
- FY16
- FY17
- FY18
- FY19
- FY20
- FY21

Now
Summary

- CLFV has great potentials to probe new physics
- Mu2e will search for CLFV with $\mu N \rightarrow eN$
 - $R_{\mu e} = 2.9 \times 10^{-17}$
 - 4 orders of magnitude improvement
 - Mass scale up to 10^4 TeV
- Project is going well
 - Technical design mature
 - DOE CD-2/3b received
 - Start running in 2021
- Thanks for all the supports to Mu2e
Thank you!
Backup Slides
Target and Heat Radiation Shield

• Production Target
 • Protons + target → π + X; π decay into muons
 • High A and high density material Tungsten to maximize muons production
 • High melting temp, radiative cooling (~1600°C), with 8kW beam (700w in target)

• Heat Radiation Shield
 • To protect superconductor of PS and upstream TS
 • To limit heat load and radiation damage
 • ~25 tons of Bronze

Zhengyun You / UCI
Mu2e, Fermilab Users Meeting 2015
Transport Solenoid

- Gradient magnetic field from 2.5 T to 2.0 T
- S-shaped magnetic channel to transmit low-momentum negatively charged particles in helical trajectories
- Collimators to remove positively charged and high-momentum particles
Detector Solenoid

- Stopping target to stop muons
- Graded magnetic field from 2 T to 1 T, captures conversion electrons with bigger acceptance, shifts the pitch of beam particles to reduce background
- Tracker and Calorimeter in a uniform field to reconstruct and identify electrons