NOvA Analysis Status

Ryan Patterson Caltech

NOvA Operational Readiness Review

October 28, 2014

A spin through NOvA's analysis structure

• A distributed effort. Organization:

Interaction "channels"
(multiple physics topics in each) NC and ν_e CC ν_u CC **Exotics** Reconstruction **Detector simulation** Support and infrastructure Beam data and simulation Calibration and alignment Computing, production, software **Data quality Triggers**

- Plus lots of activity at the group boundaries
- Focusing here on items directed at the 3-flavor $\nu_{\mu} \rightarrow \nu_{\mu}$ and $\nu_{u} \rightarrow \nu_{e}$ analyses

Isolating individual interactions

- A standard trigger in the Far Detector (FD) records 550 μ s of activity:
 - hundreds of noise hits (since we keep the DAQ thresholds as low as possible)
 - about 50 cosmic rays
 - and rarely, a neutrino interaction
- **Isolating these components** is the first step of the offline analysis sequence
- Algorithm based on "DBSCAN",
 M. Ester et al. (1996)
- Looks for causally connectable clusters in space/time, also using knowledge of how noise hits behave
- According to FD simulation:
 Avg. completeness: 99.3%
 Avg. purity: 99.5%

(Actually improved beyond this now...)

(detector still under construction)

Isolating individual interactions

- A standard trigger in the Far Detector (FD) records 550 μ s of activity:
 - hundreds of **noise hits** (since we keep the DAQ thresholds as low as possible)
 - about 50 cosmic rays
 - and rarely, a neutrino interaction
- **Isolating these components** is the first step of the offline analysis sequence

Algorithm based on "DBSCAN", **M.** Ester *et al.* (1996)

Looks for causally connectable clusters in space/time, also using knowledge of how noise hits behave

• *According to FD simulation:* Avg. completeness: 99.3%

Avg. purity: 99.5%

(Actually improved beyond this now...)

Isolating individual interactions

• A standard trigger in the Far Detector (FD) records 550 μ s of activity:

- ND event pile-up easily handled
- Cosmic ray rate much reduced (50 Hz in ND vs. 100,000 Hz in FD)

 Instead, neutrino interactions in the rock send particles (mostly muons) into the detector

- ND event pile-up easily handled
- Cosmic ray rate much reduced (50 Hz in ND vs. 100,000 Hz in FD)

 Instead, neutrino interactions in the rock send particles (mostly muons) into the detector

- ND event pile-up easily handled
- Cosmic ray rate much reduced (50 Hz in ND vs. 100,000 Hz in FD)

 Instead, neutrino interactions in the rock send particles (mostly muons) into the detector

- ND event pile-up easily handled
- Cosmic ray rate much reduced (50 Hz in ND vs. 100,000 Hz in FD)

 Instead, neutrino interactions in the rock send particles (mostly muons) into the detector

Timing resolution

- Newly deployed firmware leads to substantial improvement in timing resolution
- Fully incorporated into calibration procedures, simulation packages, and analysis software
- Benefitting event clustering and opening new lines of analysis

Timing resolution

- Newly deployed firmware leads to substantial improvement in timing resolution
- Fully incorporated into calibration procedures, simulation packages, and analysis software

Energy calibration

- Biggest effect that needs correction is attenuation in the WLS fiber
- A local regression corrects any residuals beyond the basic functional form
- Light level requirements at end of cell are well met

Energy calibration

- A drift correction handles changes in charge response over time (included that due to swapped hardware)
- Stopping muons provide a standard candle for setting the absolute energy scale

Michel electron tag yields very pure stopping muon sample

Event vertexing

Find lines of energy depositions using a Hough transform.

Vertex resolution for charged-current events: 11 cm

→ Note: this is one of several vertexing algorithms implemented

Prong clustering

- Given a seed vertex, look for clusters in angular space around it.
- Energy depositions are also used in the clustering metric, and hits can be shared between the resulting "prongs".
- Prongs in each view are matched based on topology and dE/dx to form 3D objects.

Prongs are drawn here by outlining the cells that belong to them.

event in the FD data

Simulated v_u CC event

$FD v_u CC data event$

Tracking

- Multiple trackers developed and in use. Two primary trackers:
 - *Cosmic ray tracker:* lightweight, very fast, good for large calibration samples and online tools
 - Kalman filter tracker: more detailed, traces scattering for accurate energy, direction measurement.

(simulated event)

Resulting **energy resolution** for ν_{μ} CC events (driven in large part by the track energy)

quasielastic: 4.5% non-quasielastic: 6.0%

Reconstructed tracks are drawn here as colored lines.

Identifying ν_{μ} CC events

- PID the **muon track candidate** using a *k*NN **classifier** that considers: *dE/dx, track scattering, track length, extent of hadronic activity*
- Further classify into quasielastic and non-quasielastic samples based on track multiplicity and kinematics

QE and non-QE samples fitted separately in the analysis

ν_μ CC event ID for cosmic rays,

<u>FD data</u> and MC

Current MC tuning already shows good agreement

ν_{μ} CC tracking & event ID distributions, <u>ND beam data</u> and MC

Again, good level of agreement from the current tuning of MC.

(Investigating residual differences is a central part of current activity.)

Identifying ν_e CC events

Three very different approaches implemented and supported

EID: Neural network that uses as input EM shower likelihoods, vertex activity, event kinematics, and topology variables

LEM: Library event matching algorithm that compares events to a large library of known events, with the comparisons based directly on the pattern of detector hits

RVP: Boosted decision tree that uses as input a selection of topological and kinematic variables. (Serves as the "simple" ID algorithm.)

EM shower sample

- As a check of EM shower modeling and PID performance, isolate cosmic ray bremsstrahlung showers by removing the parent muon hits
- Data / MC agreement is excellent
- Primary v_e CC PID distributions shown below

PID distributions from <u>FD data</u> EM showers and equivalent MC

Rejecting cosmic rays in the FD

- **Beam timing** gives us a 10⁵ head start (10 μ s spill every 1.3 s)
- At right: FD neutrino peak
- Below: ND neutrino peak Spill structure visible in zoomed version.

Ryan Patterson, Caltech

NOvA Operational Readiness, October 28, 2014

NuMI spill window

Far Detector events

FD data

An additional 10⁷ rejection from...

ν_e CC case: Cut events...

- ...too near the detector edges
- ...with high p_T/p
- ...with poor v_e CC PID values

For nominal 1-yr exposure

 $(6 \times 10^{20} \text{ p.o.t. at } 700 \text{ kW})$, expect:

14 signal
6 beam bkg.
<1 cosmic bkg.

40M-to-1 cosmic rejection demonstrated with FD data

Above: penetration of neutrons into the top of the detector (largely removed by p_T/p cut)

ν_{μ} CC case: Cut events...

- ...whose tracks project too near to the detector edges
- ...with cosmic-like muon directions

For nominal 1-yr exposure, expect:

75 signal 4 beam bkg. ~1 cosmic bkg. (after disappearance)

20M-to-1 cosmic rejection *demonstrated* with FD data

Treatment of detector variations

- If a portion of the detector is down for some reason (in the past: initial detector construction; in the future: hardware swaps, etc.), the rest of the detector continues to operate thanks to DAQ "partitioning".
 - → The <u>analysis code responds appropriately</u> to this (for example, geometry functions report dynamically where the effective edges of the detector are.)
- A table of misbehaving channels is updated on a subrun basis
 - → Event reconstruction code <u>references this table</u>
- Our large **MC** samples use a run-by-run matched suite of bad channel tables, detector configurations (*i.e.*, live portions), and exposures.

Putting all the pieces together

- File production concludes with Common Analysis Files (CAFs)
 - \rightarrow Light-weight ROOT files for end-game analysis work.
- CAFAna: a suite of utilities both for executing common tasks with CAFs and for constructing full oscillation analyses.
 - → *In use throughout collaboration*
- Uniform treatment of systematic uncertainties, cuts, protons-on-target accounting, spectrum comparisons, oscillation weighting, ...
- The CAF/CAFAna infrastructure is well-documented, well-supported
 - → Including a live tutorial session that was recorded and posted (audio and screen capture), plus demo exercises to follow along. Great for getting new folks up to speed quickly.

Brief examples of the end-game tools

■ Apply selection to the ND to determine: $\Sigma_{\text{flavors}}(flux \times \sigma \times eff.)$

- Use "decomposition" techniques to break apart the summed sample
 - → Need to flavor-separate sample since oscillations affect each piece differently when converting from ND to FD prediction.

ND decomposition in the ν_e analysis

■ Two primary methods implemented in the CAFAna framework

Muon-removal: Remove μ's from ν_μ CC events to form an NC-like events. From these, infer NC mis-ID contribution in selected sample.

Michel electrons: Statistically decompose the ND sample based on differences in Michel electron rates among v_{μ} CC, v_{e} CC, and NC events.

<u> </u>Events

Final fits

- A flexible ND-to-FD extrapolation toolkit is built in CAFAna
- The resulting FD predictions feed an oscillation fitting framework
- A few noteworthy features:
 - Seamlessly float, freeze, or marginalize any oscillation parameters, with or without penalty terms
 - Seamlessly **combine NOvA analyses and/or external results**. Important for folding in known constraints (*e.g.*, reactor, T2K)
 - Statistically **rigorous contours** via Feldman-Cousins unified approach
 - Systematics via nuisance parameters

At right: example contours from CAFAna for one point in parameter space

Simultaneously break ν_3 flavor degeneracy (θ_{23} octant), determine mass hierarchy, and constrain **CP** phase δ .

(Full TDR exposure of 36×10^{20} p.o.t.)

Summary

- End-to-end analysis tools in place
- Calibration, reconstruction, particle ID, fitting tools are operational on ND and FD data
- Surface operation: cosmic ray rejection demonstrated with FD data
- Current analysis frontiers include:
 - Understanding residual data/MC differences Several MC improvements already developed
 - Assessing systematic uncertainties

 Should not a major factor until we gain significant exposure
 - Most critical: integrating protons-on-target!!

NOvA is ready to produce the next round of significant results in neutrino physics.

The world is watching, waiting.

Extras

ΝΟνΑ

A broad physics scope

Using $\nu_{\mu} \rightarrow \nu_{e}$, $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$...

- Determine the ν mass hierarchy
- Determine the θ_{23} octant
- Constrain δ_{CP}

Using $\nu_{\mu} \rightarrow \nu_{\mu}$, $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu}$...

- Atmospheric parameters: precision measurements of θ_{23} , Δm_{32}^2 . (Exclude $\theta_{23} = \pi/4$?)
- Over-constrain the atmos. sector (four oscillation channels)

Also ...

- Neutrino cross sections at the NOvA Near Detector
- Sterile neutrinos
- Supernova neutrinos
- Other exotica

NOvA detectors

A NOvA cell

32

 \rightarrow 18,000 channels

Events in NOvA

Superb spatial granularity for a detector of this scale

 $X_0 = 38 \text{ cm } (6 \text{ cell depths}, 10 \text{ cell widths})$

Raw data from 500 μ s of Far Detector activity

Ryan Patterson, Caltech

37

$\nu_{\mu} \rightarrow \nu_{\mu}$ and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu}$

- Below: Oscillated and non-oscillated spectra
 - (reconstructed energy) for ν_{μ} CC QE candidates Non-QE candidates fitted separately. 6% vs. 4.5% energy resolution using current techniques.)
- Right: example contours for a nominal 6-year run at two test points Requirements of cosmic rejection now included (small change)

(simulation)

Long baseline \rightarrow hierarchy sensitivity, along with rest of oscillation reach

Example point in ν parameter space

Simultaneously break ν_3 flavor degeneracy (θ_{23} octant), determine mass hierarchy, and constrain CP phase δ .

And a "degenerate" point...

Hierarchy and δ information now correlated. Octant preference still established.

Example NOvA contours, 3+3 yr

