
Integration into Geant4	


Memoization of Cross Sections

P. Ruth, P. Diniz, R. Fowler, A. Dotti 



Content

• Paul presented the algorithm and the benefit for Geant4 
applications in previous talk	


!

• Here concentrate only on:	


- Integration with Geant4 toolkit 

• Hadronic Working Group has discussed and agreed on trying this 
out during 2015 to be fully released to users in Geant4 Version 
10.2 (Dec. 2015)	



• Details presented here have not been fully discussed with WG, 
so we may need to iterate if we have misinterpreted something 
(e.g. interaction with specialized codes like neutron HP)

2



Design



General Design

• Reminder (simplified):	


- Geant4 propagates one G4Track at the time: four-momentum + particle definition 

(mass, charge, …)	


- Attached to the G4ParticleDefinition there is a list of processes valid for that 

particular particle (e.g. ionization, decay, hadronic interaction)	


- G4HadronicProcess is the interface for any hadronic interaction	


‣ It holds an instance of G4CrossSectionDataStore : cross-section calculation interface	



- G4CrossSectionDataStore holds one or more G4VCrossSectionDataSet 
(base class for concrete implementation of σ calculations)	


!

• When cross-section is needed: kernel asks each G4HadronicProcess that 
delegates G4CrossSectionDataStore, that asks G4VCrossSectionDataSet	


!

• Given a process type: input of algorithm is {particle,E,material} ; output is double

4



Speed-up

• Modify G4CrossSectionDataStore to hold a simplified 
representation (“histogram”) of σ	



- General and independent of concrete implementation of 
G4VCrossSectionDataSet	



• In some cases small degradation of physics precision (simplified σ) and 
small increase in memory use	



- Allow for user to selectively activate this feature	


- Done for the triplet {particle-­‐type,	
  process-­‐type,	
  material} gives 

maximum flexibility (e.g. activate only for n-elastic in absorber of calorimeter)	


• Application domains may have different requirements (keep it 

optional) 
- While HEP may be ok with some rare processes to be approximated (e.g. CMS 

already employs Russian roulette biasing for n in calorimeters), Shielding applications 
will probably never approximate neutron transport

5



Implementation details



Classes involved

7

Add fast path code here
Add pre-creation 	


of fast path here



Tables initialization

• Geant4 has two states that are relevant for us:	


- G4State_Idle : Physics and geometry are initialized, ready to go	


- G4State_EventProc : An event is being processed	


!

• During transition to G4State_Idle processes are signaled:	


- EM processes build physics tables	


- HAD processes usually do nothing (because σ are in general computed during 

the event loop when needed)	


- Modify G4HadronicProcess similarly to em ones to build simplified path data 

structures	


‣ Only for selected processes	


!

• During G4State_EventProc state, when appropriate, use simplified 
path for HAD σ calculations

8



Sequence diagram

9

Add fast path code here

Add pre-creation 	


of fast path here



UI and C++ APIs

• Users will have final responsibility for activation: 	


- Provide both C++ APIs and UI commands	



• G4HadronicProcess::ActivateFastCrossSection(	
  G4Material*	
  
mat	
  =	
  0,	
  G4ParticleDefinition*	
  pd=0);	
  

- material	
  ==	
  0 : apply to all materials	


- In general no need to specify pd, each process is associated to a given 

particle, maybe useful for future “particle shared” processes	


• Corresponding UI command:	


-­‐/process/had/fastCrossSection	
  <particleName>	
  
<procName>	
  <materialName>

10



MT considerations

• Reminder: particle definitions are shared among threads, but 
each thread has its own list of processes (to avoid mutexes)	



- Thus G4CrossSectionDataStore is thread-private	


‣ Fast path can have thread-variant data 

• G4 MT design: master thread can perform operations and then 
threads can refer to it for thread-invariant data structures	



- E.g. EM cross-sections data tables and geometry	


• Allow for thread-shared data structure containing 

approximated cross-section (memory saving)	


- Filled once at initialization by master thread	


- Accessed during event loop in “read-only” mode by all worker threads

11



Conclusions



Speeding up hadronic cross-sections

• Proposed algorithm can be integrated into current hadronic 
framework	



- Need to add only a single new public method to G4HadronicProcess	


• By default it is turned off 
- Because it introduces approximations and increase in memory use	


- Application dependent needs	


- Can be reviewed in the future	



• Users can activate fast path via:	


- C++ API	


- UI command	



• Validation: relatively simple, for example with 
SimplifiedCaloriemter run twice same setup w/ and w/o UI 
command in macro

13



Possible work plan

• End of developments: ~now (Paul + All)	


• Starting implementation in G4 framework: by end March 

(Andrea + All + HadWG)	


• Validation (physics and technical): in time for 10.2.beta 

(Validation team)	


• Further work (after 10.2.beta): how to treat errors?	


- For theory driven cross-sections, what is the systematic error associated?	


- For data driven cross-sections (e.g. fits), what is the statistical 

(+systematic) error?	


- How to treat these in the memoization approximations?	


‣ BTW: this is a problem of G4 σ themselves, not really of this algorithm…

14


