

Larsoft Build Process Experience and
Update

Patrick Gartung
FNAL

gartung@fnal.gov

LBNE S&C biweekly meeting
Nov 13, 2014

Objectives

● Rewrite the cmake files for the larsoft package
to only use cmake macros available directly
from the cmake package.

● Use the changes that Ben Morgan made to the
art package as a guide.

● Record the options used to invoke cmake in a
worch config

Getting larsoft into github

● Checkout all of the larsoft repos from FNAL redmine (aka
upstream)

● Create an empty repo for each in LBNE account on github
– https://github.com/LBNE

● Push upstream develop and master branches to github
● Github rejected because of 120MB file that was added in

initial svn commit to larsoft and then removed.
● Followed directions that github gave for removing large files

– https://help.github.com/articles/working-with-large-files/

Setting up build environment

● Started a build from scratch using lbne-build package (lbne
specific config for worch)
– https://github.com/LBNE/lbne-build

● Spent some time debugging why “make test” was failing for
FNALCore and fnalart packages

● Updated config for the latest version of FNALCore and fnalart
● Updated sqlite3 version and attempted to use the

FindSQLite3.cmake macros which should work without passing
extra -D options to cmake.

● Figured out that the cmake macros work for a system install of
sqlite3 but not in worch environment. Fell back to passing -D
options to cmake.

● Updated clhep and root versions needed by fnalart.

https://github.com/LBNE/lbne-build

Build first larsoft package – larcore

● Started with larcore because of dependency chain
Larcore<-Lardata<-Larevt<-Larsim<-Larreco<-Larana

● Quickly added rules to build regular libraries and
add header files in install area

● Needed to create cmake modules directory and
copy over Find*.cmake from fnalart.

● Found a bug in the way root was configured while
generating dictionary library
-DGCCXML_EXECUTABLE={gccxml_install_dir}/bin/gccxml

Comparing it to upstream

● Library sizes were much smaller than upstream
● Location of lib and bin directories different

– OK because lib location exported in cmake files

● All header files in same location
● Needed to add .gdml and .pl and .C files in

gdml dir, .fcl files in job dir, and test scripts in
bin

Making it equivalent to upstream

● After adding cxx flag -g sizes were comparable
● Dug through cetbuildtools macros and ups config

for larcore to reverse engineer
install_gdml(),install_fhicl() and install_scripts()
macros.

● Cmake globbing patterns, ups set variables, etc.
● Didn't implement install_source() to install the

library source files following the install pattern of
fnalart.

Side effect of resizing larcore repo

● While comparing gdml dir found file was missing
larcore/Geometry/gdml/icarus.gdml

● In the repo I found icarus.gdml.REMOVED.git-id
● I had passed the wrong flag to the “BFG” utility recommended by github

– BFG removed top N files by size not files over github 100MB limit

● Both “BFG” and “git filter-branch” removed the one file over 100MB but all
commits after that are rewritten changing their commit id.

● Asked github for an exception to the 100MB file size limit for the larsoft
repos. They graciously raised the size limit to 200MB.

● All larsoft repos now cloned to github with the upstream commit ids.
● Cloned the lbnecode repo on github just to be sure there were no size limit

problems.

Preparing to build lardata

● Added lines to larcore cmake files to export library
interfaces following fnalart example

● Added larcoreConfig.cmake.in to be used by other
package to import larcore interfaces

● Added GENIE and LHAPDF to worch config and built
them.

● Figured out where the get the sources for nutools
package.

● Need to modify nutools cmake files and store changes as
a patch to upstream in worch.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

