
Integration into Geant4	

Memoization of Cross Sections

P. Ruth, P. Diniz, R. Fowler, A. Dotti 



Content

• Paul presented the algorithm and the benefit for Geant4 
applications in previous talk	

!

• Here concentrate only on:	

- Integration with Geant4 toolkit 

• Hadronic Working Group has discussed and agreed on trying this 
out during 2015 to be fully released to users in Geant4 Version 
10.2 (Dec. 2015)	


• Details presented here have not been fully discussed with WG, 
so we may need to iterate if we have misinterpreted something 
(e.g. interaction with specialized codes like neutron HP)

2



Design



General Design

• Reminder (simplified):	

- Geant4 propagates one G4Track at the time: four-momentum + particle definition 

(mass, charge, …)	

- Attached to the G4ParticleDefinition there is a list of processes valid for that 

particular particle (e.g. ionization, decay, hadronic interaction)	

- G4HadronicProcess is the interface for any hadronic interaction	

‣ It holds an instance of G4CrossSectionDataStore : cross-section calculation interface	


- G4CrossSectionDataStore holds one or more G4VCrossSectionDataSet 
(base class for concrete implementation of σ calculations)	

!

• When cross-section is needed: kernel asks each G4HadronicProcess that 
delegates G4CrossSectionDataStore, that asks G4VCrossSectionDataSet	

!

• Given a process type: input of algorithm is {particle,E,material} ; output is double

4



Speed-up

• Modify G4CrossSectionDataStore to hold a simplified 
representation (“histogram”) of σ	


- General and independent of concrete implementation of 
G4VCrossSectionDataSet	


• In some cases small degradation of physics precision (simplified σ) and 
small increase in memory use	


- Allow for user to selectively activate this feature	

- Done for the triplet {particle-‐type,	  process-‐type,	  material} gives 

maximum flexibility (e.g. activate only for n-elastic in absorber of calorimeter)	

• Application domains may have different requirements (keep it 

optional) 
- While HEP may be ok with some rare processes to be approximated (e.g. CMS 

already employs Russian roulette biasing for n in calorimeters), Shielding applications 
will probably never approximate neutron transport

5



Implementation details



Classes involved

7

Add fast path code here
Add pre-creation 	

of fast path here



Tables initialization

• Geant4 has two states that are relevant for us:	

- G4State_Idle : Physics and geometry are initialized, ready to go	

- G4State_EventProc : An event is being processed	

!

• During transition to G4State_Idle processes are signaled:	

- EM processes build physics tables	

- HAD processes usually do nothing (because σ are in general computed during 

the event loop when needed)	

- Modify G4HadronicProcess similarly to em ones to build simplified path data 

structures	

‣ Only for selected processes	

!

• During G4State_EventProc state, when appropriate, use simplified 
path for HAD σ calculations

8



Sequence diagram

9

Add fast path code here

Add pre-creation 	

of fast path here



UI and C++ APIs

• Users will have final responsibility for activation: 	

- Provide both C++ APIs and UI commands	


• G4HadronicProcess::ActivateFastCrossSection(	  G4Material*	  
mat	  =	  0,	  G4ParticleDefinition*	  pd=0);	  

- material	  ==	  0 : apply to all materials	

- In general no need to specify pd, each process is associated to a given 

particle, maybe useful for future “particle shared” processes	

• Corresponding UI command:	

-‐/process/had/fastCrossSection	  <particleName>	  
<procName>	  <materialName>

10



MT considerations

• Reminder: particle definitions are shared among threads, but 
each thread has its own list of processes (to avoid mutexes)	


- Thus G4CrossSectionDataStore is thread-private	

‣ Fast path can have thread-variant data 

• G4 MT design: master thread can perform operations and then 
threads can refer to it for thread-invariant data structures	


- E.g. EM cross-sections data tables and geometry	

• Allow for thread-shared data structure containing 

approximated cross-section (memory saving)	

- Filled once at initialization by master thread	

- Accessed during event loop in “read-only” mode by all worker threads

11



Conclusions



Speeding up hadronic cross-sections

• Proposed algorithm can be integrated into current hadronic 
framework	


- Need to add only a single new public method to G4HadronicProcess	

• By default it is turned off 
- Because it introduces approximations and increase in memory use	

- Application dependent needs	

- Can be reviewed in the future	


• Users can activate fast path via:	

- C++ API	

- UI command	


• Validation: relatively simple, for example with 
SimplifiedCaloriemter run twice same setup w/ and w/o UI 
command in macro

13



Possible work plan

• End of developments: ~now (Paul + All)	

• Starting implementation in G4 framework: by end March 

(Andrea + All + HadWG)	

• Validation (physics and technical): in time for 10.2.beta 

(Validation team)	

• Further work (after 10.2.beta): how to treat errors?	

- For theory driven cross-sections, what is the systematic error associated?	

- For data driven cross-sections (e.g. fits), what is the statistical 

(+systematic) error?	

- How to treat these in the memoization approximations?	

‣ BTW: this is a problem of G4 σ themselves, not really of this algorithm…

14


