Tools for Estimating and Propagating Systematic Uncertainties

> Daniel Cherdack Colorado State University

LBNE LBPWG Systematics Session CETUP* 2014 Monday July 14th, 2014

Introduction

- To calculate sensitivities of ELBNF to oscillation parameter measurements we need:
 - Simulations to predict event spectra
 - Oscillation analysis tools
 - Systematic uncertainty estimates
- The closer these are to reality, the better the sensitivity estimates
- What tools are available?
 - Up and running
 - In development
- Are these tools good enough?
 - Do they describe reality/data
 - Are we sensitive to improved modeling
- Where should we focus our efforts?
 - Will improvements effect calculations
 - Do the uncertainties give us sufficient coverage (are they detailed/conservative enough)

External Data

- Always the best option
- Tune models to data
- Well defined uncertainties
- Target hadronization / NA61-like experiments
- Previous neutrino beam (NuMI)
- Test beam experiments (LArIAT & CAPTAIN)
- R&D detectors (35kt)
- Previous/Running LAr experiments (ICARUS & MicroBooNE)
- Electron scattering experiments

Simulation Tools

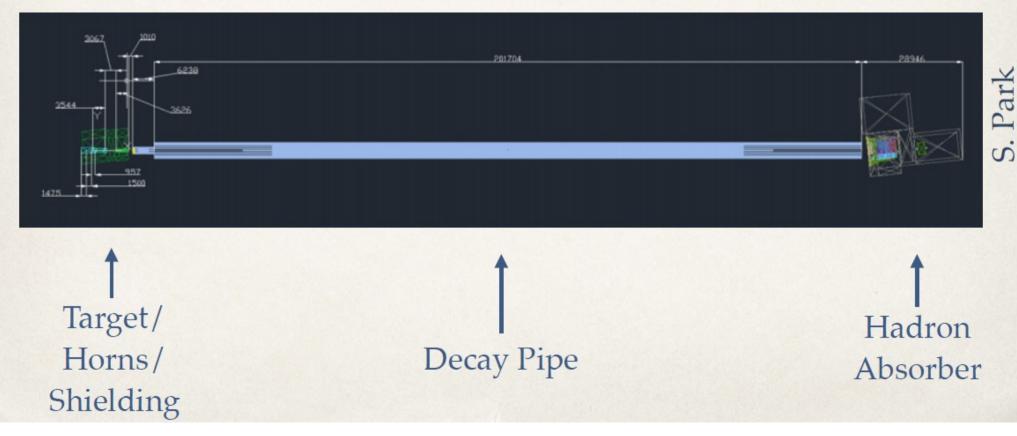
- Beam simulations: G4LBNE
- Generators
 - GENIE:
 - Primary tool in LBNE
 - Tuned to data
 - Systematic uncertainty reweighting
 - NEUT: Primary generator for T2K
 - NuWRO: Cutting edge model implementations
 - GiBUU: Superior FSI treatment

- Detector Simulations
 - GEANT4
 - Full Simulations
 - LArSoft
 - ND simulations
 - Parameterizations
 - Fast MC
 - ND Fast MC
- Simulation chain
 - Protons on target → Reconstructed quantities
 - There is a lot going on in that " \rightarrow "

Analysis Tools

- GLoBES
 - Used for LBNE sensitivity studies so far
 - Uses parameterized inputs
- My GLoBES Tools (MGT)
 - Built on GLoBES
 - Integrated with the Fast MC
 - Tools for propagation of realistic systematic uncertainties
 - Ability to do multitude of sensitivity studies
- VALOR
 - Software developed for T2K full 3-flavor oscillation analyses
 - Generalized and adapted for LBNE (and LBNO and T2HK) sensitivity studies
 - Constraints on flux + cross section from a multi-sample ND fits
 - Topologically based sample selections
 - Generates post-fit covariance matrix used in FD fits

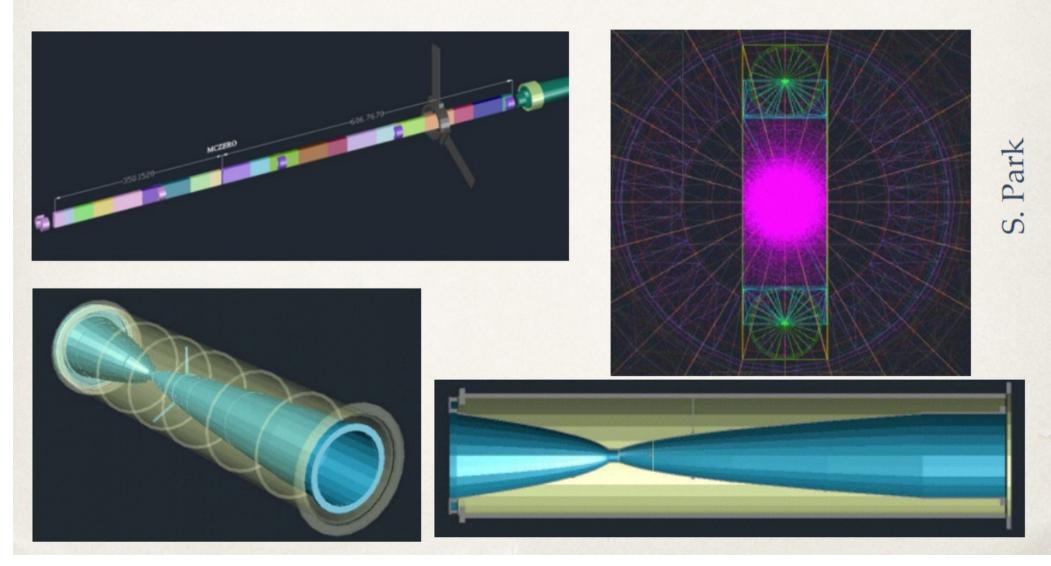
GENIE


- Collection of neutrino cross section and related models
- Uncertainties on free parameters of the models
 - Tuned to data (somewhat involved process)
 - Set of reweighting functions to fluctuate free parameters without rerunning
- Areas of study and development crucial to ELBNF
 - Initial state of the nucleus
 - Final-state interactions
 - DIS hadronization model uncertainties
 - Single pion production rate and final-state kinematics
 - Cross section ratios ($\overline{\nu}/\nu$, ν_e/ν_μ , ν_τ/ν_μ)
 - Incorporation new models and data
 - Updated/streamlined data tuning procedure

Shamelessly stolen from Laura F.

G4LBNE

- We use a GEANT-4 based simulation of the LBNE beamline
 - * Based on G4NuMI, a similar tool for simulating the NuMI beam line


The entire G4LBNE beamline, visualized:

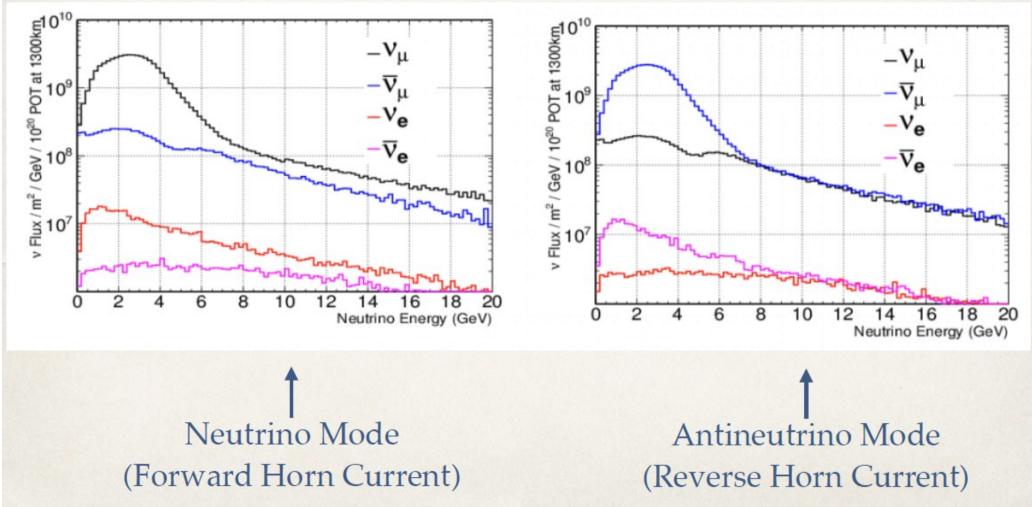
Shamelessly stolen from Laura F.

G4LBNE

A closer look at the target and horns:

G4LBNE

 120 GeV protons are fired at the target and propagated through the entire beam line:



 Output is an ntuple containing information describing each neutrino produced along the beam line

- Sufficient to produce neutrino flux distributions at any point in space (so the same simulation can be used to study flux at different locations — near and far detectors, off axis angles, etc)
- ~1 neutrino for every 2.5 protons
- Two types of weighting used to minimize CPU & disk resources — small samples (~1e8 protons) can be used to study far detector flux

G4LBNE

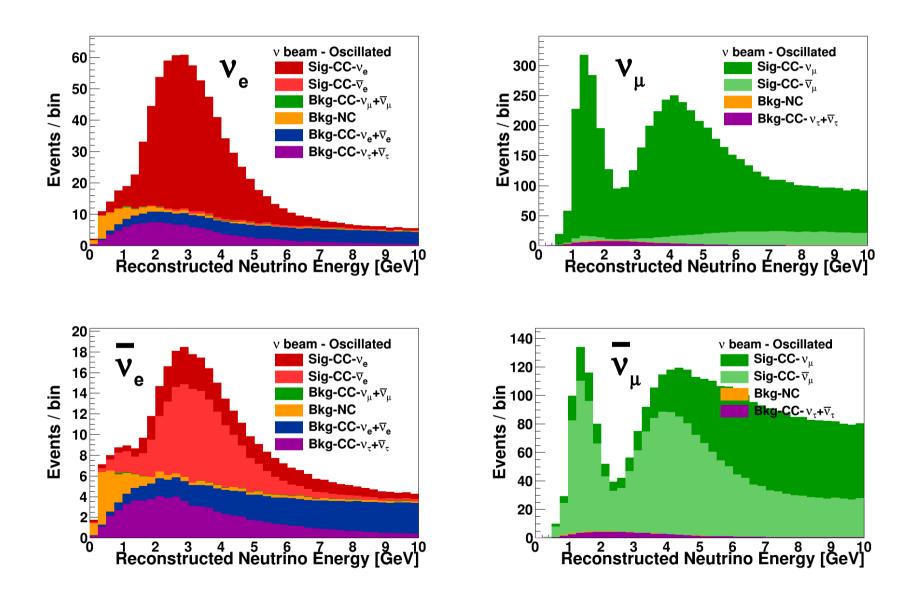
Nominal neutrino fluxes

Multiple alternate fluxes available with beam optics uncertainties 10 and alternate design choices

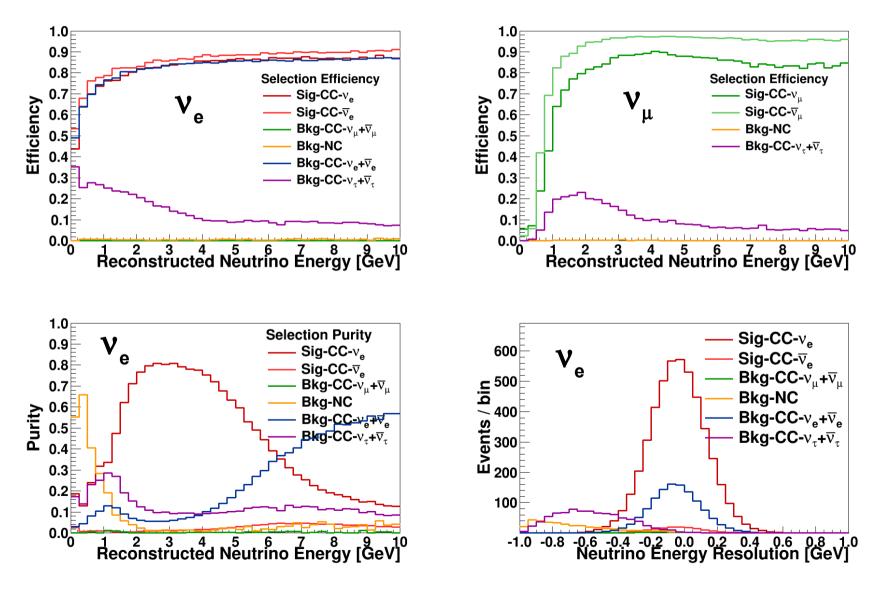
What is the Fast MC?

- A full simulation of LBNE from flux \rightarrow oscillation parameter sensitivities
 - Flux (g4lbne)
 - Cross Sections and Nuclear models (GENIE)
 - Detector response (Fast MC)
 - Reconstruction (Fast MC)
 - Analysis Samples (Fast MC)
 - Systematics Uncertainties (g4lbne, GENIE reweighting, Fast MC, etc)
 - Sensitivity Studies (GLoBES)
- Allows the user to:
 - Simulate (almost) every aspect of the experiment
 - Accurately generate analysis samples
 - Propagate systemic uncertainties to physics sensitivities
 - Improve beam and detector design, and understand the ramifications of design tolerances
 - Understand leading sources of physics uncertainty, and work with theorist, current
 11
 experiments, and ND designers to reduce them

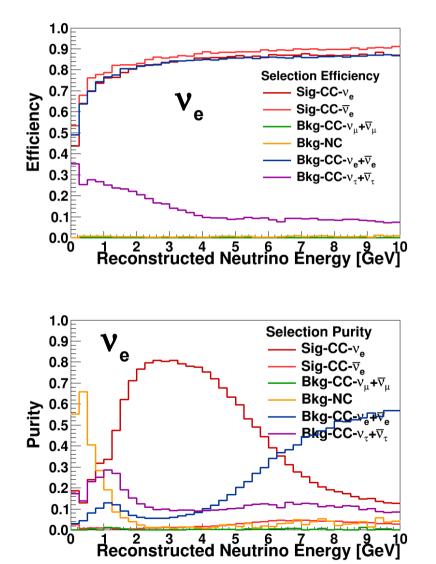
How Does the Fast MC work

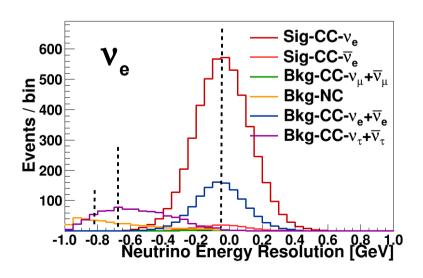

- Use flux files and GENIE to generate v-nucleus interactions on LAr
 - List of final state particles (after FSI)
 - Truth level 4-vectors and kinematics
- Loop over events and:
 - Smear the energy/momentum/angle of each final state particle
 - Reconstruct event level kinematic quantities (E_v, Q², x, y, etc)
 - Identify lepton candidate (CC- v_{μ} : longest MIP track, CC- v_{e} : largest EM shower, NC: neither)
 - Classify each event based on lepton candidate
 - Calculate weights for \pm 1,2,3 σ fluctuations in source of systematic uncertainty (cross section, nuclear model, flux, energy resolution, etc)
- Use output 'reconstructed' quantities and analysis variables to:
 - Plot 'reconstructed' energy spectra for the ν_{e} appearance and ν_{μ} disappearance event samples
 - Plot ratios of systematically fluctuated spectra to the nominal spectra
 - Generate inputs to a modified version of GLoBES
 - Energy spectra (true)
 - Smearing functions
 - 'Response functions' encoding systematic variations

Detector Response and PID


- Detector response based on:
 - GEANT4 simulations of particle trajectories in LAr
 - Resolutions (E/p/θ) determined from ICARUS papers and LArSoft
- Reconstruction
 - Straightforward
 - $E_v = E_{lep} + \Sigma E_{had}$
 - Missing energy from neutrons and particles below threshold
- Possible improvements:
 - Neutron response
 - Charged pion fates
 - Updated smearing and threshold numbers
 - Improved response with a photon detector
 - Updated detector and FV dimensions

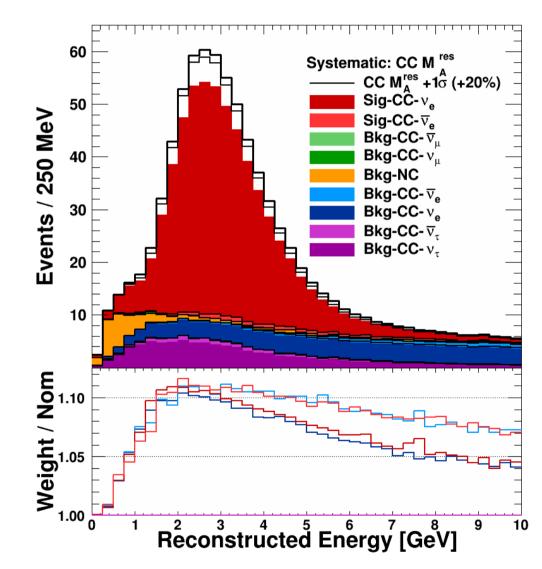
- Classification:
 - CC- v_{μ} : MIP-like track > 2 m
 - CC- v_e : e-like EM shower (no μ candidate)
 - NC: no μ or e candidate
- Low energy response
 - Efficiency of selection based on:
 - Energy of candidate lepton
 - Hadronic shower energy fraction (Y_{bj})
 - Selection probability = $[E_{lep}^{*}(1-Y_{bj}+1) - E_{thr}] / [E_{lep}^{*}(1-Y_{b}+1) - E_{thr}^{*} \mathbf{m}]$
 - Scanning study results used to tune **m**
- E/γ separation
 - Based on very preliminary studies
 - Requires 95% signal efficiency
 - Applied to low multiplicity (<4 prongs) events
- kNN based v_{τ} cut (also cuts NC)


Reconstructed Energy Spectra

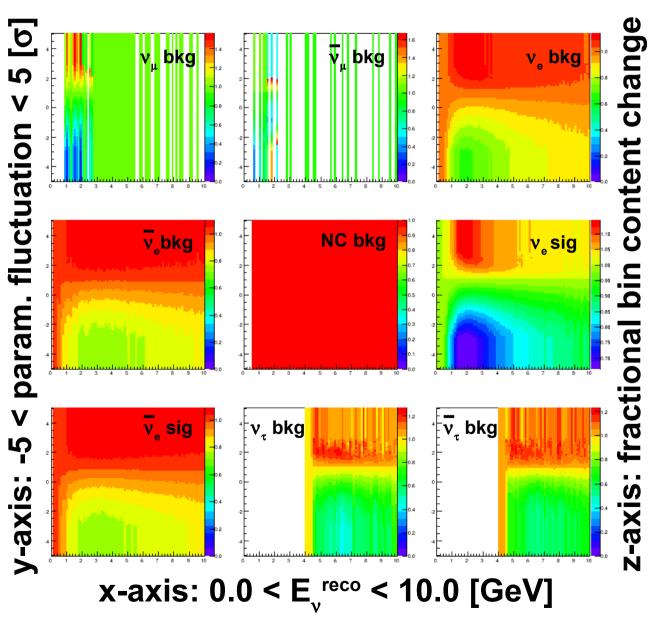

Purity, Efficiency, and Energy Resolution

Purity, Efficiency, and Energy Resolution

- Calorimetric energy response
- Bias in CC ν_{μ} and CC ν_{e} events mostly from missing energy from neutrons
- Bias in NC and CC ν_τ enhanced by final state neutrinos

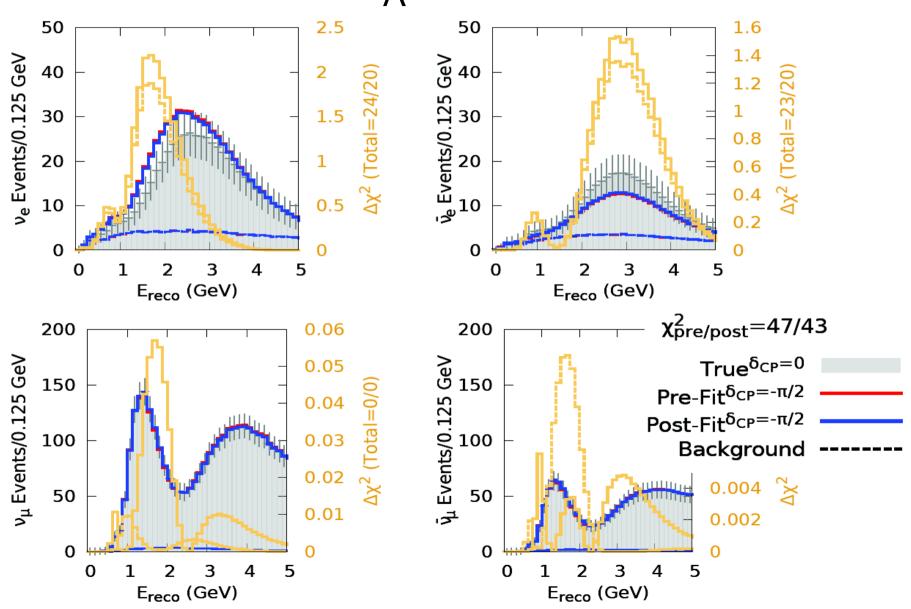


$\nu_{\rm e}\text{-}\text{Appearance}$ by X-Sec Model

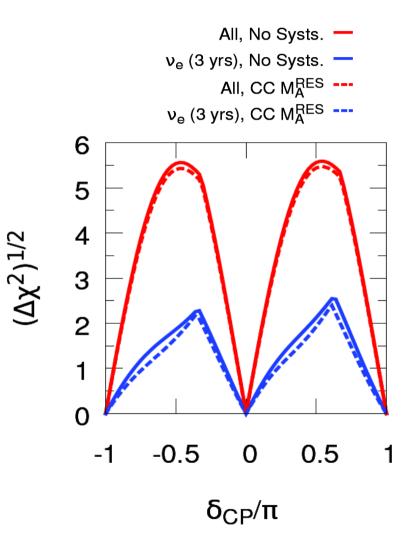


Systematic Weights

- Currently Considered
 - Flux: beam optics parameters, beam optimizations
 - Xsec: QE, RPA, res, res >DIS, Intranuke
- In development
 - Flux: hadronization model
 - Xsec: nuclear initial state, DIS and hadronization model
 - Detector response: reconstructed energy scale, detection and selection efficiencies



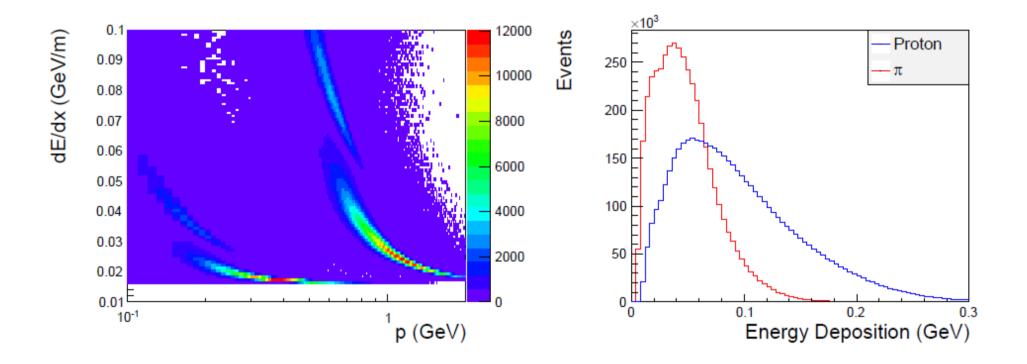
My GLoBES Tools (MGT)


- Based on GLoBES
 fitter
- Takes inputs built event-by-event from Fast MC
 - Analysis sample true energy spectra
 - Smearing functions
 - Systematic error response functions (left)
- Determines sensitivity with detailed systematics

CPV Fit Spectra and χ^2 with Variations in M_A^{res} (w/ osc systs)

Sensitivity to CPV with Variations in M_A^{res}

- Fits to all 4 samples
- Exposure: 3yrs, 1.2MW, 34 kt
- No ND constraints
- WITH oscillation systematics
- Allow CC M_A^{res} to vary by ±20%
 - Current generator level uncertainty / no ND constraint
 - CC M_A^{res} is essentially a normalization on resonance production interaction in E_{reco}
- Degradation to the sensitivity is greatly decreased
 - Large constraint from $\overline{\nu}_{\rm e}$ or ν_{μ} samples

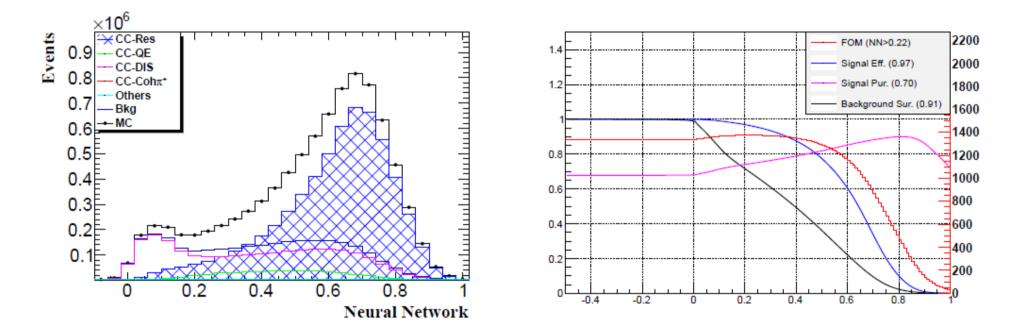


The FGT ND Fast MC

- Fast MC = Fast Detector Simulation + Fast Reconstruction
- The Chain: G4LBNE→GENIE→ND Fast MC→Analyzing the output ROOT files
 - G4LBNE produces the flux
 - GENIE produces the interactions with a homogeneous detector with approximately the same composition as the current design of HiResM ν
 - ND Fast MC will mimic the detector simulation and recontruction to produce the "reconstructed" variables for downstream analysis
 - Analyzing the output "reconstructed" ROOT files for specific topics
- Use the exisiting NOMAD data to benchmark the whole chain
- Re-use as much as possible the existing Fast MC codes developed by Dan and Rik. It is also a good cross check of the existing code

Shamelessly stolen from Xinchun T.

The FGT ND Fast MC - Inputs



DE/dx inputs for PID tagging efficiencies

Shamelessly stolen from Xinchun T.

The FGT ND Fast MC - Analyses

• NN inputs: p_{μ}^{x} , p_{μ}^{y} , p_{μ}^{z} , p_{Proton}^{x} , p_{Proton}^{y} , p_{Proton}^{z} , p_{π}^{x} , p_{π}^{y} , p_{π}^{z}

Analyses use neural network based event selections using kinematic quantities

VALOR

Costas Andreopoulos^{1,2}, Fatih Bay³, George Christodoulou¹, <u>Thomas Dealtry⁴, Steve Dennis^{2,5}, Debra Dewhurst⁴,</u> Lorena Escudero⁶, <u>Nick Grant⁷</u>, Silvestro Di Luise³, Davide Sgalaberna³ and Raj Shah⁴.

¹University of Liverpool, ²STFC Rutherford Appleton Laboratory, ³ETH Zurich, niversity of Oxford, ⁵University of Warwick, ⁶IFIC Valencia, ⁷University of Lances

VALOR is a well-established (EU) T2K oscillation fitting group (2010-present) with contribution to several published T2K oscillation results.

The VALOR code was adapted for HyperK at the end of last year.

(Recent contribution at the 5th Open HyperK Meeting, Vancouver: http://indico.ipmu.jp/indico/contributionDisplay.py?contribId=49&sessionId=24&confId=34)

The code is now adapted for LBNx ND (systematic constraint) and FD (3, 3+1 and 3+2 flavour oscillation fits

Objectives:

• Physics-driven requirements for the LBNE, LBNO and T2HK designs.

- Going beyond simple GloBES studies.
 - Using a framework deriving from a real analysis that produced the best constraints on θ_{23} and δ_{CP} , and one of the best constraints on Δm_{32}^2 .
 - Using a common framework for all experiments.
 - Using a common framework for all proposed configurations within each experiment.

VALOR

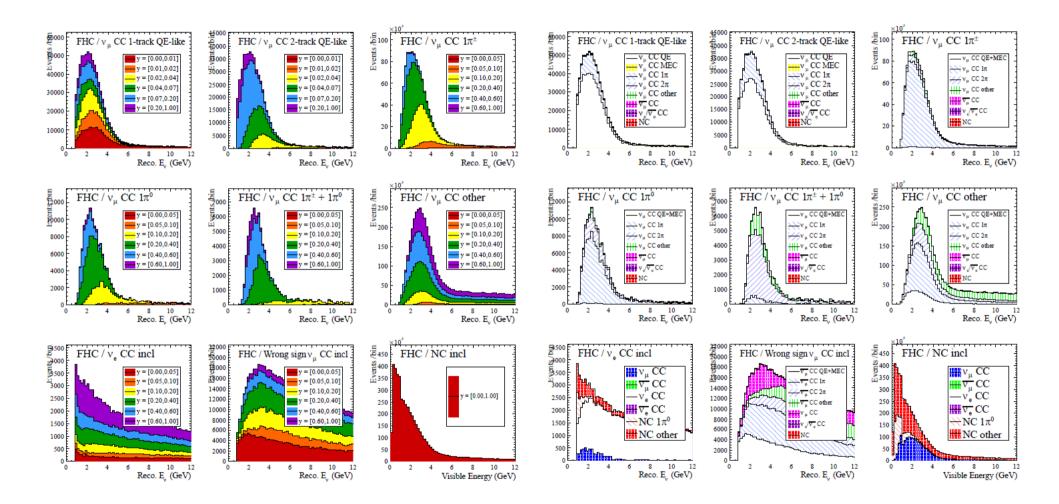
Selections are based on LBNE FastMC

The LBNE FastMC (Dan Cherdack, Rik Gran) is a parameterized detector response package built on top of GENIE. The HiResM ν version of FastMC was developed by Xinchun Tian. Several improvements were installed by George Christodoulou for this analysis.

- ν_{μ} CC inclusive
 - ν_{μ} CC 1-track QE enhanced (FHC: μ^{-} only)
 - ν_{μ} CC 2-track QE enhanced (FHC: $\mu^{-} + p$)
 - ν_{μ} CC $1\pi^{\pm}$ (FHC: $\mu^{-} + 1\pi^{\pm} + X$)
 - ν_{μ} CC $1\pi^{0}$ (FHC: $\mu^{-} + 1\pi^{0} + X$)
 - ν_{μ} CC $1\pi^{\pm} + 1\pi^{0}$ (FHC: $\mu^{-} + 1\pi^{\pm} + 1\pi^{0} + X$)
 - ν_{μ} CC other

ightarrow in future, subdivide further (3-track Δ -enhanced, ue)

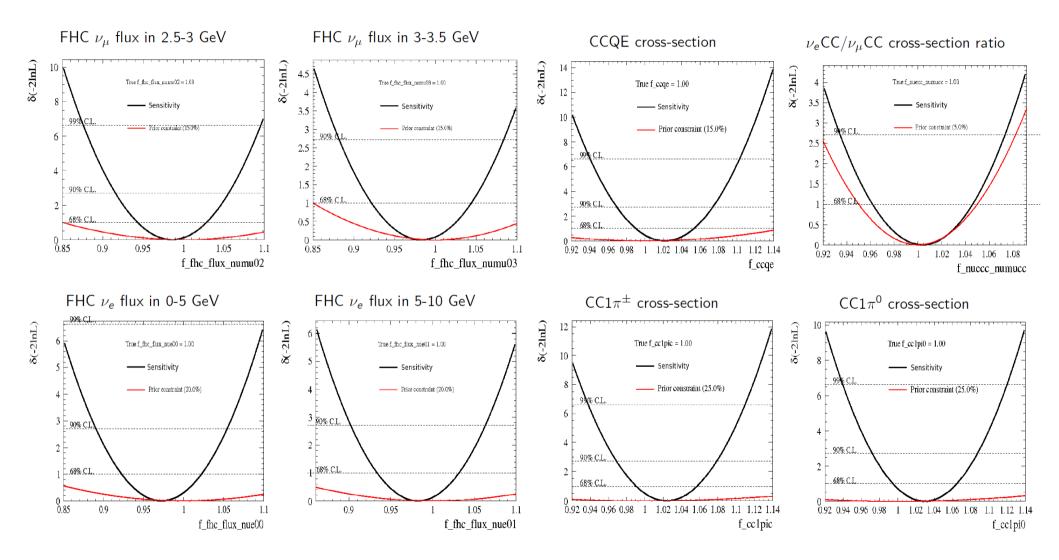
- Wrong-sign ν_{μ} CC inclusive (FHC: μ^+ + X) \rightarrow in future, subdivide further
- ν_e CC inclusive (FHC: $e^- + X$) \rightarrow in future, subdivide further
- NC inclusive


 \rightarrow in future, subdivide further (NCEL, NC $1\pi^{\pm}$, NC $1\pi^{0}$)

Samples in red are included in the *current (2014v1) version* of our ND systematics constraint fit.

Inclusion of other samples, and their utility in constraining systematic uncertainties, will be tested in future iterations of this work.

27


VALOR

ND Event Samples by Bjorken y

ND Event Samples by Interaction channel

VALOR

Sample ND Fit Results

FNAL Redmine Project Links

- Systematics document: https://cdcvs.fnal.gov/redmine/projects/lbnesystematics/wiki/Status_of_Systematics
- Beam Simulations: https://cdcvs.fnal.gov/redmine/projects/lbne-beamsim
- Flux Utilities: https://cdcvs.fnal.gov/redmine/projects/nuutils
- GENIE: https://cdcvs.fnal.gov/redmine/projects/genie
- LArsoft general: https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki
- LBNE sim/reco: https://cdcvs.fnal.gov/redmine/projects/lbne-fd-sim/wiki
- Fast MC: https://cdcvs.fnal.gov/redmine/projects/fast_mc/wiki/Fast_MC_Ba sics
- MGT: https://cdcvs.fnal.gov/redmine/projects/lbne-lblpwgtools/wiki²