A High Resolution and Highly Segmented Near Detector for ELBNF

R. Petti

University of South Carolina, USA

(for IIFC- ν P and LBNE NDWG)

ELBNF Meeting Fermilab, USA, January 22-23, 2015

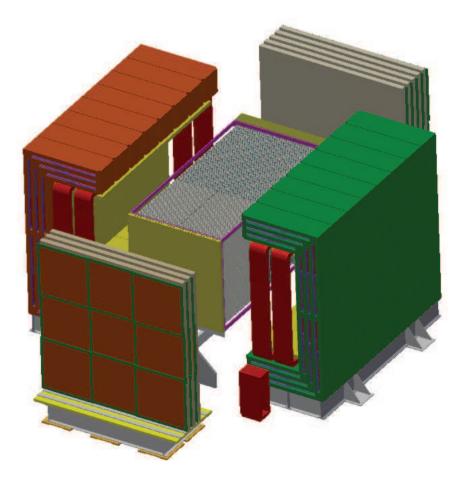
Roberto Petti

ND TASKS FOR OSCILLATION ANALYSES

• Determination of the relative abundance and of the energy spectrum of the four neutrino species in LBNF beam: ν_{μ} , $\bar{\nu}_{\mu}$, ν_{e} , and $\bar{\nu}_{e}$ CC-interactions.

 \implies Extrapolation to FD and predictions of FD/ND(E_{ν}) fluxes to $\sim 1\%$

• Determination of the absolute ν_{μ} and $\bar{\nu}_{\mu}$ fluxes to $\simeq 3\%$ for oscillation measurements

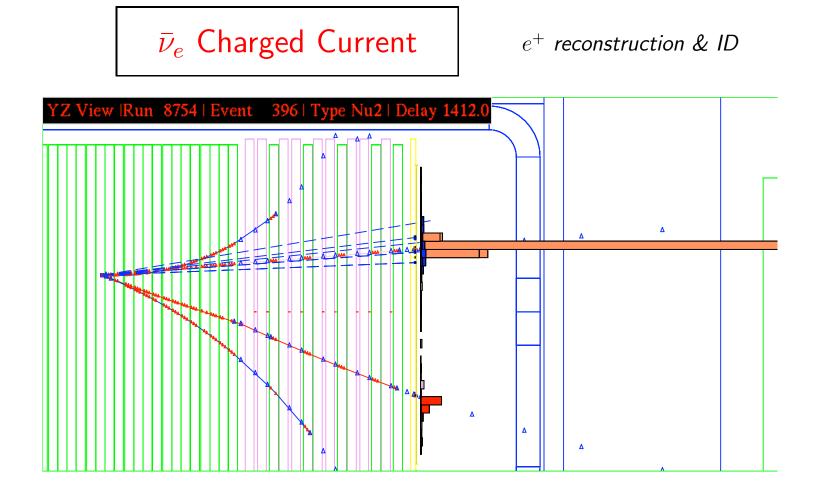

Measure cross-sections & exclusive topologies of NC & CC interactions

- Event-by-event NC/CC separation as a function of hadronic energy E_{had}
- Measurement of π^0 and γ yields in BOTH NC and CC to better than 5%
- Measurement of π^{\pm}/K^{\pm} content in CC and NC to constrain $\pi^{\pm}/K^{\pm} \rightarrow \mu^{\pm}$ decays
- Measure exclusive and semi-exclusive NC and CC ν -Ar processes: Quasi-elastic, single π , Deep Inelastic Scattering (DIS), and coherent.

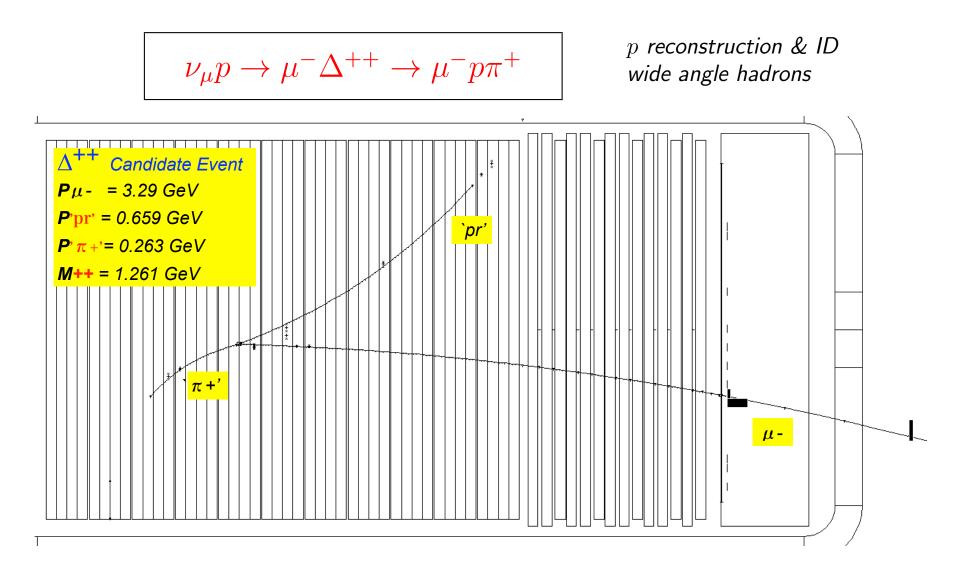
⇒ Backgrounds to appearance & disappearance oscillation channels

- + Calibration of the absolute neutrino energy scale in ν -Ar AND $\bar{\nu}$ -Ar interactions.
- Quantify asymmetries between ν and $\bar{\nu}$ (energy scale, flux, interactions) for $\delta_{\rm CP}$
 - \implies <u>Provide 'Event-Generator Measurement' for FD</u> predicting 4-momenta of particles from NC & CC topologies for all 4 ν species

HIGH RESOLUTION NEAR DETECTOR


Based upon the NOMAD concept/experience

- Straw Tube Tracker 3.5m×3.5m×6.5m
 (ρ ~ 0.1 g/cm³) with target embedded
- + Target mass \sim 7t: $(C_3H_6)_n$, C, Ar, Ca, etc.
- + 4π ECAL in dipole B field (0.4 T)
- 4π μ-Detector (RPC) in return yoke and downstream
- + Pressurized Ar target $\sim \times 10$ FD Stat.
- Precise measurement of 4-momenta


Combined tracking and particle ID

- igstarrow Transition Radiation $\Longrightarrow e^-/e^+$ ID, γ
- $dE/dx \implies$ Proton ID, $\pi^{+/-}$, $K^{+/-}$
- ◆ Magnet/Muon detector $\implies \mu^+/\mu^-$

LOW-DENSITY "ELECTRONIC BUBBLE CHAMBER"

Event candidate from NOMAD data \implies STT has $\times 10$ granularity

Event candidate from NOMAD data \implies STT has $\times 10$ granularity

ROADMAP OF ACTIVITIES

Originally proposed for LBNE ND (reference design) by South Carolina (2008)

♦ Near Detector proposal with Indian funding agencies DAE/DST (Dec. 2012):

- ND construction by Indian institutes with support from US Collaborators;
- Infrastructure development/planning as per separate DAE/DST proposals;
- Detector and simulation/software R&D efforts outlined in DPR.
- Proposal for 3 year R&D ND efforts submitted to DAE in Fall 2013, and, additionally, to DST in February 2014:
 - Mainly focused at STT, ECAL and magnet sub-systems for 2014-2017;
 - *R&D* activities (detector and software/simulation) needed to finalize design for ND construction;

 \implies Phase I funding approved by the DAE/DST scientific and technical committees

PLANNED R&D

Ongoing and planned efforts:

- Main detector and software/simulation R&D at Indian institutions: BHU, DU, HRI, IIT-G, PU;
- Contributions from US institutions: USC, FNAL and LANL

♦ Phase I R&D activities (2015-2017):

- Detector and physics simulations, sensitivity studies and detector optimization (HRI);
- Straw Tube Tracker (PU): design and construction of development prototype;
- ECAL (IIT-G): structural simulation, design and construction of development prototype;
- Dipole magnet & readout (BARC): simulation, design and prototyping;
- RPC (VECC): design optimization.

We warmly welcome any ELBNF colleague to join this effort!

HIGH RESOLUTION ND FOR ELBNF

WHAT IT CAN DO

- Neutrino source: $\Phi_{\beta}(E_{\nu}, E_{\text{vis}}), \Phi_{\alpha}(E_{\nu}, E_{\text{vis}})$
- Cross-sections: $\sigma_{\beta}(E_{\nu}), \sigma_{\alpha}(E_{\nu})$
- Energy scale $\implies \nu$ vs. $\bar{\nu}$ asymmetries
- Backgrounds to Oscillation signals
- $\nu(\bar{\nu})$ -Nucleus Interactions: in-situ measurement but also detailed modeling
- Tight constraints beyond PNMS-oscillation

WHAT IT CANNOT DO

- Reconstruction errors in FD (where FD/ND cancel)
 - \implies Assumes FD knows how to reconstruct particles given 4-momenta
 - \implies Calibration of FD response to $e/\mu/\pi/p/n$

ABSOLUTE $\nu_{\mu}, \bar{\nu}_{\mu}$ FLUX MEASUREMENT

LEPTONIC CHANNELS

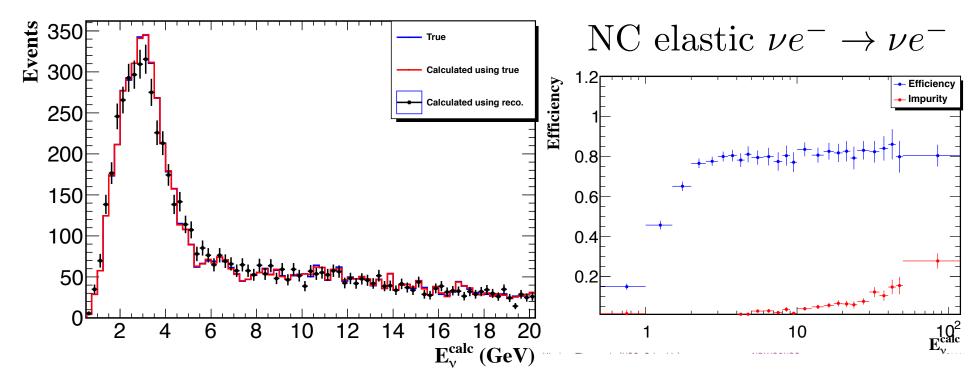
 $\overline{\text{NC elastic scattering } \nu_{\mu} + e^{-}} \rightarrow \nu_{\mu} + e^{-}$

 \implies Expect a $\sim 2\%$ precision in the absolute flux for $0.5 \leq E_{\nu} \leq 10$ GeV

CC Inverse Muon Decay $u_{\mu} + e^-
ightarrow
u_e + \mu$

 \implies Expect a $\sim 2.5\%$ precision in the absolute flux for $E_{\nu} \geq 11$ GeV

QUASI-ELASTIC CHANNEL


Using CC scattering off free proton (hydrogen) target $\bar{
u}_{\mu} + p
ightarrow \mu + n$

 \implies Estimate a $\sim 3\%$ precision in the absolute flux for $0.5 \leq E_{\nu} \leq 20$ GeV

COHERENT CHANNEL

Using coherent ρ meson production off nuclear targets $\nu_{\mu} + A \rightarrow \mu + \rho + A$

 \implies Estimate a $\sim 5\%$ precision in the absolute flux for $4 \le E_{\nu} \le 20$ GeV

◆ Main kinematic cut on $E_e(1 - \cos \theta_e) < 0.001$ GeV to reject CC and NC backgrounds ⇒ Need excellent angular resolution

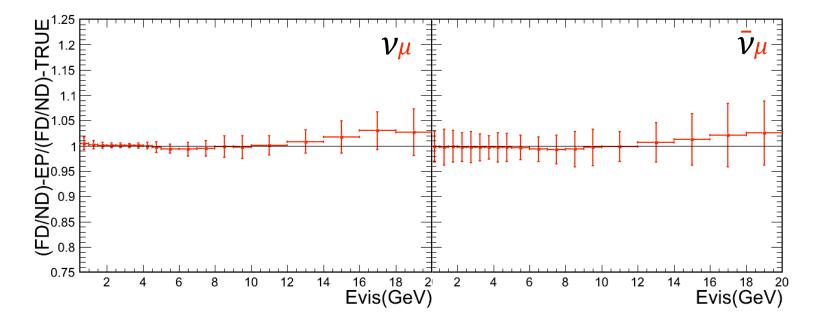
- + Signal efficiency $\sim 70\%$ with benign background
- ◆ In-situ measurement of backgrounds from wrong sign analysis (e^+) ⇒ Need e^+/e^- separation
- igstarrow Can measure absolute u_{μ} flux to $\sim 2\%$ for $0.5 \leq E_{
 u} \leq 5.0$ GeV

RELATIVE $\nu_{\mu}, \bar{\nu}_{\mu}, \nu_{e}, \bar{\nu}_{e}$ FLUXES IN FD/ND

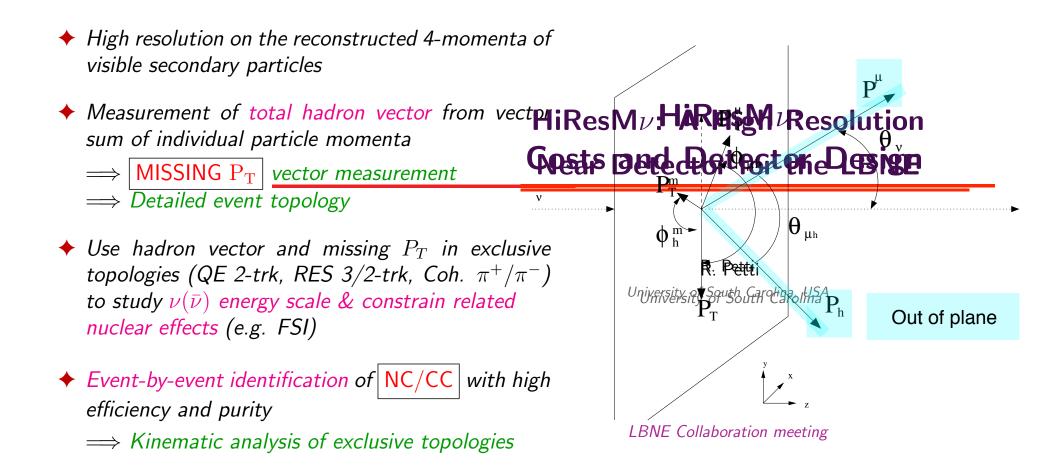
LOW- ν METHOD

Using $\nu_{\mu} \ CC: \ \nu_{\mu} + N \rightarrow \mu^{-} + X$ \implies Expect a FD/ND ratio vs. E_{ν} at $1 \div 2\%$ precision for $0.5 \le E_{\nu} \le 50$ GeV Using $\bar{\nu}_{\mu} \ CC: \ \bar{\nu}_{\mu} + N \rightarrow \mu^{+} + X$ \implies Expect a FD/ND ratio vs. E_{ν} at $1 \div 2\%$ precision for $0.5 \le E_{\nu} \le 50$ GeV Determine $\nu_{e}/\nu_{\mu} \ (\bar{\nu}_{e}/\bar{\nu}_{\mu})$ ratios vs. E_{ν} \implies Expect a precision $\ll 1\%$ on RATIOS for $0.5 \le E_{\nu} \le 50$ GeV

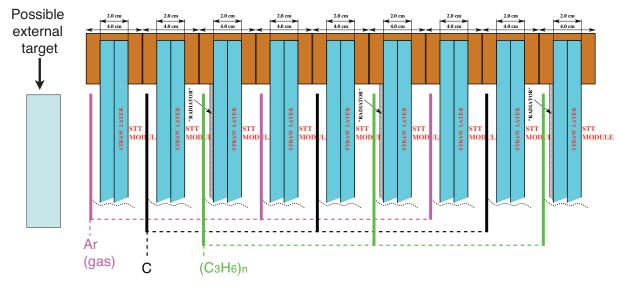
COHERENT CHANNEL


Using coherent π/ρ meson production off nuclear targets: $\nu_{\mu} + \mathcal{A} \rightarrow \mu^{-} + \pi^{+}/\rho^{+} + \mathcal{A}$ $\bar{\nu}_{\mu} + \mathcal{A} \rightarrow \mu^{+} + \pi^{-}/\rho^{-} + \mathcal{A}$ \implies Estimate a precision $\ll 1\%$ on the RATIO $\bar{\nu}_{\mu}/\nu_{\mu}$ vs. E_{ν} for $0.5 \leq E_{\nu} \leq 50$ GeV + Relative flux vs. energy from low- ν_0 method:

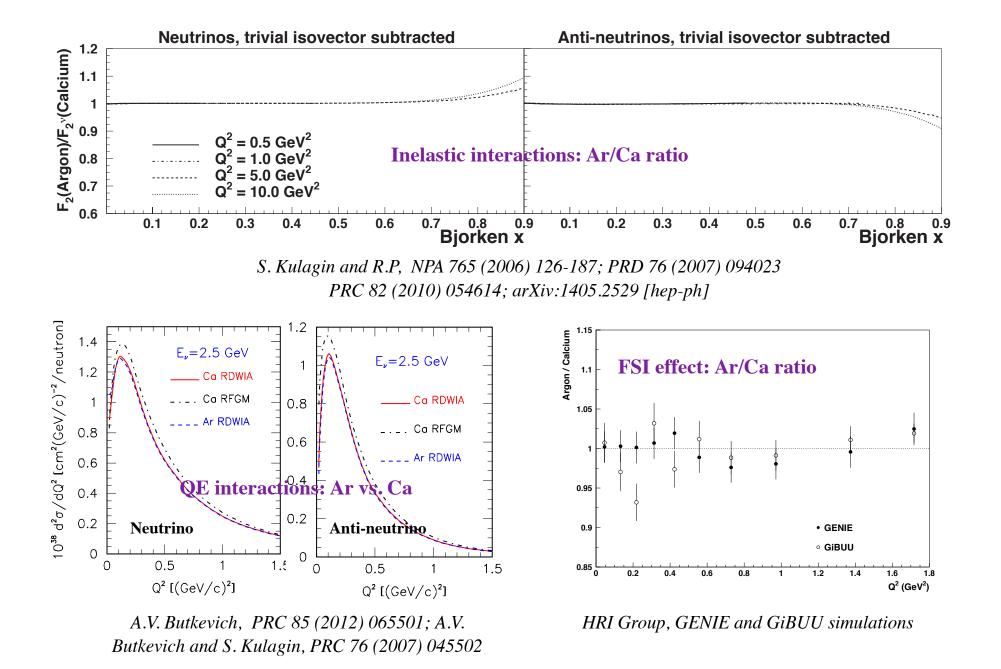
 $N(E_{\nu}: E_{\text{HAD}} < \nu_0) = C\Phi(E_{\nu})f(\frac{\nu_0}{E_{\nu}})$


the correction factor $f(\nu_0/E_{\nu}) \rightarrow 1$ for $\nu_0 \rightarrow 0$.

 \implies Need precise muon energy scale (\sim 0.2%) and good resolution at low u values


- Need spectra for all 4 neutrino species: $\nu_{\mu}, \bar{\nu}_{\mu}, \nu_{e}, \bar{\nu}_{e}$ with $|\nu_{0} = 0.25 \div 0.50$ GeV
- Empirical parameterization of parent $\pi^{\pm}/K^{\pm}/K_0$ distributions (fit + hadroproduction)
- Performed a detailed study of systematic uncertainties from empirical fits of simulated ν_{μ} and $\bar{\nu}_{\mu}$ CC spectra in the Near Detector \implies Obtain FD/ND ratio at 1-2%

EVENT KINEMATICS & $\nu(\bar{\nu})$ ENERGY SCALES



DIRECT MEASUREMENT OF NUCLEAR EFFECTS

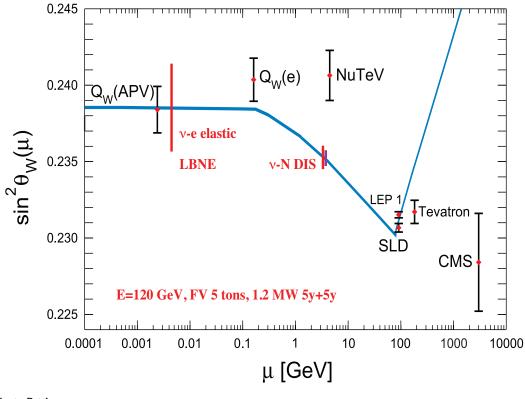
- Multiple nuclear targets in STT: $(C_3H_6)_n$ radiators, C, Ar gas, Ca, Fe, H_2O , D_2O , etc. \implies Separation from excellent vertex ($\sim 100\mu m$) and angular ($\sim 1 \text{ mrad}$) resolutions
- ◆ Subtraction of C TARGET (0.5 tons) from polypropylene (C₃H₆)_n target provides 5.0(1.5) × 10⁶ ± 13(6.6) × 10³(sub.) ν(ν̄) CC interactions on free proton ⇒ Absolute ν̄_μ flux from QE ⇒ Model-independent measurement of nuclear effects and FSI from RATIOS A/H

Pressurized Ar GAS target inside AI/C tubes and solid Ca TARGET provide detailed understanding of the FD A = 40 target
 Collect ×10 unoscillated FD statistics on Ar target
 Study of flavor dependence & isospin physics

SHORT BASELINE PHYSICS IN ELBNF

PRECISION MEASUREMENTS

- Measurement of $\sin^2 \theta_W$ and electroweak physics;
- Measurement of strange sea contribution to the nucleon spin Δs ;
- Precision tests of isospin symmetry;
- Precision tests of the structure of the weak current: <u>PCAC</u>, <u>CVC</u>;
- <u>Adler sum rule;</u>
- Studies of QCD and hadron structure of nucleons and nuclei;
- Strange sea and charm production;
- Measurement of Nuclear effects in neutrino interactions;
- Precision measurements of cross-sections and particle production; etc.


Deep synergy with the LBL oscillation program: same requirements and mutual feedback

SEARCHES FOR NEW PHYSICS

- Search for weakly interacting massive particles (e.g. vMSM sterile neutrinos);
- Search for high Δm^2 neutrino oscillations (e.g. LSND, MiniBooNE)
- Search for light (sub-GeV) Dark Matter; etc.
- \implies The combination of high resolution and unprecedented statistics ($\times 100$) may led to discoveries of new physics in fundamental interactions / structure of matter!
- \implies More than 200 physics papers and > 100 Ph.D. thesis expected

PRECISION ELECTROWEAK MEASUREMENTS

- Sensitivity expected from ν scattering in ELBNF comparable to the Collider precision:
 - FIRST single experiment to directly check the running of $\sin^2 \theta_W$: elastic ν -e scattering and νN DIS have different scales
 - <u>Different scale</u> of momentum transfer with respect to LEP/SLD (off Z^0 pole)
- Direct measurement of neutrino couplings to Z^0 \implies Only other measurement LEP $\Gamma_{\nu\nu}$
- Independent cross-check of the NuTeV $\sin^2 \theta_W$ anomaly (~ 3σ in ν data) in a similar Q^2 range

Different independent channels:

•
$$\mathcal{R}^{\nu} = rac{\sigma_{
m NC}^{
u}}{\sigma_{
m CC}^{
u}}$$
 in u -N DIS (~0.35%)

•
$$\mathcal{R}_{\nu e} = \frac{\sigma_{
m NC}^{\bar{\nu}}}{\sigma_{
m NC}^{\nu}}$$
 in ν -e⁻ NC elastic (~1%)

• NC/CC ratio $(\nu p \rightarrow \nu p)/(\nu n \rightarrow \mu^- p)$ in (quasi)-elastic interactions

• NC/CC ratio
$$ho^0/
ho^+$$
 in coherent processes

 \implies Combined EW fits like LEP

 Reduction of uncertainties to ~ 0.2% with 1-2 yr run in high energy mode

Roberto Petti

SUMMARY

- ◆ High resolution low density (ρ ~ 0.1 g/cm³) & magnetized (B=0.4T) ND important to constrain systematics in ELBNF and fully achieve physics potential of oscillation analyses
- Detector originally proposed in the context of LBNE (reference design). Funding proposals for detector & corresponding R&D submitted to Indian DAE/DST agencies
 Significant past and ongoing activities
- Rich Short Baseline (SBL) physics program, characterized by a deep synergy with Long Baseline oscillation analyses, allows a generational advance in precision measurements and searches for new physics

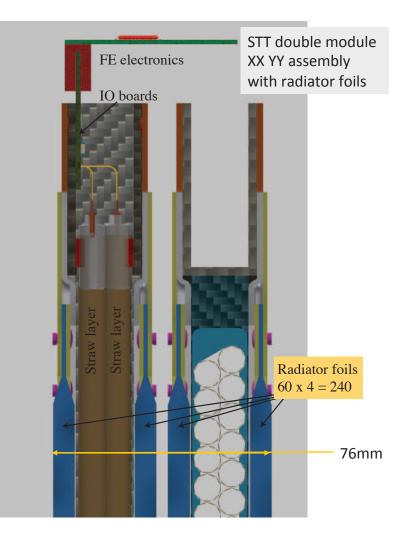
 \implies Discovery potential within SBL physics

 The addition of a LAr TPC in front of the high resolution tracker (spectrometer) could further enhance the capability of the ND-complex in ELBNF

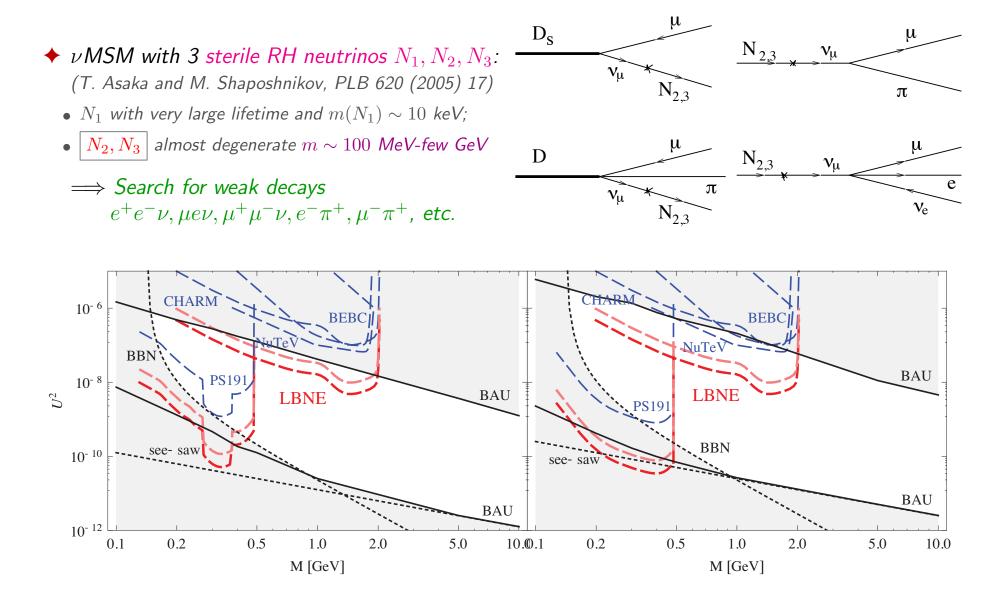
New groups / contributions are welcome!

Backup slides

Roberto Petti


THE STRAW TUBE TRACKER

Main parameters of the STT design:


- Straw inner diameter 9.530 ± 0.005 mm;
- Operate with 70%/30% Xe/CO₂ gas mixture.
- Straws are arranged in double layers glued together (epoxy glue) inserted within C-fiber composite frames;
- Radiator/target integrated into front and back with 120 (C₃H₆)_n embossed foils (25 μm) for Transition Radiation;
- Double module assembly (XX+YY) with FE electronics;
- 160 modules arranged into 80 double modules over ~ 6.5 m (total 107,520 straws);

Proven design and technology:

- Based upon the NOMAD experience
- Combine tracking & particle ID like the ATLAS TRT
- Basic design/geometry after COMPASS straw tracker
- Mass of the active target dominated by the radiators (82.6% of total mass) and can be tuned to achieve desired events & momentum resolution

SEARCH FOR NEUTRAL LEPTONS

Source of uncertainty	$\delta R^{ u}/R^{ u}$		Comments
	NuTeV	LBNE	
Data statistics	0.00176	0.00074	
Monte Carlo statistics	0.00015		
Total Statistics	0.00176	0.00074	
$ u_e, \overline{ u}_e ext{ flux } (\sim 1.7\%)$	0.00064	0.00010	e^{-}/e^{+} identification
Energy measurement	0.00038	0.00040	
Shower length model	0.00054	n.a.	
Counter efficiency, noise	0.00036	n.a.	
Interaction vertex	0.00056	n.a.	
$\overline{ u}_{\mu}$ flux	n.a.	0.00070	Large $\bar{\nu}$ contamination
Kinematic selection	n.a.	0.00060	Kinematic identification of NC
Experimental systematics	0.00112	0.00102	
d,s→c, s-sea	0.00227	0.00140	Based on existing knowledge
Charm sea	0.00013	n.a.	
$r=\sigma^{\overline{ u}}/\sigma^{ u}$	0.00018	n.a.	
Radiative corrections	0.00013	0.00013	
Non-isoscalar target	0.00010	N.A.	
High on twists			
Higher twists	0.00031	0.00070	Lower Q^2 values
$\frac{1}{R_L (F_2, F_T, xF_3)}$	0.00031 0.00115	0.00070 0.00140	Lower Q^2 valuesLower Q^2 values
			•
$R_L(F_2,F_T,xF_3)$		0.00140	•