

Antiproton Stacking

Valeri Lebedev

<u>Contents</u>

- Present status
- Stack-tail hardware
- Stack-tail model
- Measurements of Stack-tail parameters
- Stack-tail upgrade
- Conclusions

December 21, 2006 Fermilab

<u>Present Status</u>

- Presently, most of the time, we inject and cool ~2.10⁸ antiprotons in Debuncher for each 2.4 cycle.
 - That corresponds to the flux of 30 mA/hour
 - Major fraction of these antiprotons is transferred to Accumulator;
- Nevertheless the best stacking rate we observed is ~21 mA/hour
 - All data we have point out that the performance is limited by the stack-tail
- The stack-tail model has been gradually improving during last 3 months and presently yields very close number of ~22 mA/hour. It also shows that the stacking rate is limited by 2 problems:
 - the throughput of the stack-tail which is set by
 - the effective bandwidth and
 - the gain profile on the beam momentum
 - and by clearing the deposition orbit which is set by
 - the effective bandwidth only

There are two other problems which are just behind the corner and need to be addressed in the near future

- The horizontal emittance grows fast with stack-tail gain/power. That is believed to be due to parametric heating at $2Q_{x}$
- Excessive power in the stack-tail causes blow up of the core longitudinal emittance due to inter-modulation distortions in TWTs
- Better longitudinal cooling in the Debuncher should reduce the total stack-tail power and should alleviate both of these problems

<u>Stack-tail Hardware</u>

- Pickups are located at large dispersion (~9.1 m) while kickers are at zero dispersion
- Stack-tail has 3 pickups located at different radial positions to make desired dependence of gain on the momentum
- Outside of pickup aperture its sensitivity drops exponentially. That allows one to form desired gain profile on particle position with small number of pickups

Antiproton Stacking, Valeri Lebedev, Dec. 21, 2006, Fermilab

STOCHASTIC COOLING STACKTAIL MOMENTUM MEDIUM LEVEL/FILTERS [

A:SPTF02

	S	tacki	tail	Hi-Le	vel 1-	-16 + 1 % 8					Sta	icktai	il H	i-Leve	∍l 17-	32 + .	△3 & 4		Hor & Vr	er
		WARNIN	IG: These	graphics -	are interact	ive - Read HELP file!						WHENING	inese gi	rapnics are F-Power	R-Power	Helix Vol	t tile:		Tank Pc	sc
HISFH	וער	SPTHXX	SPTWXX	<pre>F-Power</pre>	SPPRXX R-Power	SPHVXX Helix Volt					17	SPTHXX	17	31.2	SPPRXX	SPHVXX	17	Kick	ers	
	D1	P	D1	0	.972	-3196 D1 15 al	MOTH OCC				í í	158		0112		4250	.,	∑2 —In	-2.6	н
		541	C A				FLOW(GPM)	= 12.2			18		18	30.1	7.01	-4302	18	△ 1 — 0u	t	í.
		R	D2	0	.972	-3196 D2 52		Hor & Ver			4	114						Σ2 Ir		Č.
		541	2				KICKER TANKS	Tank Pos	OVERVIEW		19	P	19	24.3	1.19	-4302	19		638-7	,
	SPAHD2 01	_R_	01	625	.972	-4196 01	<u>Σ2</u> In	-5 4 H	D i alcollar		$ \setminus -$	172	-02					Σ2In	t	-
		216							PTCk-ops		20	P	20	33	3.56	-4296	20		1.45	1
	92	_R_	02 ×	034	.972	-4196 02	∑2 — In	2.3 V	HL 1-16			158	-02					∑2 0	(t FLOW	>
		171					1 — Out	000.1			21	P	21	31.2	1.62	-4300	21		=	
	4 03	R_	030	32.2	.972	-4302 03	Σ² In	H30-1				190	-0-					2 UK	-1.9	н
		184					1 Out	1.39	- A		22	R	22	33	1.19	-4296	22		-1.3	v
	04	_R_	04	31.8	.757	-4312 04	<u>∑</u> 2 — In	FLOW	18	dB		95.6	-0-					22 Lo	/w	
1		180				4000	$\triangle^1 - 0ut$	(dr H /	SPPAG	96	4 423	_R_	23	31.8	.541	-4302	23	<u> </u>	, A30-8	3
	05	_ <u>}/</u> _	05	3/	1.4	-4292 05	Σ2 Up	-2 H			$ \rangle$	360	6						.w 1.32	Ī
FROM ST ML		207		01.0	757	-4298	Low				24	_₽_	24	32.8	3.56	-4296	24		, FLOW	Ĵ
	86	_ <u>+r</u> _	06	31.2	./3/	-4250 06	Σ2 Up	-2 *	_	\rightarrow		167	6					∠ - Lo △ 1	.w (GPM)	'
1			075	32.4	. 541	-4294	Low	638-2			- 25	_R_	25 0	25.5	.326	-4304	25	<u> </u>	<u> </u>	
	7 87	261	<u> </u>				∑2 — Up			SPHHIZ		206							1t -1.5	I ^H
			00	633	.541	-4296 00	∠1 — Low	1.23			26	R	26 0	24.9	2,91	-4310	26	<u> </u>	n6	٧
	\ \	289	<u> </u>			00	∑2Up	(GPM)				239							Jt t	
			89	47.7	.541	-4300 A9					427	_12_	27 0>	32.4	2.27	-4298	27	Σ2 II	, A30-9	,
		374	>				∑2 In	-1.1 H				323					Г	<u></u>	/t 1.33	Ī
	10	P	10	23.1	1.19	-4302 10		.4 V	· · · ·		128	_ <u>}/</u>	28	27.2	.541	-4302	28	Σs 0	TLOW	
42		195					∑2 — In ∧ 1 — Out	·	FROM S	T ML		225	20		0.05	4000		<u></u> 1	(GPM)	ʻ
そ	4 L L 11	P	11	42.6	3.13	-4310 11		A30-3			29			23./	2.05	-4300	2.5	Σe Ur		íu.
16 dB		183	-0>				$\sum_{n=1}^{2} - \ln n$	1.53					20		1.69	-4196	20		ω <u>-</u>	
SPPA06	12	P	12	46.5	1.83	-4298 12		FLOW						0	1.02	-4136	56	Σ2 UK	-1.9	۷.
	· · · ·	199					ンピー In 人 1 — Out				Ц (31	1 99	541	-4196	31			
	13					FROM 2-4 CORE M		Beam			7 31	 390	•• ×>	1.00		4150		Σ2 Ur	H30-10	0
Pick-Ups		1				2-4GHZ CP	∠ 2 — Up △ 1 — Low	52 H			82		32	20.8	. 757	-4312	32		1.29	Ι
OVERVIEW	14	_R	14	43.7	.541	-4296 ₁₄		-1.2 V			42	4 04						Σ2	W FLOW	,
		199	6				∠_2 Up 1Low	·			SPAHD3			R	. 757	-3196	P.2			
HL 17-32	4 15		15 0	48.2	1.62	-4304 15	<u>Σ2</u> - 11n	A30-6		— /			***	-			<u>55</u> 2	MAIN ACC	Beam	
	$\langle \rangle$	224	12				△1 — Low	1.35		<u> </u>	Π4	EP*	Π4	0	4.42	-3704	D4 5-1	FLOW(GPM)= 12.3	
	16	_R_	16	44.1	.972	-4302 16	<u>Σ2</u> Up	FLOW (GPM)									<u>~·</u> <u>></u> 2 			
Sum Power =	1276 Watt	194					△ 1 — Low		Sum Power	= 487 W	att SPAHD4						<u> </u>			

<u>Stack-tail Model</u>

Evolution of particle distribution is described by Fokker-Planck equation

$$\frac{\partial \psi}{\partial t} + \frac{\partial}{\partial x} \left(F(x)\psi \right) = \frac{1}{2} \frac{\partial}{\partial x} \left(D(x) \frac{\partial \psi}{\partial x} \right)$$

$$F(x) = f_0 \sum_{n=-\infty}^{\infty} \frac{G_1(x, \omega_n)}{\varepsilon(\omega_n)} \left(1 - A(\omega_n) e^{-i\omega_n T_0}\right) e^{i\omega_n T_2 \eta_2 x}$$

$$\begin{array}{c|c} T_2 \eta_2 & f_3(x,t) \\ \hline Kicker & f_1(x,t) \\ \hline K(\omega) & \\ \hline Pickup & U_{ext} \\ f_2(x,t) & T_1 \eta_1 \end{array}$$

$$D(x) = \sum_{n=-\infty}^{\infty} \frac{1}{\left|\varepsilon(\omega_{n})^{2}\right|} \left[\frac{2\pi e^{2} P_{Unoise}(\omega_{n})}{T_{0}^{2} (\gamma \beta^{2} m c^{2})^{2}} \left| \frac{Z_{k}(\omega_{n})}{Z_{ampl}} \right|^{2} + f_{0} \left| G_{1}(x,\omega_{n}) (1 - A(\omega_{n}) e^{-i\omega_{n}T_{0}})^{2} \frac{\psi(x)}{|n\eta|} \right]$$

$$\mathcal{E}(\omega) = 1 + \left(1 - A(\omega)e^{-i\omega T_0}\right) \int_{\delta \to 0_+} \frac{d\psi(x)}{dx} \frac{G_1(x,\omega)e^{i\omega T_2 \eta_2 x}}{e^{i\omega T_0(1+\eta x)} - (1-\delta)} dx ,$$

where: $\int \psi(x) dx = N \quad , \quad \omega_n = n\omega_0 \left(1 - \eta x\right)$

Taking into account that the betatron size in the pickup is much smaller than the synchrotron size we can factorize the gain for each system or leg:

$$G_1(x,\omega) = G_x(x)G_\omega(\omega)$$
, so that $\operatorname{Im}(G_x(x)) = 0$

- Neglecting particle screening, $\varepsilon(\omega) = 1$, and thermal noise (normally signal to noise 15 20 Db)
 - allows one to eliminate the dependence of force and diffusion on the distribution function
- That yields:

$$\frac{\partial \psi}{\partial t} + \frac{\partial}{\partial x} \left(F(x)\psi \right) = \frac{1}{2} \frac{\partial}{\partial x} \left(\widetilde{D}(x)\psi \frac{\partial \psi}{\partial x} \right)$$

$$F(x) = 2f_0 G_x(x) \operatorname{Re} \left\{ \sum_{n=0}^{\infty} \widetilde{G}(x, \omega_n) \right\}, \quad \widetilde{D}(x) = 2f_0 G_x(x)^2 \sum_{n=0}^{\infty} \left| \widetilde{G}(x, \omega_n) \right|^2 \frac{1}{|n\eta|}, \quad \omega_n = n\omega_0 (1 - \eta x)$$
where: $\widetilde{G}(x, \omega) = G_\omega(\omega) (1 - A(\omega)e^{-i\omega T_0}) e^{i\omega T_2 \eta_2 x}$

- Note that
 - in the general case $\tilde{G}(x, \omega_n)$ cannot be factorized meaning system band is different at different momenta; and
 - in the case of stack-tail we have 5 systems working together and their contributions have to be properly summed.
 - Finally one arrives to

$$F(x) = 2f_0 \operatorname{Re}\left\{\sum_{n=0}^{\infty} \hat{G}_n(x)\right\} , \quad \tilde{D}(x) = 2f_0 \sum_{n=0}^{\infty} \left|\hat{G}_n(x)\right|^2 \frac{1}{|n\eta|}$$

Van der Meer solution

Assuming that the total gain of the system can be factorized $G(x, \omega) = G_x(x)G_\omega(\omega)$, $G_x(x) = G_0 \exp(-x/x_d)$

and looking for a static solution with constant flux one arrives that the maximum flux is

$$J_{\rm max} = |\eta| T_0 W^2 x_d$$

where the effective bandwidth is: For the rectangular gain function $G_{\omega}(2\pi f) = \begin{cases} G_{opt} , & f \in [f_{\min}, f_{\max}] \\ 0, & otherwise \end{cases}$

that yields

$$W = \frac{\left(f_{\max} - f_{\min}\right)}{\sqrt{\ln(f_{\max} / f_{\min})}}$$

The gain of real system cannot be factorized and is not exponential through entire stack-tail region

 Solving complete Fokker-Plank equation is required to understand the system and to predict its behavior

Measurements of Stack-tail parameters

Measured dependence of slip factor on the momentum is fitted by polynomial

- Decent coincidence with Accumulator optics model
- Non-linearity of η is amplified by ~2 times due to proximity to γ_{tr}
- Dependence of pickup sensitivity on the beam coordinate corresponds to the earlier measurements

Pickup coordinate response

Pickup coordinate response coincides well with following formula

$$F(x) = \frac{1}{\pi} \left[\operatorname{atan}\left(\sinh\left(\frac{\pi}{h} \left(x - x_0 + \frac{w}{2}\right) \right) \right) - \operatorname{atan}\left(\sinh\left(\frac{\pi}{h} \left(x - x_0 - \frac{w}{2}\right) \right) \right) \right]$$

Parameters used in the fitting are

	<i>x</i> ₀ [cm]	<i>h</i> [cm]	<i>w</i> [cm]
Leg1	1.07	3.2	3.4
Leg2	-0.57	3.1	
Leg3	-2.4	3.1	
Core 2 - 4 outer	-3.5	3	2
Core 2 - 4 inner	-8.5		
Core 4 - 8 outer	-4.87	4.4	0.76
Core 4 - 8 inner	-7.02		

Dispersion at pickup is 910 cm (nonlinearity of dispersion on momentum is neglected, no reliable measurements due to poor BPM calibration)

System gain was measured by open loop measurements for narrow beam at beam revolution harmonics without notch filters

Leg 1 frequency response depends on beam position in pickup (summing of 2 pickups or too many loops?)

Leg 2 shows this feature in much smaller scale

Phase shift with beam momentum is only 0.82 of expected for perfectly symmetric lattice

 η_{pk} =0.82, η_{kp} =1.18 - pickup data η_{pk} =0.86, η_{kp} =1.14 - OptiM T_{pk} = T_{kp} = $T_0/2$

Each notch filter was individually measured

	Design	Dec, 2005	Present guidance
	(P. Derwent)	(P. Derwent)	Nov. 14, 2006
Filter 1	628882	628890	628888
Filter 2	628886	628895	628906
Filter3	628886	628895	628895
Core	628884	628890	628890

Two notch filters are required because of small depth and desire to widen the bottom to fit the entire core

Antiproton Stacking, Valeri Lebedev, Dec. 21, 2006, Fermilab

<u>Stack-tail Upgrade</u>

Parts to be upgraded

- Displacement of stack-tail pickups and switching-on the legs 3 pickup
- Installation of equalizer to optimize the gain profile (present bandpass filters need to be removed)

Pickup displacements and changes to the gains

present/upgrade	Leg 1 Leg 2		Leg 3	Core cooling	Core cooling				
				2-4 GHz	2-4 GHz				
<i>f</i> ₀ -628000, Hz	830/823	845/836	NA/852	890	890				
Position, mm	10.7/18.4	-5.7/4.4	-23.9*/-13.8	-60.0	-60.0				
Gain rel. to Leg 1	1/1	0.25/0.48	NA/0.1	0.010/0.006	0.030/0.019				
Number of loops	256	48	16	0.010/0.006	0.030/0.019				
Electronics gain	1/1	0.58/1.11	NA/0.4	NA	NA				
relative to Leg 1									
Maximum stacking	22 / 30 [†]								
rate, mA/hour									

^{*} It is not used presently. Bound up to the Leg2

⁺ This number is expected to be better after equalizer design will be complete Antiproton Stacking, Valeri Lebedev, Dec. 21, 2006, Fermilab

Parts to be upgraded (continue)

- Equalizer corrects the gain and phase of the system
- To demonstrate a possibility to correct phase and amplitude the equalizer prototype is designed as a sequence of two oscillators and a two modified notch filters
- Real microwave design still needs to be done

Measured gain in the stack-tail (no band pass filters, no notch filters) and core systems

 $\left(\frac{1}{1+i\cdot Q1\cdot \frac{f^2-f_{F1}^2}{f\cdot f_{F1}}}\cdot \exp\left(-2i\cdot \pi\cdot f\cdot \tau_d\right)\right)^2 \cdot \left(1.02-\sin\left(2\cdot \pi\cdot f\cdot \tau_{filt}\right)\right)$

Q1 = 1.7

 3.10^{9}

 f_{nf}

 $f_{F1} \cdot 10^{-9} = 2.8 \text{ GHz}$

 4.10^{9}

 $\tau_{filt} 10^{12} = 93$ ps

 $\tau_d \cdot 10^{12} = -175$ ps

 2.10^{9}

3.14

1.57

-1.57

--3.14 5.10⁹

 $arg(KEQ(f_{nf}))$

KEQ(f) := 14

 $|KEQ(f_{nf})|$

1.5

0.4

 $1 \cdot 10^{9}$

Effect of gain correction

System gain before and after correction at 628830 Hz revolution frequency

- Further phase correction is desirable
- Because of the notch filters and the dependence of pickup-to-kicker time on the energy the dependence of system gain on frequency depends also on the energy (the gain cannot be factorized to the product of functions on the frequency and the momentum)

<u>Correcting the Gain Profile on the Beam energy</u>

Present

Future

Effective Bandwidth and Flux

Present

Max flux, mA/hour

Time domain simulation of the stack-tail

Deposition orbit clearing is limited by the instability excited by stack-tail

Dielectric functions just after injection of the first antiproton pulse at fr. of maximum response

Present

Future

Antiproton Stacking, Valeri Lebedev, Dec. 21, 2006, Fermilab

Presence of stack reduces particle interaction for injected particles

Dielectric functions just after injection of the 1000-th antiproton pulse at the frequency of maximum response

Stacking is better if the deposition orbit is at outer side of force peak

<u>Conclusions</u>

- Next 2 months action plan includes (expected completion March 1)
 - Design and built equalizers.
 - Move pickup legs and start using Leg 3 before equalizers are built
 - It will require additional studies and measurements and will take a while
 - Next step in simulations will be aimed to incorporate signal suppression factor: MathCAD -> C program
 - We also need to extend the model so that it would predict the transverse core heating by the stack-tail noise
 - Study how longitudinal cooling in Debuncher could be improved
- If successful this work should bring us close to 30 mA/hour in March
- Further growth requires an extension of stack-tail band to 2-6 GHz
 - Details can be clarified before summer shutdown
 - Installation cannot happen before January 2008
 - Minor improvements in Debuncher should support the stacking rate of 40 mA/hour
 - The band extension has to allow 40 mA/hour in Accumulator
 - The decision has to be supported by progress with improvement of present system performance

Antiproton Stacking, Valeri Lebedev, Dec. 21, 2006, Fermilab