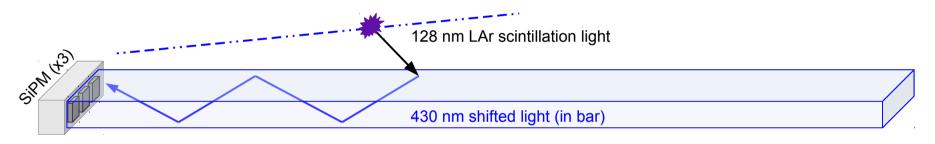
A Lightguide-Based


Photon Detection System for a Large-Volume LAr TPC

Denver Whittington, et. al.

January 22, 2015 ELBNF Collaboration Meeting

Light Collector Design

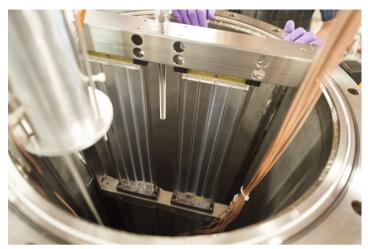
- Scintillation from de-excitation of argon molecular state
 - 128 nm UV, two components
 - Prompt (singlet state) signal ($\tau \sim 6$ ns)
 - Slow (triplet state) signal ($\tau \sim 1.5 \ \mu s$)
- Large active-area UV-collecting lightguides
 - Acrylic or polystyrene imbued with wavelength-shifting compound
 - > 430 nm light propagated by total internal reflection to end

- > 3 Silicon Photomultipliers (SiPM) read-out end of lightguide
 - Strongly reverse-biased array of photodiodes
 - 6 mm x 6 mm active area,
 - $\sim \sim 25 \text{ V}$ bias (gain of a few x10⁶)
 - Quantized, discrete single-pixel signals
 - At cryogenic temperature

 $Ar^* + Ar \rightarrow Ar_2^* \rightarrow 2Ar + \gamma$

Deployment in a Single-Phase LAr TPC

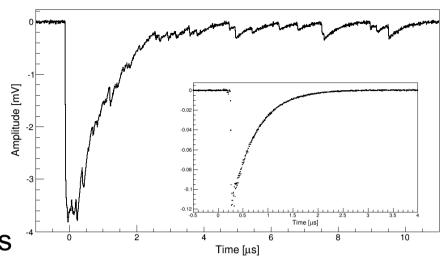
- ψ
- Imbed PD paddles inside anode plane behind collection wires
 - Large photosensitive area with small photocathode area
 - Easily scalable
 - Low-voltage SiPM bias
- Prompt signal from charged track gives t₀ for transverse position determination
 - Calculate drift time from time of arrival and known drift velocity in TPC E-field
 - Resolution of < 100 ns easily attainable
- Non-beam event triggering
 - Supernova burst neutrinos
 - Proton decay events
 - Cosmic ray rejection
- Particle identification/discrimination
 - Ratio of prompt to total light depends on ionization density of track

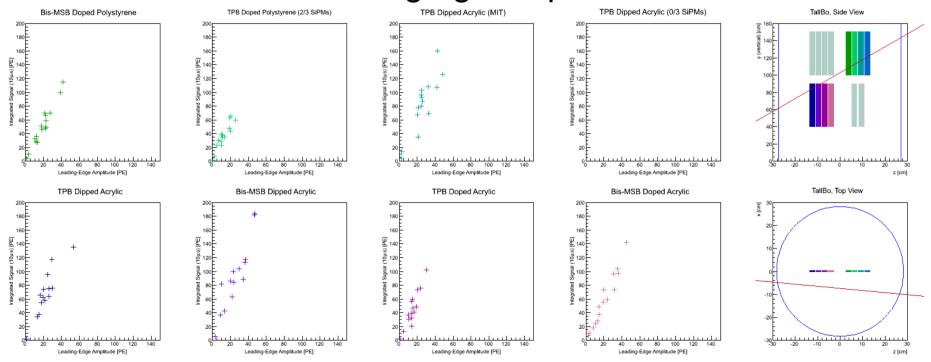


ille in

 t_0

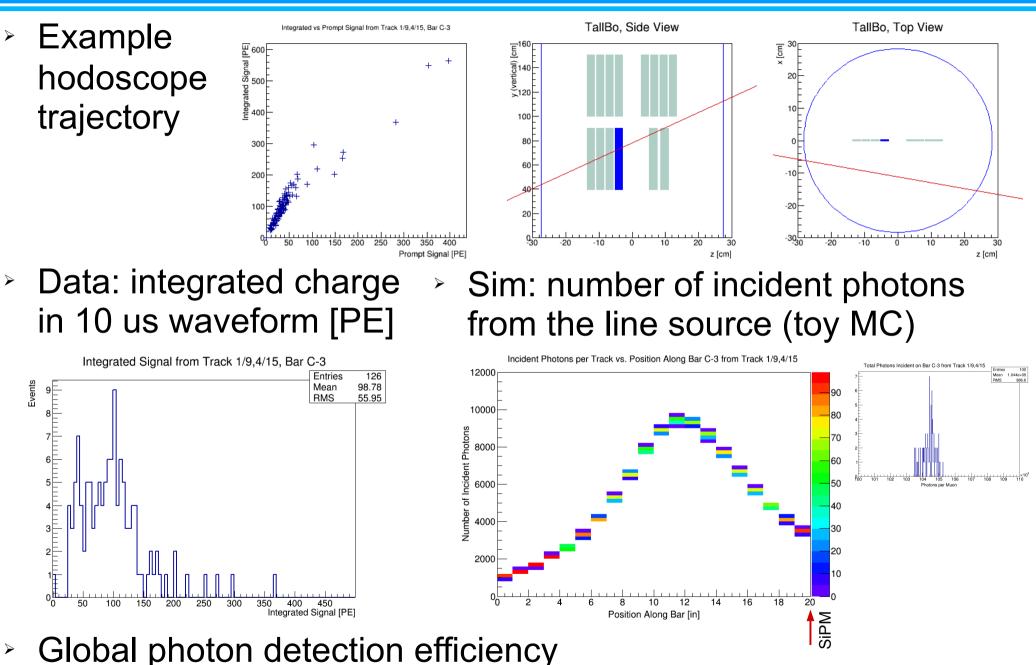
FallBo


- Ultra-high purity liquid argon
- Condenser to maintain closed system
- > Third run Oct./Nov. 2014
- Multiple lightguide designs
 - Dip-coated acrylic bars
 - Cast acrylic and polystyrene bars
 - Flash-heated spray-coated acrylic bars
 - Y11 fibers w/ TPB-coated acrylic
- Hodoscope (cosmic ray) trigger
 - 2 8x8 Arrays of PMTs + BaF crystals
 - CREST cosmic-ray balloon exp't.
 - > 2 scintillator paddle planes
 - Allows shower rejection (single tracks)
- > 150 MHz waveform digitizer
 - SiPM Signal Processor"
 - > Argonne Natl. Lab HEP Elec. Group
 - Resolve fine waveform details



Hodoscope-Triggered Cosmic-Ray Events

- Hodoscope trigger
 - Four-fold coincidence (low bkg)
 - Track position reconstruction
- Waveform analysis
 - Amplitude of prompt signal
 - Integrated signal in 10-µs waveform
 - Both easily calibrated to photoelectrons


Good estimate of relative lightguide performance

D. Whittington - Lightguides for a LAr TPC

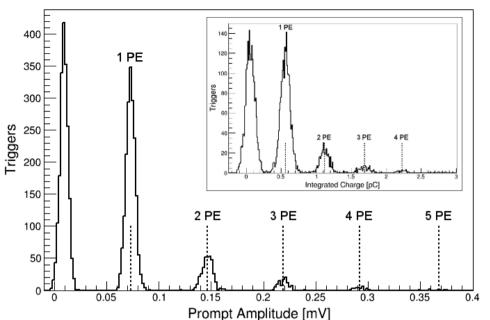
22 January 2015

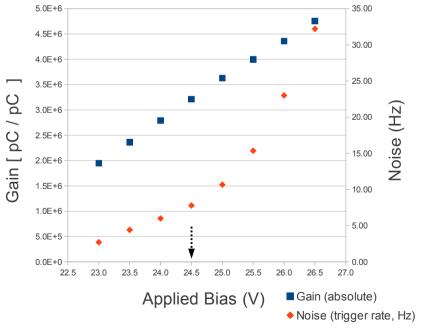
Data / Simulation Comparison

Ratio = [Mean #y Detected (data)] / [Mean #y Incident (sim)]

- Cannot yet disentangle attenuation from surface efficiency
 - Direct measurements (alpha source) to be made soon

Estimate of VUV Photon Conversion & Collection Efficiency

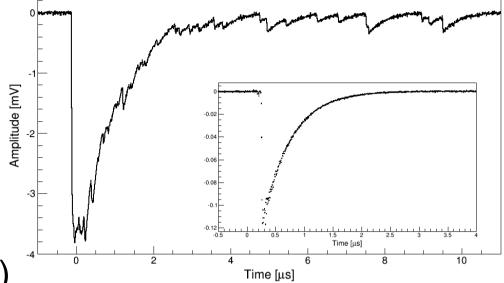

Technology	SiPMs in Readout	Incident Fraction Detected	Full-Readout Detection Efficiency	SiPM Efficiency × Coverage	Conversion & Collection Efficiency
A-0 (bis-MSB Dipped +50%)	1/3	0.00049	0.146%	0.084	0.58 %
A-3 (Uncoated Acrylic)	3/3	0.00014	0.014%	0.249	0.06 %
B-0 (bis-MSB Doped Polystyrene)	1/3	0.00027	0.080%	0.084	0.32 %
B-1 (TPB Doped Acrylic)	1/3	0.00027	0.082%	0.084	0.32 %
B-2 (TPB Dipped (MIT))	1/3	0.00035	0.104%	0.084	0.41 %
C-0 (TPB Dipped)	3/3	0.00076	0.076%	0.249	0.31 %
C-1 (bis-MSB Dipped)	3/3	0.00132	0.132%	0.249	0.53 %
C-2 (bis-MSB Doped Acrylic)	3/3	0.00048	0.048%	0.249	0.19 %
C-3 (TPB Doped Polystyrene)	3/3	0.00109	0.109%	0.249	0.44 %
D-0 (TPB Dipped +50%)	3/3	0.00162	0.162%	0.249	0.65 %
D-1 (Y11 Fibers w/ TPB Plate)	2/2	0.00051	0.051%	0.350	0.15 %


- Looks like a good first estimate of efficiencies.
 - "Full-Readout Detection Efficiency" is expectation from full SiPM readout
 - Some excluded due to limited number of available digitizer channels during run
 - Goal estimated to be 0.3% (B. Baller)
 - Relative performance agrees with other observations in data.

۶

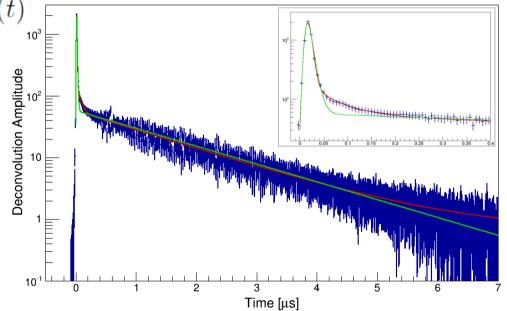
SiPM Response – Gain & Noise

- Noise is easy to measure
 - Count number of events with integrated amplitude ≥ 0.5 pe, divide by acquisition time (300 s)
- Single µcell events easy to tag
 - Require both integrated and prompt amplitude to be ≥ 0.5 and ≤ 1.5 pe
- Gain is easy to calculate
 - Sum ADC counts, convert to charge
- > 24.5 V seems optimum bias voltage
 - Highest gain before rapid noise increase
- Extra µcells
 - Cross talk = simultaneous extra µcell
 - After-pulsing = delayed extra µcell
 - Analysis of time structure
 - Cross talk probability ~ 18%
 - After-pulse probability ~ 2.2%
 - After-pulse lifetime ~ 23 ns



Characteristics of Scintillation from Cosmic-Ray Muons

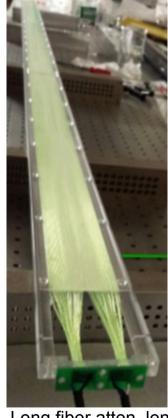
ψ


- Example waveform from cosmic-ray muon
 - Bright prompt signal
 - Single-PE pulses from long-lifetime component

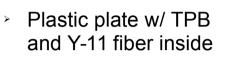
- Average single-PE response of SiPM measured (dark noise)
 - Combination of single-µcell response (inset) with cross talk and after pulsing

 $F_{pe}(t) = (1 + p_{ct})\mathcal{R}_{\mu c}(t) + \mathcal{P}_{ap}(t) * \mathcal{R}_{\mu c}(t)$

- Deconvolve average waveform from cosmic rays using single-µcell response
 - Time structure of signal at SiPM
 - Two-component model (green) fails to capture all features

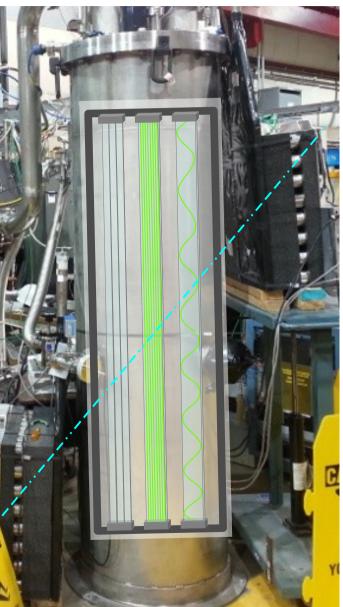

Variety of Lightguide Designs

- Return to TallBo at FNAL May-June 2015
 - Test long versions of three technologies side-by-side
 - First test of 1.5 m bar design
 - Hodoscope trigger w/ more flexible location
- Plastic bar w/ WLS (dipped or doped)



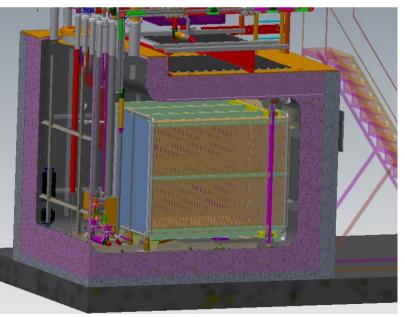
- Simple to manufacture
- Variety of design options
- Indiana U., MIT

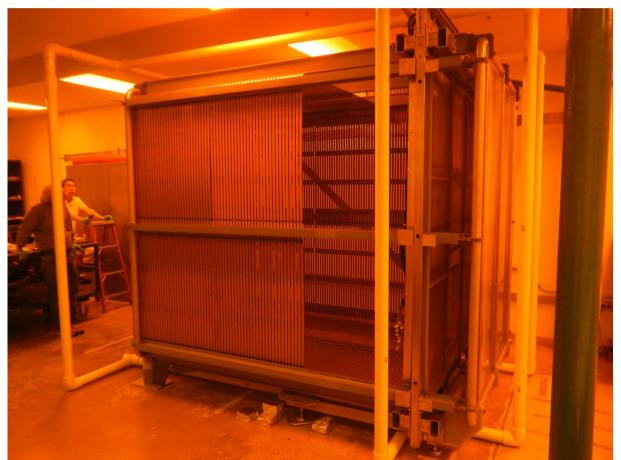
 Y-11 fibers behind TPB-coated plate



- Long fiber atten. length Fewer SiPM channels
- Colorado State U.

Double-ended readout Fewer SiPM channels Louisiana State U.

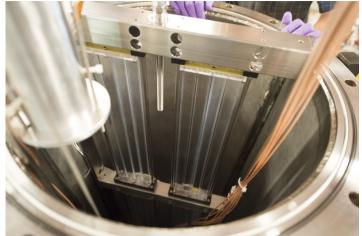



D. Whittington - Lightguides for a LAr TPC

22 January 2015

35-Ton Phase 2

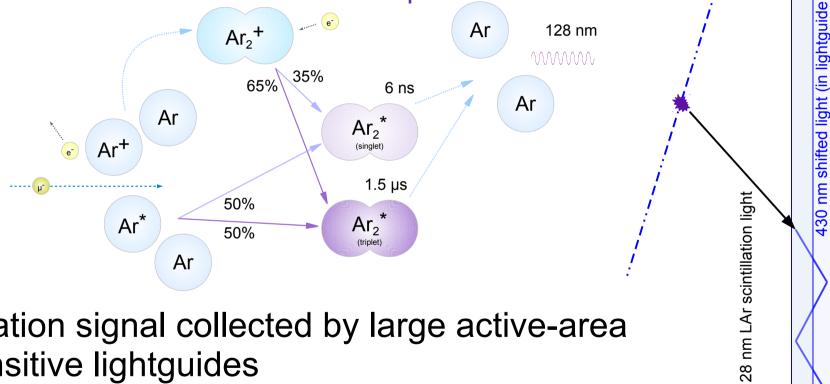
- Phase 1 LAr membrane cryostat technology demonstration
- Phase 2 Single-phase TPC with lightguide-based PD system
 - First simultaneous operation
 - Valuable opportunity to test integration, trigger, reconstruction, etc.
 - Cosmic-ray data
 - Side-by-side test of various lightguide designs
 - Installation underway, operations this spring



Summary

ψ

- Lots of progress developing a lightguide-based LAr scintillation photon detector system
 - Variety of designs have been explored
 - Comparison tests successful with more coming up
 - SiPM readout shows much promise for operation in LAr


- Big effort with thanks to many folks
 - Indiana U.
 - Stuart Mufson, Jim Musser, Jon Urheim, Mark Gebhard, Brice Adams, Mike Lang, Brian Baugh, Paul Smith, Bryan Martin, Bruce Howard, Jonathon Lowery
 - > MIT
 - Janet Conrad, Matt Toups, Ben Jones, Len Bugel
 - Colorado State U.
 - Norm Buchanan, Dave Warner, Ryan Wasserman, Dylan Adams, Jay Jablonski, Tom Cummings, Forrest Craft, Andrea Shacklock

- LBNL Victor Gehman, Richard Kadel
- Louisiana State U. Thomas Kutter
- > Argonne Natl. Lab
 - Gary Drake, Patrick De Lurgio, Andrew Kreps, Michael Oberling, John T. Anderson, Zelimir Djurcic, Himansu Sahoo, Victor Guarino
- Fermilab
 - Brian Rebel, Stephen Pordes, Marvin Johnson, Ron Davis, Bill Miner

Backup Slides

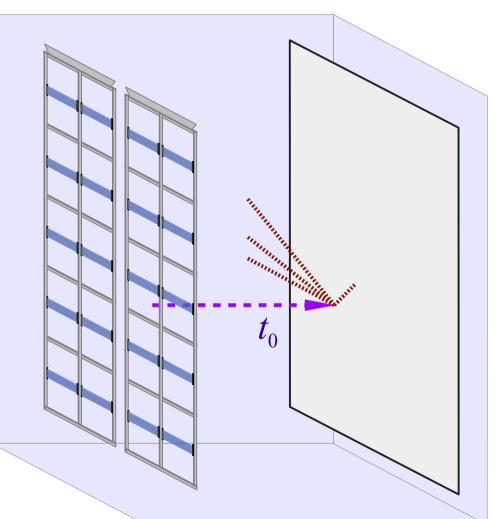
VUV Scintillation of Liquid Argon

- Charged particles excite and ionize argon atoms. \triangleright
- Recombination / self-trapped excitation \rightarrow excited Ar₂ molecule
- Excited Ar_2^* disassociates and emits one 128 nm γ \triangleright
 - Singlet molecular state lifeimte ≈ 6 ns
 - Triplet molecular state lifetime $\approx 1.5 \, \mu s$.

- Scintillation signal collected by large active-area \triangleright **UV-sensitive lightguides**
 - Acrylic or polystyrene imbued with WLS compound
 - 430 nm light propagated by total internal reflection to end
 - Signal detected by silicon photomultipliers (SiPMs)

SiPM (x3)

U


- SensL-MicroFB-60035-SMT
 - From SpecSheet PDE at Peak Wavelength (420 nm)
 - > 31% at V_{br} + 2.5 V
 - > 41% at V_{br} + 5.0 V
 - Includes microcell fill factor (64%)
 - Which to use?
 - Gain at 24.5 V in LAr = ~3.5×10⁶
 - > Gain at V_{br} + 2.5 V at room temperature = ~3×10⁶
 - > Seems likely PDE in LAr at V_{bias} = 24.5 V is a little over 31%
 - Conservative estimate PDE for this SiPM in LAr at 420 nm is ~35%

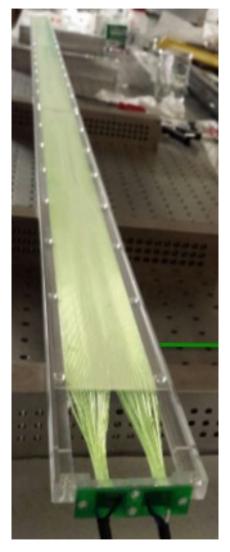
Geometric Factors

- SiPM Coverage on Bar = (6mm × 6mm × 3) / (6mm × 25.4mm) = 71%
- SiPM Coverage on Fiber System = 100%
- Fraction of Incident Photons Measured

Deployment in a Single-Phase LAr TPC

- ψ
- Imbed PD paddles inside anode plane behind collection wires
 - Large photosensitive area with small photocathode area
 - Easily scalable
 - Low-voltage SiPM bias
- Prompt signal from charged track gives t₀ for transverse position determination
 - Calculate drift time from time of arrival and known drift velocity in TPC E-field
 - Resolution of < 100 ns easily attainable
- Non-beam event triggering
 - Supernova burst neutrinos
 - Proton decay events
 - Cosmic ray rejection
- Particle identification/discrimination
 - Ratio of prompt to total light depends on ionization density of track

Variety of Lightguide Designs



 Plastic bar w/ WLS (dipped or doped)

- > Simple to manufacture
- Variety of design options

 Y-11 fibers behind TPB-coated plate

- Long fiber atten. length
- Fewer SiPM channels

 Plastic plate w/ TPB and Y-11 fiber inside

- Double-ended readout
- Fewer SiPM channels