

AEC
ALBERT EINSTEIN CENTER
FOR FUNDAMENTAL PHYSICS

ARGONCUBE

ELBNF FNAL, Jan 2015

Michele Weber University of Bern

AEC
ALBERT EINSTEIN CENTER

Considerations on an R&D strategy for future LAr TPCs

- Liquid argon TPCs for the LBNF: specific R&D work and the SBN program are the drivers for future technological/methodological choices
- Topical R&D studies need to be performed. Achievements: long drift, purity, cold electronics, UV laser calibration, HV generation, discharge prevention... good enough?
- An international effort is growing with different experience/ expertise to perform the next required R&D steps towards a novel LAr TPC implementation: the ARGONCUBE No-wire charge readout option, novel readout options modularity, scalability, robustness

Staged TPC R&D to date

AEC ALBERT EINSTEIN CENTER

Evolution of detectors with different goals Some used in several tests as "work horses"

> New J. Phys. 12, 113024 (2010) JINST 4, P07011 (2009) JINST 5, P10009 (2010)

Longer, higher, purer...!

$u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

AEC
ALBERT EINSTEIN CENTER
FOR FUNDAMENTAL PHYSICS

Cold electronics

UV laser system

- > Straight ionization tracks
- No recombination
- Controlled tracks
- > Electric field calibration (distortions, space charge)

JINST 4 (2009) P07011 New J. Phys. 12 (2010) 113024

UV laser pulse

Quarzglass feedthrough

2-wireplane readout

photoelectric effect

cathode

> Applied to ArgonTUBE, MicroBooNE, LAr1ND

ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

SO... WHAT IS MISSING? ARGONCUBE

ArgonCUBE a modular LAr test-detector design

- Common bath to all independent sub-modules
- Thin walls separated independent modules (2% dead mass)
- Short horizontal drift (~1-2 m), "low" HV
- Single phase readout
 Each module has its own purification and readout systems
- Cold electronics
- Pick up pixels/strips option
- Incremental detector mass

Advantages

Robust, scalable, modula, cheap

UNIVERSITÄT

ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

- Short drift distance, tuned to the achievable HV and purity (1ms drift time)
- Low space charge, low stored charge & energy compared to monolithic approaches
- Scalable with currently known and proven technology
- If pixel/strip readout viable
 → simpler mechanics and reconstruction
- Extractable modules for staged installation and maintenance/repairs
- Upgrades to the technology are possible (besides repairs)
- Modular structure allows for shared, "democratic" construction load/cost. In principle also different module implementations are possible

Draft concepts

UNIVERSITÄT BERN

AEC
ALBERT EINSTEIN CENTER
FOR FUNDAMENTAL PHYSICS

ARGONCUBE R&D phases

- 0) Research done to date
- Test in Bern: 4 small-module setup for R&D studies on readout, electronics, mechanics, cryogenics, modularity, etc.
 Charged beam beam test in the North Area is an option
- 2) Larger scale (5 modules) setup for CENF at CERN

Modularity demonstration R&D! New electronics, pixel, any-other-great-idea, ...

Phase 1

4 modules (at the time in the cryostat)

67x67 cm², 1.8 m high Argon volume ~ 0.6 m³ per module Argon mass ~ 820 kg per module Fiducial mass ~ 750 kg per module

Double-side drift

Max drift length: 33 cm

Field cage: copper-in-G10

Scintillation: WLS bars + MPPCs

Cryogenic preamps: LARASIC4

MicroBooNE signal feed through

ARGONTUBE HV feed through

UNIVERSITÄT BERN

AEC
ALBERT EINSTEIN CENTER
FOR FUNDAMENTAL PHYSICS

ALBERT EINSTEIN CENTER

Phase 2

- > Cryostat 5x5x5 m³
- In the CENF charged particle beams
- > 5 modules. Present design:
 - Three with 2x2 m2 5m height
 - Two with 1x2 m2 5m height
- Share the cryostat with other groups?

AEC
ALBERT EINSTEIN CENTER
FOR FUNDAMENTAL PHYSICS

Example of R&D in progress: pixelized readout

AEC
ALBERT EINSTEIN CENTER
FOR FUNDAMENTAL PHYSICS

Cosmic muon detection by pixel readout

How does this fit into ELBNF?

Takes all the achievements done so far and brings them to a scalable, flexible, distributed, robust, realizable detector