
LArSoft Architecture Meeting

Erica Snider
Gianluca Petrillo

Fermilab

December 8, 2014

Dec. 8, 2014 LArSoft architecture committee 2

Agenda

 Proposed changes to low-level architecture

 Discussion that leads to approving, or actions / decisions
needed frst

Dec. 8, 2014 LArSoft architecture committee 3

Scope of discussion

 What we need to consider

– Changes to address issues identifed via internal review of data products,
input from experiments (mostly uBooNE), discussion from previous
meetings and in hallways

– Restrict ourselves to low-level data products

● Will address high-level data products later

 What we will not consider

– Questions regarding which algorithms will actually be used

● Just agree on the abstractions needed to support existing or anticipated
algorithms

– The efort required, resources available, schedules for the changes

● This should be a separate discussion with experiment management

● Now just need to decide on the eventual objectives

Dec. 8, 2014 LArSoft architecture committee 4

The “low-level” data products considered

 raw::RawDigit

 recob::Wire

 recob::Hit

 recob::Cluster

 recob::EndPoint2

 recob::Track

Dec. 8, 2014 5

raw::RawDigit

 Proposed change

– Remove pedestal value

● If subtracted prior to building the object, then not needed

– It's in a database or somewhere else anyway

● If calculated on the fy, then it's not needed in the RawDigit

– Introduce values + methods to fag if a channel is saturated

● Needed in the case that RawDigit contains pedestal-subtracted values

Current interface:

 public:

 std::vector<short> fADC;

 // Set Methods
 void SetPedestal(double ped);

 // Get Methods
 unsigned int NADC() const;
 short ADC(int i) const;
 uint32_t Channel() const;
 unsigned short Samples() const;
 double GetPedestal() const;
 double GetSigma() const;
 raw::Compress_t Compression() const;

Dec. 8, 2014 LArSoft architecture committee 6

recob::Wire

 Recently modifed to accommodate regions of interest

– This was an important, useful change

 Further change proposed

– Store the channel number internally

– Eliminate internally stored art::Ptr to RawDigit, replace with external
association

– Eliminate SignalType() method

● Implicit in the plane, so needn't be in each Wire object

Dec. 8, 2014 LArSoft architecture committee 7

Current recob::Wire

 public:

 // ROI constructor
 Wire(const RegionsOfInterest_t& sigROIlist,
 art::Ptr<raw::RawDigit> &rawdigit);
 Wire(RegionsOfInterest_t&& sigROIlist,
 art::Ptr<raw::RawDigit> &rawdigit);

 // Get Methods
 // zero-padded full length vector filled with ROIs
 std::vector<float> Signal() const;

 const RegionsOfInterest_t& SignalROI() const;
 size_t NSignal() const;
 art::Ptr<raw::RawDigit> RawDigit() const;
 geo::View_t View() const;
 geo::SigType_t SignalType() const;
 uint32_t Channel() const;

Dec. 8, 2014 LArSoft architecture committee 8

recob::Hit

 Lots of ideas from people about what to do with hits

– Diferences between requirements of LBNE and uBooNE

● uBooNE assumes recob::Wire is present, so suggests dropping duplicated data

● LBNE does not store recob::Wire objects

– This will limit the scope of proposed changes

Dec. 8, 2014 LArSoft architecture committee 9

Current recob::Hit

 public:

 // Get Methods
 double StartTime() const;
 double EndTime() const;
 double PeakTime() const;
 double SigmaStartTime() const;
 double SigmaEndTime() const;
 double SigmaPeakTime() const;
 int Multiplicity() const;
 uint32_t Channel() const;
 double Charge(bool max=false) const;
 double SigmaCharge(bool max=false) const;
 double GoodnessOfFit() const;

 geo::SigType_t SignalType() const;
 geo::View_t View() const;
 art::Ptr<recob::Wire> Wire() const;
 art::Ptr<raw::RawDigit> RawDigit() const;
 geo::WireID WireID() const;

10

recob::Hit

 The issues

– HitSignal vector duplicated by recob::Wire

– Charge() method

● Takes an argument bool to toggle between “max” and summed ADC charge

● The “max” is really the “peak” of the ft, not the maximum ADC value observed

● PeakTime is the time (in TDC ticks) associated with that estimated peak

– Sigma() method: assumes Gaussian shape

– Multiplicity() is the number of hits found between StartTick() and EndTick()

● No index available to say where a hit is in the train of hits found

– Internal art::Ptr to associated recob::Wire and raw::RawDigit objects

– Policy issues

● Clarify that “time” means “TDC tick”

● StartTick() and EndTick() represent the interval over which hit-fnding was
performed, and are not start and end points for the individual hit.

– Can therefore remove SigmaStartTime() and SigmaEndTime()

11

recob::Hit

 Proposed changes

– Replace Charge() method with

● PeakAmplitude(), which returns ftted peak ADC value

● SummedADC(), which returns sum of ADC values apportioned appropirately
between shared hits

● IntegratedADC(), the integral of the ft, so the best estimate of collected charge

– Replace Sigma() method with FWHM()

● More general, so covers the case of non-Gaussian hit shapes

● Allows simple calculation of Gaussian sigma when needed.

– Replace StartTime() / EndTime() with StartTick() / EndTick() to clarify
meaning

● Remove SigmaStartTime() and SigmaEndTime()

– Add LocalIndex(), which returns position of hit among those found within
the StartTick() to EndTick() region, starting from StartTick() side.

– Drop internal art::Ptr objects. Use external associations as needed.

Dec. 8, 2014 LArSoft architecture committee 12

recob::Hit

 Proposed changes (cont'd)

– Leave HitSignal() as is

● This is a large overhead for uBooNE, so may need a better solution

Dec. 8, 2014 LArSoft architecture committee 13

recob::Cluster

 Add methods used in shower versus track discrimination

– NHits()

– OpeningAngle(), a shape variable

– TotalSummedADC()

– AverageSummedADC()

– RMSSummedADC()

– TotalIntegrateADC()

– NWire / NHit, a shower / track disciminant

– Width(), a shape variable

 Remove dQ/dW(), which is unused

Dec. 8, 2014 LArSoft architecture committee 14

Current recob::Cluster

 public:
 /// Accessors
 double Charge() const;
 geo::View_t View() const;
 double dTdW() const;
 double dQdW() const;
 double SigmadTdW() const;
 double SigmadQdW() const;
 std::vector<double> StartPos() const;
 std::vector<double> EndPos() const;
 std::vector<double> SigmaStartPos() const;
 std::vector<double> SigmaEndPos() const;
 int ID() const;
 const geo::PlaneID& Plane() const; ///< returns the geometry plane of the cluster
 //@}

 /// Returns whether geometry plane is valid
 bool hasPlane() const;

 /// Moves the cluster to the specified plane
 Cluster& MoveToPlane(const geo::PlaneID& new_plane);

 /// Makes the plane of this cluster invalid
 Cluster& InvalidatePlane();

 Cluster operator + (const Cluster&);

Dec. 8, 2014 LArSoft architecture committee 15

recob::EndPoint2D

 The issues

– We need two distinct roles

● A point in a plane indicating, e.g., the start / end of a cluster (a geometric object)

● A 2D vertex (a reconstructed object)

 Proposed changes

– Use a 2D point in places where the geometry object is needed

– Introduce a 2D reconstructed vertex class for cases when vertex is needed

● Move Strength() method here

● Add Multiplicity() to indicate how many clusters / tracks are associated

Dec. 8, 2014 LArSoft architecture committee 16

Current recob::EndPoint2D

 public:
 EndPoint2D(double driftTime,
 geo::WireID wireID,
 double strength,
 int id,
 geo::View_t view,
 double totalQ);

 double Charge() const;
 geo::View_t View() const;
 double DriftTime() const;
 geo::WireID WireID() const;
 int ID() const;
 double Strength() const;

Dec. 8, 2014 LArSoft architecture committee 17

recob::Track

 The main issues

– A track is a collection of attributes of the clusters / collection of hits that
form the track + a trajectory + results of a ft used to obtain the trajectory

● Anything else is typically computed separately, so should be associated

– Momentum estimate, energy estimate, PID, etc

– Bezier tracks:

● Parameterization for a continuous trajectory stored as recob::Track trajectory pts

– Such tracks cannot be interpreted like a “normal” recob::Track

● The actual BezierTrack class inherits from Track, is created as a transient object
from a recob::Track

– Meaning of trajectory points is not clear

● Meaning, method of defning trajectory points are not well-defned

– Contains dQ/dx

● Not used anywhere, and not needed as part of pattern recognition

Dec. 8, 2014 LArSoft architecture committee 18

 public:

 void Extent(std::vector<double> &xyzStart,
 std::vector<double> &xyzEnd) const;
 void Direction(double *dcosStart,
 double *dcosEnd) const;
 double ProjectedLength(geo::View_t view) const;
 double PitchInView(geo::View_t view,
 size_t trajectory_point=0) const;
 int ID() const;

 // A trajectory point is the combination of a position vector
 // and its corresponding direction vector
 size_t NumberTrajectoryPoints() const;
 size_t NumberCovariance() const;
 size_t NumberFitMomentum() const;
 size_t NumberdQdx(geo::View_t view=geo::kUnknown) const;
 double Length(size_t p=0) const;
 void TrajectoryAtPoint(unsigned int p,
 TVector3 &pos,
 TVector3 &dir) const;
 const double& DQdxAtPoint(unsigned int p,
 geo::View_t view=geo::kUnknown) const;
 const TVector3& DirectionAtPoint (unsigned int p) const;
 const TVector3& LocationAtPoint (unsigned int p) const;
 const double& MomentumAtPoint (unsigned int p) const;
 const TMatrixD& CovarianceAtPoint(unsigned int p) const;

 const TVector3& Vertex() const;
 const TVector3& End() const;
 const TVector3& VertexDirection() const;
 const TVector3& EndDirection() const;
 const TMatrixD& VertexCovariance() const;
 const TMatrixD& EndCovariance() const;
 const double& VertexMomentum() const;
 const double& EndMomentum() const;

 double Theta() const;
 double Phi() const;

 // Calculate rotation matrices between global (x,y,z) and local (u,v,w)
 // coordinate systems based on track direction (fDir).
 // The local w-axis points along the track direction.
 void GlobalToLocalRotationAtPoint(unsigned int p, TMatrixD& rot) const;
 void LocalToGlobalRotationAtPoint(unsigned int p, TMatrixD& rot) const;

Current recob::Track

Dec. 8, 2014 LArSoft architecture committee 19

recob::Track

 The proposed solution (one of many possible)

– Introduce a trajectory class to represent continuous trajectory

● Abstract interface + concrete data product classes for specifc parameterizations

● Classes that now use BezierTrack should use recob::Track + trajectory class

– Introduce a momentum object

● Contains vector of momentum vectors, covariances + other parameters needed
to characterize quality of the momentum estimate

● Typically only care about the momentum at the vertex

– Do not require that N momentum estimates = N trajectory points

– Remove ft momentum from the track

● Currently not used anywhere

● But, If needed for physics, create a momentum object

– Remove dQ/dx

● Not used, and is a calorimetry object anyway

Dec. 8, 2014 LArSoft architecture committee 20

recob::Track

 The proposed solution (cont'd)

– Trajectory points

● Much thought and discussion about whether to include these in the track or put
them into an associated object

– Include:
● Most people consider them to be an intrinsic property of the track
● Easy to use if just in there

– Associate:
● Could be multiple ways to calculate them, particularly if standardizing on a

defnition
● Eventually decided to leave them in the track for now

– Defne a policy / algorithm for calculating the trajectory points

– Wire plane intersections,
● If distance between points is > a confgurable maximum, add mid-point

This can be discussed separately

Dec. 8, 2014 LArSoft architecture committee 21

Discussion

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

