
Art Build: Unit Tests
and CMake Tools
Ben Morgan

LArSoft

LArCore LArFoo LArBar ...

LBNE Software Stack Working on “FNAL SDK”,

Patrick on LArSoft and “UPS”
layers

Linux/BSD OS

FNAL UPS : ups, gcc, ROOT, etc

FNAL SDK : art + (fhicl, ..., cpp0x)

LBNE Code

Part 1: Art Status and Unit Tests
The Foundation of LArSoft

Art: Repository Status
• GitHub copy of Redmine Repo :

• https://github.com/LBNE/fnal-art/

• Github master == Redmine master (manual pull/push)

• Dedicated branch for removal of UPS/cetbuildtools:

• https://github.com/LBNE/fnal-art/tree/remove-ups-1.11.3/

• Maintaining this with stable code from upstream v1.11.3

https://cdcvs.fnal.gov/redmine/projects/art
https://github.com/LBNE/fnal-art/
https://github.com/LBNE/fnal-art/

Art Build Status
• Since last report (Slides on Indico):

• Dictionary generation complete

• Bug fixes (thanks Patrick!) from first steps at worch
integration

• Addition of unit tests

Art Unit Tests
• Mixture of Boost.Unit and CPPUnit (Redmine #7029)

• Added “FindCPPUnit.cmake” module

• Most tests added as of commit 6aa0a34

• CMake option to enable build of tests, then run via

$ make
$ make test

http://www.apple.com
https://github.com/LBNE/fnal-art/tree/remove-ups-1.11.3

Art Unit Tests Status
• Tests running for everything except

• Integration, Framework/IO/Root, Framework/Principal

• Latter two depend on Integration, which is very large

• Majority pass except for

• GroupSelector_t: Appears to be path/naming issue with plugin lib

• StateMachine_t_XY: Due to missing cetbuildtools supplied shell script,
which must also be on the PATH

Art Build: Next Steps
• Finish addition of tests

• Resolve failing tests

• Patch as needed from worch install experience

• Provide CMake convenience tools for building plugins

• White Paper for detailed criticism of FNAL system and
proposal of these fixes.

Part 2: Whither cetbuildtools?
If we need a CMake layer, how to do it properly.

Why use cetbuildtools?
• “Common” settings for builds - compiler flags etc

• “Convenience” CMake functions for building/installing
stuff, e.g. “art_make”

• UPS integration - “easily” locate needed packages.

What’s wrong with cetbuildtools?
• Build settings only considers GCC/Linux

• “Convenience” functions enforce a specific layout of
source code, names and UPS install.

• Heavy singular interfaces with many switches to work around exceptions

• Propagates itself into client projects - so difficult to wall
ourselves off from it

• Often contains functionality that is really Art-specific, or
replaces perfectly good CMake builtins

Common CMake Functionality
• Nevertheless, having common CMake functionality in a

base project can be useful

• Extra FindXXX.cmake modules, e.g. FindTBB.cmake

• Build settings and code generation macros (c.f.
ROOT_GENERATE_DICTIONARY from ROOTConfig.cmake)

• Idea: Replace cetbuildtools, keeping needed
functionality and implementing it properly.

• Inspiration: KDE extra-cmake-modules

https://projects.kde.org/projects/kdesupport/extra-cmake-modules

“HEPCMake”
• Slightly overblown name, but intended to be general

• Get it at: https://github.com/drbenmorgan/HEPCMake

• Partitions modules into task areas (finding stuff,
enforcing a particular lab policy)

• Can be directly included in any project, or for sharing,
installed as any other package.

• Feedback to upstream packages, e.g. ROOT dictionary
generation via CMake not optimal? Speak to ROOT
devs.

https://github.com/drbenmorgan/HEPCMake

Using cetbuildtools…

#My CMake script…

SET(CETBUILDTOOLS_VERSION $ENV{CETBUILDTOOLS_VERSION})

IF (NOT CETBUILDTOOLS_VERSION)
 MESSAGE (FATAL_ERROR "ERROR: setup cetbuildtools to get the cmake
modules")
ENDIF()

set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/Modules
 $ENV{CETBUILDTOOLS_DIR}/Modules
 ${CMAKE_MODULE_PATH})

Using HEPCMake…

#My CMake script…

find_package(HEPCMake REQUIRED)

“artTools.cmake”

• Module used/installed by Art to provide better
convenience wrappers following CMake style:

• Instead of

art_add_service(my_service my.h my.cc)
install(TARGETS my_service DESTINATION lib)

art_make(EVERYTHING UNLESS SIDE EFFECTS)

Next Steps
• Comments/Questions?

• Easy to add HEPCMake (or whatever name) into the
worch build.

• Easy to locate

• Easy to use - but needs decision on use and feedback!

