LBNE Plan for Software Installation of
LArSoft-based code

Ben Morgan, Maxim Potekhin, Liz Sexton-Kennedy, Brett Viren

December 10, 2014

Contents

1__Introductionl 1

|2 The FNAL art/LArSoft Software Stack| 2
2.1 Source and Dependency Footprints of art/LArSoft| 2
2.2 The UPS Environment Management System| 4
B3 The cotbuildtools CMake AddOnT . - « .« v o v o e oot 4

[3__New Components| 5
[BI_The Worch builld automafion tooll 5
B.2 Current Statug 7
B3 Planl 8
3.4 Interaction with other effortsl 8

4__Work Schedulel 9

1 Introduction

LBNE must be able to install its required software from source code on all major
collaboration platforms[I]. Whilst binary deployment systems such as cvmfs or
those used by RPM or Debian based distributions, are useful, a simple, portable
and automated from-source build mechanism must be provided in order to easily
create these binary packages and to ease code development tasks. The single,
largest hindrance in satisfying this requirement that has been encountered by
LBNE is the design and implementation of the low-level CMake-based build
system currently in use by the LArSoft and art packages. These packages provide
the major components for the detector simulation portion of the LBNE software
stack and thus this hindrance has had a large impact on the progress of LBNE.

The main element of the LArSoft/art build system that is problematic is the
tight entanglement it has with the high-level UPS end-user environment/package

management system. Rather than having a configuration system give configura-
tion information to a build system, as the case in all industry standard systems
such as rpm/deb/ports/homebrew, the LArSoft/art build system takes configu-
ration from UPS. This inversion of the usual configuration-build hierarchy makes
it impossible to build/run the O(2000/10) C++11 sources/applications of LAr-
Soft/art without replicating the entire UPS-based software stack, down to the
compiler level. Though possible, this replication is difficult due to the installa-
tion process being driven by a highly complex system of undocumented scripts,
both generated and hand coded in various languages (shell, Perl and Python).
It has been found that these factors essentially prevent porting LArSoft/art to
different systems, even those that provide compatible C++11/14 compilers and
the required third party software “out of the box”.

The heart of the problem, this inverted-dependency between the CMake
build and UPS configuration, was pointed out to the art development team in
April 2013, and in subsequent meetings both informal and official. The art team
disagrees that this is a problem. So we were left with a technical impasse, and
we agreed to disagree on this point and all that follows from it. However a plan
was put forward in which LBNE would develop an alternative solution that did
not suffer from this problem, propose it, and then the art team would consider
it for adoption.

It should also be noted that LBNE’s criticisms are not unique. Other po-
tential adopters of art (including the CAPTAIN and SuperNEMO experiments)
have rejected it due to the complexity of the installation procedure despite its
apparently small source footprint (more on this below).

The strategy of the solution is in two parts: The first part is to decouple
the art/LArSoft CMake scripts from UPS by rewriting these using pure CMake
functionality, hence increasing the portability and usability of LArSoft/art. The
second part is to remove the configuration management logic and data that
resided in the UPS-entanglement and move it into a higher-level layer in the form
of a Worch configuration. This strategy has already been proven to work in an
initial conversion of the art packages and subsequent application to LArSoft
packages. The rest of this document describes more about the current status of
this effort, a plan for carrying forward this strategy and a rough time-line.

2 The FNAL art/LArSoft Software Stack

2.1 Source and Dependency Footprints of art/LArSoft

Both packages contain small amounts of C++11/14 source code (including all
unit testing code):

e FNAL foundation libraries contain in total O(200/200) C++ header/source
files

e art contains 0(400/400) C++ header/source files
e LArSoft packages contain in total O(500/600) C++ header/source files

These in turn use the following standard and widely available third party
packages:

e Boost

e SQLite3
e ROOT
e CLHEP
e TBB

and only in LArSoft:

o Geant4d

e GENIE

These source/dependency footprints should be contrasted with core HEP
packages such as:

e ROOT 0O(10000) sources, > 10 external/optional dependencies

e Geant4 O(7000) sources, O(10) external/optional dependencies

These numbers are given to demonstrate that art/LArSoft are very simple
and lightweight packages by modern standards. It should also be noted that nei-
ther art nor LArSoft have a large technical footprint. That is, they follow the
C++11/14 standard, and thus should not be tied to specific architectures nor
compilers. These features should make art/LArSoft easy to build and install
on any system providing a C++11/14 compliant compiler plus the requisite
packages. LBNE’s experience has been that this is not the case due to the
coupling of the build system to the UPS configuration management system, yet
there is no technical reason for this coupling to exist. Neither ROOT or Geant4
require a specific configuration management implementation to locate their re-
quired packages, making them highly portable and easy to install despite their
significantly larger source/dependency footprint.

This is not to say that a configuration management system is not required
to help in integrating and managing an overall software stack. Rather, the
build systems of the packages comprising that stack should not depend on a
configuration management system being present, nor that it has a specific im-
plementation. This follows the basic software engineering principle of separation
of concerns.

2.2 The UPS Environment Management System

The UPS system provides software as “products” which are collections of files
with binaries for each OS/architecture/compiler/optimization level/debug/profiling
combination installed in different directories. A product also contains table
file(s) with metadata on the product and which other products it depends on.
Configuration of packages for use by a user is through a series of environment
variables, not only the UNIX PATH variables but also many undocumented per-
package level variables. Though limited documentation exists for UPS, it is out
of date and poorly broken down into sections for beginner and experienced users.

Although UPS is not ideal (it is noted that Fermilab’s own patterns of use
of UPS gives evidence of this) its use as the configuration management system
is in itself not a blocker for LBNE. Rather, it is the way that a hard reliance
on UPS has been built into the tools used to build art, LArSoft and their client
packages. Clients of LArSoft/art, not only LBNE, are therefore unable to even
build these packages without a full UPS system replicated and configured locally,
even if the local system provides all required packages already.

It is noted that whilst UPS products are available through a cvmfs repository,
the intent and purpose of cvmfs is as a deployment system, not a build system
nor package manager. It is highly useful for distributing software efficiently to
a limited set of platforms, but it provides no utility for building nor packaging
that software easily and cleanly or those or any other platform (and nor should
it).

2.3 The cetbuildtools CMake Add-ons

LArSoft/art use the CMake build tool to configure, build and install their
runtime/development products. Many large software projects such as ROOT,
Geant4, LLVM and KDE (among others) have adopted CMake due to its ease
of use and portability, to quote from CMake’s website:

CMake is a family of tools designed to build, test and package soft-
ware. CMake is used to control the software compilation process
using simple platform and compiler independent configuration files.
CMake generates native makefiles and workspaces that can be used
in the compiler environment of your choice.

To build a package, such as ROOT, using CMake to generate Makefiles, all
one does is

$ cmake <args> /path/to/sourcedir
$ make -j4
$ make install

Custom options and configuration information, e.g. paths to needed pack-
ages, can be passed through the command line arguments <args>. The art/LArSoft
packages should be similarly easy to build/install, but they are not for one key

reason: they require use of FNAL’s cetbuildtools add-ons for CMake. As an
additional build-time dependency, cetbuildtools breaks the build and use of
art /LArSoft because of its design and implementation:

e cetbuildtools is tightly coupled to FNAL’s UPS configuration manage-
ment system for finding things like GCC, Boost etc.

e This coupling and reliance on UPS is such that a user trying to build a
package using cetbuildtools has no way to make it use system or any
other non-UPS installs of the required packages, even if these meet all
version requirements.

e cetbuildtools is highly specialized on using GCC as the compiler, and
subsequently code in art has been found to contain GCC-isms and code
non-compliant with the C++11/14 standard.

e If a package A uses cetbuildtools, then a package B which uses A
will be required to also use cetbuildtools (and thus UPS). This makes
decoupling any client of LArSoft/art from UPS and cetbuildtools via a
build-time “firewall” very difficult to implement.

e Most functionality in cetbuildtools demonstrates a fundamental lack of
understanding of CMake and its capabilities/limitations (including pack-
age finding, import/export targets, target properties and globbing).

e Much of the cetbuildtools functionality is in the form of undocumented,
heavyweight wrappers around core CMake functions, making the tool more
difficult to use. These wrappers also enforce source and binary layout
conventions on the user which are of little benefit for either development
or runtime use cases.

In short, cetbuildtools fails to implement a portable and easy to use build
interface. Any project using cetbuildtools is unbuildable without an entire
local replication of a UPS stack. This is an inversion of the usual hierarchy used
in industry standard build systems, e.g. a Makefile, sitting under a configura-
tion/packaging system, e.g. RPM.

3 New Components

3.1 The Worch build automation tool

The purification process leaves us with a package-level build system which is no
longer entangled with a build configuration system, as is best practice. Instead
a higher level build configuration and automation system based on Worch [6] is
utilized.

Worch is a general purpose task configuration and automation tool with
a focus on developing a cohesive build system for an entire suite of software.

Unlike the UPS/CET build system it can be used to orchestrate the production
of all of LBNE software instead of just being limited to art based packages.

Worch is an extension of an existing, proven tool called waf [7]. waf provides
a low-level build system akin to CMake (although it does not rely on Make) and
it is used to build large, high profile projects such as Samba. In addition,
waf provides facilities to extend it to create meta-build systems which work
by driving whatever native build system may exist for a given package (eg,
CMake or autoconf). It is exactly this support that Worch exploits. The
“heavy lifting” is done by waf and Worch merely adds a simple, declarative
build configuration language and the waf-based “glue code” to interpret this
language into waf installation tasks. waf does the rest. The set of suite-specific
Worch configuration files (and any suite-specific waf extension modules) are
then all that are needed to fully specify and define the production of a release of
a complex software suite. Placing these in a code repository allows a single tag
to precisely specify a release for the entire software stack used by the experiment.

The Fermilab build system does not provide a concise method to define
a release and instead spreads configuration management across many scripts,
generated and hand written. Worch allows for precise description of the build
configuration information in a single text file or factored out, where it is conve-
nient, into a few domain-specific ones. These simple text files completely define
what will be part of the release. This includes which packages, their versions and
file system layout of the results. This configuration mechanism naturally lends
itself to suite-wide release management mechanisms based simply on keeping
the configuration files in their own code repository.

Unlike the Fermilab build system, Worch does not place any requirements
on the packages it builds. Because it does not assume any policy but rather
allows for policy to be expressed in the configuration, it can produce a variety
of build products from the same source and at the same time. For example,
it can be used to build UPS tarballs, Environment Modules, RPM and Debian
packages or others.

Also in contrast to the Fermilab build system which is a collection of inter-
mixed scripts and configuration information, Worch follows a design that can
be easily extended and in a way where extensions may be shared by different
projects. Worch makes better use of build hardware which is important for large
software suites. Besides being automated if allows for inter-package parallelism.
Tasks run as parallel as possible limited only by their inter-dependencies and
the available hardware.

Worch is a general purpose tool that will make managing the production of
releases of complex suites of software for multiple, partly related experiments
far easier than how things are currently done by Fermilab. Worch is also simple
enough that even groups with relatively modest software stacks can benefit from
the automation and configuration management that it provides.

3.2 Current Status

The current status of the “purification” of the low-level CMake build sys-
tem is described. Here the art packages are cppOx, cetlib, fhicl-cpp and
messagefacility and art itself, and LArSoft refers to its current count of ten
packages.

e An LBNE GitHub organization[2] has been established as an interim cen-
ter of development. This is done to minimize disruption that might other-
wise be caused for the current users and developers of 1bnecode, LArSoft
and art.

e The art repositories are forked into this organization in a way that ”up-
stream” commits pushed to Fermilab Redmine repositories continue to
be tracked. Git’s decentralized nature also means that commits on the
GitHub repositories can be pulled into the Redmine repositories in the
future.

e A new FNALCore package[3] is developed that aggregates the art packages
(except the main art package itself) as well as holds their purified CMake
files. An aggregation has been performed due to the heavy interdepen-
dencies between these packages and their intent as a foundation library
for art.

e Purified CMake files are developed for art itself in the fnal-art repository[4].

e The 1bne-build repository[5] was created in the LBNE GitHub organiza-
tion. It houses a Worch configuration and tools to build all the 3rd-party
external packages, FNALCore and fnal-art from source.

e The patterns applied to art packages have been pushed up the stack
through LArSoft and lbnecode.

e A python-ups-utils package[8] was developed to provide installation
methods for binary UPS tarball packages as well as initialize a green field
as a UPS products area, including downloading, building and installing UPS
itself.

e A worch-ups package[9] was developed which provides Worch/waf exten-
sions to support the creation of binary UPS tarball packs from the results
of Worch builds.

e Support for worch-ups has been added to 1bne-build with some initial
testing complete.

e Building these packages with Worch has been tested on at least Ubuntu
(14.04) and Scientific Linux (6.4) and in a by-hand manner on Mac OS X.

3.3 Plan
The plan going forward is meant to satisfy these goals:

e Push the commits of the purified CMake work into ”upstream” repositories
so that they no longer need to be held in separate tracking forks.

e Minimize disruption on the user base and provide an partly adiabatic
change.

e Provide time for ongoing testing and improving of the purified CMake files
while furthering and allowing the other goals.

The plan is in three major parts:

e Continue to apply the CMake purification up through the LArSoft and the
LBNE-specific 1bnecode packages. In the same manner as with fnal-art,
push commits to GitHub in forks which track their upstream repositories
and in step add to codelbne-build support to build each newly purified
package. During this phase, Worch-related development is also needed in
order to create UPS binary product ”tarballs” from the build results and
thus retain user-level status quo in the end.

e Change over from GitHub-based repositories to pushing commits to up-
stream repositories (in Fermilab Redmine/git). Do this by first purifying
lbnecode as above (and in GitHub) and then porting these changes into
the 1bnecode Redmine git repository with all changes placed behind a
“switch” that defaults to the UPS-entangled build. Factor 1bne-build to
support building this ”switched” pure-CMake 1bnecode package against
dependencies provided by UPS.

e With acceptance (and hopefully assistance) by the LArSoft group, con-
tinue porting the CMake purification, still kept switched off by default,
to the LArSoft Redmine repositories and updating 1bne-build to follow
suit. Then, do likewise for the art packages. At some suitable point ”flip
the switch” so the entire stack is built in a pure-CMake manner with
Worch.

3.4 Interaction with other efforts

Up until step three, this effort does not interfere with others. At step three,
buy-in by LArSoft and art developers and the Fermilab software builders is
required. However, before even making significant process on step one it must
be determined if Fermilab will accept the changes that will be made in steps
two and three. If not accepted, LBNE will revise this plan since it would be
easier to remove the backward compatibility features, including removing UPS
entirely, and use a git merging strategy to maintain the LBNE alternative build
system.

4 Work Schedule

Due to the decision making and buy-in process described above, a precise time-
line for rollout of the plan cannot be given, however, we can provide estimates
of effort needed for a specific, non-comprehensive set of items:

e Complete purification of LArSoft/1bnecode (largely done) and test : 1
week FTE

e Further testing of Worch feature to produce UPS tarballs: 1 week FTE

e Port purification from GitHub repositories to Redmine ones (lbnecode,
larsoft, art): 1 week FTE

Estimates are integrated coding time and do not take into account necessary
discussions, assume that art and LArSoft developers agree to this approach and
with not contingency to account for unforeseen technical problems. Also not
included is defining and enacting a campaign of testing and validation including
integration into the Fermilab Jenkins continuous integration system.

References

[1] “LBNE Software and Computing Requirements”, LBNE DocDB 8035.
[2] https://github.com/LBNE

[3] https://github.com/LBNE/FNALCore

[4] https://github.com/LBNE/fnal-art

[5] https://github.com/LBNE/lbne-build

[6] https://github.com/brettviren/worch

[7] https://code.google.com/p/waf/

[8] https://github.com/brettviren/python-ups-utils/

[9] https://github.com/brettviren/worch-ups

https://github.com/LBNE
https://github.com/LBNE/FNALCore
https://github.com/LBNE/fnal-art
https://github.com/LBNE/lbne-build
https://github.com/brettviren/worch
https://code.google.com/p/waf/
https://github.com/brettviren/python-ups-utils/
https://github.com/brettviren/worch-ups

	Introduction
	The FNAL art/LArSoft Software Stack
	Source and Dependency Footprints of art/LArSoft
	The UPS Environment Management System
	The cetbuildtools CMake Add-ons

	New Components
	The Worch build automation tool
	Current Status
	Plan
	Interaction with other efforts

	Work Schedule

