

The Single-Phase Prototype at CERN

This Talk

★ This Talk:

- Introduction: The LBNE TPC Concept
 - The LBNE FD concept
 - LBNE → LBNF/ELBNF: the single-phase LAr option
- From Concept to Reality
 - 35-ton prototype
- The Single-Phase Prototype at CERN
 - Key Aims
 - Current concept
 - Status
- What will we Learn?
- How to get involved?
- Final Words
- ★ Thanks to: Mark Convery, Jack Fowler, Thomas Kutter Greg Pawloski, Michelle Stancari, Jim Stewart

Towards ELBNF?

★ The LBNE TPC Design

- Single--hase "ICARUS-inspired" design
- The challenge: scale up by a factor ~50+
 - Industry "standard" membrane cryostat
 - Modular wire plane readout "Anode Plane Assemblies" APAs
 - Hang many identical readout planes in cold volume
 - Analogue and digital electronics inside cryostat
 - APAs: wrapped reading out two drift volumes
 - Wire mesh cathode planes: ~ -185kV
 - FR4 PCB/copper Field Cage

cross section view of the TPC components inside the cryostat

LBNE APAs

★ LBNE CDR APA Design

- Stacked 2.5m x 7m modules
- Three readout wire planes
 - X (vertical) : collection
 - U (45°) Induction
- Wire pitch ~4.5 mm
- Readout at ends of APAs

★ Questions

- Impact of wrapping
 - Ambiguities/disambiguation
- Gaps between APA modules
 - Impact on physics
- Optimal wire spacing/pitch/angle
 - Impact on physics

From Concept Reality

Evolution

- ★ Goal is to provide option for construction of a 10 kton far detector (~2021) + 30 kton (~2025)
- ★ Road to 10 kton by 2021 is challenging (& exciting)
 - Need a program of single-phase development that minimizes risk
 - Builds from strength, e.g. existing experience
 - ICARUS, Argoneut, ...
 - Now embarking on a z development paths towards a "ELBNF"-scale single-phase Far Detector
 ~700 t

35 ton Prototype

★ 35 ton prototype

- Crucial test of LBNE TPC concept
- Installed at Fermilab
- 2m x 2m x 2m TPC
- Two drift volumes (long/short)
- 4 APA modules (8 sets of wires)

35 ton Prototype Goals

★ Phase-I (completed early 2014)

- Validation of cryostat design/performance
- Demonstrate argon purity required for physics
- No TPC

Liquid Argon Volume Exchanges

★ Phase-II (~second quarter 2015)

- Crucial test of LBNE TPC concept
- Exposed to cosmic-rays
- First test of reconstruction with wrapped APAs
- Evaluate physics performance using cosmic rays

R&D Issues Addressed

★ 35 ton Prototype addresses many R&D issues

- APA performance:
 - wrapping ambiguities,
 - gaps, tracks crossing APAs,
 - energy resolution
- Photon detector performance:
 - event time resolution
 - photons/MeV
- Electronics/DAQ performance:
 - Signal/Noise with cold pre-amp and ADC
 - triggerless DAQ operation
- Cryostat performance:
 - Argon purity
 - acoustic noise
- FR4 printed-circuit field cage performance.

All crucial to demonstrating LBNE TPC concept

Single-Phase Prototype at CERN

Single Phase Option for ELBNF

- **★** The LBL road to a single-phase ELBNF FD
 - ICARUS
 - Established single-phase concept
 - Demonstrated long-term operation/stability
 - 35 ton prototype
 - Validate novel aspects of LBNE concept
 - Experience ⇒ motivate design
 - What Next?
- **★** Some key questions
 - TRL: are we ready to "launch" an ELBNF FD ?
 - Maybe, but risk...
 - Do we understand the performance sufficiently to control systematic uncertainties?
 - Almost certainly not

System Test, Launch & Operations TRL 8 System/Subsystem Development TRL 7 Technology Demonstration Technology Development TRL Research to Prove Feasibility TRL 3 **Basic Technology** TRL 2 Research TRL 1

→ Single-phase prototype at CERN will address these key issues

Single-Phase Prototype at CERN

★ Eol

- "Expression of Interest for a Full-Scale Detector Engineering Test and Test Beam Calibration of a Single-Phase LAr TPC" submitted to SPSC in October
 - 186 authors, 43 institutes, 6 countries from LBNE, LBNO and ICARUS collaborations
- SPCS invites technical proposal ~spring/summer 2015

★ Status

- Detailed plans/design still evolving
- Submit proposal on June 1st for June SPSC
- Beam: late 2017/early 2018 challenging but plausible timeline

!!! Opportunity for new collaborators !!!

Goals

★ Main goals of single-phase Prototype:

- Full-scale prototype of LBNE-concept for single-phase TPC
 - Address engineering design issues RISK REDUCTION
 - Effectively a pre-production test of the APA design
 - Full validation of concept prior to possible deployment as the initial ELBNF 10 kton FD
- "Calibrate" physics performance:
 - Calibrate performance with know charged particle beam
 - Systematic study of detector response
 - Validate/improve MC simulation, e.g. low-E hadronic showers in Argon

Single Phase at the CERN Platform

★ Single-Phase test

- Preferred option is a second cryostat
 - Obvious advantages over sharing single cryostat with double phase prototype (WA105)
 - Exact configuration depends on size/orientation

Basic Design: Beam

- **★ Beam** (H4Ext beam line)
 - Calibrate on tagged particles: e, π, μ, p, ...
 - Ideally, extending down to low energies p~200 MeV/c
 - relevant to second oscillation maximum
 - Possible to have steerable beam ~10-15°
 - Test of potential angular dependence of recombination effects

TPC Configuration

- **★** Evolution from 35 ton prototype
 - Full-scale prototype of LBNE concept
- **★ Currently Two main options**
 - Central APAs vs APAs at sides: 3 vs. 6
 - Dimensions motivated by containment studies

- **★** In each case there are multiple APAs
 - Chance to qualify fabrication at several production sites

Details: APAs

- **★** Intended as a full-scale prototype
- **★** APA design recently revisited:
 - Rigidity of 7.0 m x 2.5 m frame
 - Concerns about disambiguation
 - Practical considerations, e.g. transport
- **★** New design
 - "single wrap": removes ambiguities
 - Smaller frame, 6.0 m x 2.3 m
 - Standard transport, more rigid
 - Wire angle 35.7° (aspect ratio helps)
- **★**Other considerations
 - Increased cost of electronics
 - More modules, more gaps, impact?

Cryostat

- ★ First engineering designs of cryostat being developed
 - Driven by size/configuration of APAs
 - Quite a big beast: 7.3 m x 9.5 m x 8.4 m (inner dimensions)

- **★** Exposed to a charged particle test beam
 - Need to get beam into LAr volume without interaction
 - Beam window design requires serious engineering effort

Goals

★ Technical

- Full-scale test of LBNE single phase LAr-TPC design
 - Engineering: rigidity of APAs, cooldown issues, ...
- Understand performance
 - Characterize noise, uniformity of response, ...
- Potential to qualify multiple construction hubs

★ Physics

- Understand response to multiple particle types
 - Test-beam based calibration limit FD systematic uncertainties
- Test MC simulation on particle interactions in Ar
 - e.g. characterize hadronic showers + feedback to GEANT4
- Test reconstruction & PID performance
 - Including impact of gaps
- Evaluate LAr-TPC response
 - e.g. recombination vs. angle to E-field
- ...

Impact

★ Technical

Initial operation could establish a final single-phase FD design

Ready to move to FD construction

risk mitigation (for single-phase TPC design)

★ Physics

- Establish physics performance
 - Potential to compare single-phase to double-phase
- Many interesting analysis topics

Opportunity Knocks

- ★ New groups/collaborators very welcome (contact Thomas and Greg)
 - Opportunities for intellectual contributions
 - CERN prototype design/physics program are not fixed
 - Effort for proposal is needed now!
 - Opportunities for hardware contributions
 - In new "ELBNF" world, funding model
 - Opportunities for contributions to TPC, DAQ, ...
 - Will need people: construction schedule ~2017/2018
 - CERN is helping at many levels
 - Great time to get involved
 things have to move quickly
- + 35-ton would welcome new people (contact Michelle and Mark)
 - For contributions to operations and analysis

LBNE → **ELBNF** Transition

- **★** LBNE → ELBNF
 - Single phase effort currently embedded in LBNE project
 - Dedicated teams working on:
 - 35-ton prototype & CERN prototype
 - Many people are funded on existing LBNE DOE project
 - Need continuity through this transition period: these activities are essential

Thanks again to: Mark Convery, Jack Fowler, Thomas Kutter Greg Pawloski, Michelle Stancari, Jim Stewart

