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Background CrossSection Calculation

•  Hadronic CrossSections
– ~10% of total wall clock time*
– Deep call chain with no hot spots

•  Reduce call chain length
•  Reduce time spent in calculation

*51	  real	  events	  simulated	  in	  ~2	  hours	  
(provided	  by	  Soon)	  



Cross Section Usage

•  Cross section calculation is used to:
–  Determine (probabilistically) whether an interaction 

occurs in traversing a particular geometric volume.
–  Then determine reaction and outcomes.

•  CrossSectionDataStore instances created for 65 
different processes.
–  Each of these uses different models for different energy 

domains, particles, materials.  
–  Data is (usually) represented in sub-classes of 

G4PhysicsVector.
•  We have been working on increasing the 

performance of the CrossSection calculations.



Two strategies

•  Improved caching of CrossSection results
–  1 cache entry per triple (process/particle/material)
– Completed (In the pipeline toward production code)

•  Surrogate model for CrossSection calculations
– Prototype completed
–  Initial results are promising
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Caching CrossSection Results

•  Currently, there is a 1-entry cache per process for XC calculations.
•  Observation

–  There is an interleaving of recent calls to GetCrossSection with the same 
sets of particle, material, process, and energy.

–  Results in same cross section value
–  True even though energy is a double! (The physics is causing this.)

•  Optimization
–  Expanded cache recent the most recent cross section for particle, material, 

process triple.
•  Measurements

–  17% of calls would benefit from this cache
–  29% of GetCrossSection cycles are from these calls.
–  ~18k triples total
–  ~3k triples would benefit

5



Caching CrossSection Results

•  Implementation
–  Hashtable per process (i.e. per CrossSectionDataStore)

•  std::unordered_map
–  One cache entry for each particle/material pair

•  Key
–  material
–  particle definition

•  Value
–  particle energy
–  cross section (including xsecelm)
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G4double G4CrossSectionDataStore::GetCrossSection(part,mat){
  ...

entry = process_cache_map[(part,mat)];
    if(entry->energy == part->GetKineticEnergy()){

   xsecelm = entry->xsecelm;
       crossSection = entry->crossSection; 

} else 
   //Calculate CrossSection the regular way (including xsecelm)
   ...
   entry->xsecelm = xsecelm;
   entry->crossSection = crossSection;  

    } 
return crossSection;

}

Modified CrossSection Calculation



Caching CrossSection Results

•  Performance increase
–  1.8% reduction in wall clock time (51 real events simulated over 2+ hours)

•  Presented at Hadronic working group
–  What is the state of this being put in the production code?
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Surrogate Model: XS Usage

In the Hadronic section of the code:
•  Particle/Material/Process Triples
–  50% of cycles in ~10 triples
–  90% of cycles in ~85 triples
– Total ~18k triples

•  Implementing for tens of triples can utilize fast 
path for nearly all of the calls.



Surrogate Model

•  The cross section of an interaction between a particle 
and a complex material is (re-computed) on each call.
–  Look up each isotope. Use element and isotope abundance 

tables to weight the result.
•  Typical materials

–  Air, Stainless steel, PbZO4 , Cu, Teflon, Circuit boards, …
•  Stainless ={ 12C, 13C, (14C), 54Fe, (55Fe), 57Fe,58Fe, 60Fe, 

(50Cr), 52Cr, 53Cr, 54Cr, 55Mn, 58Ni, 60Ni, 61Ni, 62Ni, 64Ni, 
28Si, 29Si, 30Si}

•  Previous versions of G4 used “pseudoelements” based 
on natural abundances.  This was judged in adequate 
for the “what happened” calculations.



Building the Surrogate Model
•  Create fast path for CrossSection calculations (offline or in 

initialization). 
–  Identify common  (particle, material, process) triples.

•  The number chosen depends on how much extra storage can be used.
–  Create Surrogate Model

•  Over sample using existing physics model.
•  Down sample to a simpler model with bounded error.

–  Evenly spaced sample points in E,  ln(E), or log(E) 
–  Or piecewise linear with adaptively placed nodes (Douglas-Peucker method).

•  Solve a linear system to adjust Y values to remove bias from the sign of the 
errors in each interval.

•  Represent the reduced model using existing G4PhysicsVector sub-classes.
•  For triples where the fast path exists, use it for the mean free 

path (interaction length) calculations.
–  Single query of a G4PhysicsVector 

•  When an interaction occurs (rare) 
–  Perform original physics calculations

11



Building the Surrogate Model
•  Create fast path for CrossSection calculations (offline or in 

initialization). 
–  Identify common  (particle, material, process) triples.

•  The number chosen depends on how much extra storage can be used.
–  Create Surrogate Model

•  Over sample using existing physics model.
•  Down sample to a simpler model with bounded error.

–  Evenly spaced sample points in E,  ln(E), or log(E) 
–  Or piecewise linear with adaptively placed nodes (Douglas-Peucker method).

•  Solve a linear system to adjust Y values to remove bias from the sign of the 
errors in each interval.

•  Represent the reduced model using existing G4PhysicsVector sub-classes.
•  For triples where the fast path exists, use it for the mean free 

path (interaction length) calculations.
–  Single query of a G4PhysicsVector 

•  When an interaction occurs (rare) 
–  Perform original physics calculations

12



Building the Surrogate Model
•  Create fast path for CrossSection calculations (offline or in 

initialization). 
–  Identify common  (particle, material, process) triples.

•  The number chosen depends on how much extra storage can be used.
–  Create Surrogate Model

•  Over sample using existing physics model.
•  Down sample to a simpler model with bounded error.

–  Evenly spaced sample points in E,  ln(E), or log(E) 
–  Or piecewise linear with adaptively placed nodes (Douglas-Peucker method).

•  Solve a linear system to adjust Y values to remove bias from the sign of the 
errors in each interval.

•  Represent the reduced model using existing G4PhysicsVector sub-classes.
•  For triples where the fast path exists, use it for the mean free 

path (interaction length) calculations.
–  Single query of a G4PhysicsVector 

•  When an interaction occurs (rare) 
–  Perform original physics calculations

13



Building the Surrogate Model
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Over	  sample	  the	  exis=ng	  code.	  



Douglas-Peucker Approximation.
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Start	  with	  a	  piecewise-‐linear	  approxima=on.	  
In	  each	  segment,	  Add	  the	  point	  at	  the	  largest	  error.	  
Un=l	  total	  error	  is	  within	  the	  required	  bound.	  
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Douglas-Peucker Approximation.
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Start	  with	  a	  piecewise-‐linear	  approxima=on.	  
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Adjust	  Y	  values	  in	  final	  
phase	  to	  unbias	  errors.	  



Building the Surrogate Model
•  Create fast path for CrossSection calculations (offline or in 

initialization). 
–  Identify common  (particle, material, process) triples.

•  The number chosen depends on how much extra storage can be used.
–  Create Surrogate Model

•  Over sample using existing physics model.
•  Down sample to a simpler model with bounded error.

–  Evenly spaced sample points in E,  ln(E), or log(E) 
–  Or piecewise linear with adaptively placed nodes (Douglas-Peucker method).

•  Solve a linear system to adjust Y values to remove bias from the sign of the 
errors in each interval.

•  Represent the reduced model using existing G4PhysicsVector sub-classes.
•  For triples where the fast path exists, use it for the mean free 

path (interaction length) calculations.
–  Single query of a G4PhysicsVector 

•  When an interaction occurs (rare) 
–  Perform original physics calculations

18



G4double G4CrossSectionDataStore::GetCrossSection(part,mat){
  ...
    if(mat == currentMaterial && part->GetDefinition() == matParticle
     && part->GetKineticEnergy() == matKinEnergy) 
    { return matCrossSection; }

   //Calculate CrossSection the regular way (including xsecelm) 
  ...
}

G4double G4CrossSectionDataStore::SampleZandA(part,mat){
  ...

G4double cross = GetCrossSection(part, mat);
  ...
}
	  

Existing CrossSection Calculation



G4double G4CrossSectionDataStore::GetCrossSection(part,mat,requireSlowPath){
  ...
    if(!requireSlowPath){
      fast_entry = (*fastPathMap)[searchkey];
    }
    if (!requireSlowPath && fast_entry != NULL){
      matCrossSection=GetCrossSectonFastPath(fast_entry,part);
    } else {
   //Calculate CrossSection the regular way (including xsecelm)
    } 
  ...
}

G4double G4CrossSectionDataStore::SampleZandA(part,mat){
  ...

G4double cross = GetCrossSection(part, mat, true);
  ...
}
	  

Modified CrossSection Calculation



Fast Path Usage: Runtime
Triples	   Samples	   Tolerance	   	  Time	   Percent	  Diff	  

90%	   250K	   1E-‐05	   82:36	   8.0%	  
90%	   10K	   1E-‐06	   85:26	   6.1%	  
90%	   500K	   1E-‐05	   87:07	   5.1%	  
90%	   200K	   1E-‐06	   89:03	   3.8%	  
Slow	  Path	  Only	   N/A	   N/A	   94:57	   0.0%	  
90%	   2M	   1E-‐06	   99:18	   -‐2.8%	  



Fast Path Usage: Cycles
Samples	   Tol	   	  Cyc/Op	  

(fast)	  
Cyc/Op	  
(slow)	  

Cyc/Op	  
(avg)	  

Init	  
Cycles	  

Cyc/Op	  
(avg)	  	  
w/	  init	  

Total	  Calls	  

2M	   1E-‐6	   274	   3982	   839	   2.77E+12	   2731	   1,468,837,903	  

1M	   1E-‐6	   252	   3936	   811	   1.24E+12	   1651	   1,475,681,237	  

500K	   1E-‐5	   240	   3873	   786	   2.58E+11	   962	   1,467,516,422	  

250K	   1E-‐5	   230	   3981	   801	   1.23E+11	   884	   1,486,080,112	  

10K	   1E-‐6	   242	   3882	   820	   6.17E+9	   824	   1,520,218,543	  



Questions?


