
GEANT4 Hadronic Cross  
Section Optimizations

Robert Fowler and Paul Ruth
RENCI / UNC Chapel Hill

Pedro Diniz
ISI / USC

Background CrossSection Calculation

•  Hadronic CrossSections
– ~10% of total wall clock time*
– Deep call chain with no hot spots

•  Reduce call chain length
•  Reduce time spent in calculation

*51	 real	 events	 simulated	 in	 ~2	 hours	
(provided	 by	 Soon)	

Cross Section Usage

•  Cross section calculation is used to:
–  Determine (probabilistically) whether an interaction

occurs in traversing a particular geometric volume.
–  Then determine reaction and outcomes.

•  CrossSectionDataStore instances created for 65
different processes.
–  Each of these uses different models for different energy

domains, particles, materials.
–  Data is (usually) represented in sub-classes of

G4PhysicsVector.
•  We have been working on increasing the

performance of the CrossSection calculations.

Two strategies

•  Improved caching of CrossSection results
–  1 cache entry per triple (process/particle/material)
– Completed (In the pipeline toward production code)

•  Surrogate model for CrossSection calculations
– Prototype completed
–  Initial results are promising

4

Caching CrossSection Results

•  Currently, there is a 1-entry cache per process for XC calculations.
•  Observation

–  There is an interleaving of recent calls to GetCrossSection with the same
sets of particle, material, process, and energy.

–  Results in same cross section value
–  True even though energy is a double! (The physics is causing this.)

•  Optimization
–  Expanded cache recent the most recent cross section for particle, material,

process triple.
•  Measurements

–  17% of calls would benefit from this cache
–  29% of GetCrossSection cycles are from these calls.
–  ~18k triples total
–  ~3k triples would benefit

5

Caching CrossSection Results

•  Implementation
–  Hashtable per process (i.e. per CrossSectionDataStore)

•  std::unordered_map
–  One cache entry for each particle/material pair

•  Key
–  material
–  particle definition

•  Value
–  particle energy
–  cross section (including xsecelm)

6

G4double G4CrossSectionDataStore::GetCrossSection(part,mat){
 ...

entry = process_cache_map[(part,mat)];
 if(entry->energy == part->GetKineticEnergy()){

 xsecelm = entry->xsecelm;
 crossSection = entry->crossSection;

} else
 //Calculate CrossSection the regular way (including xsecelm)
 ...
 entry->xsecelm = xsecelm;
 entry->crossSection = crossSection;

 }
return crossSection;

}

Modified CrossSection Calculation

Caching CrossSection Results

•  Performance increase
–  1.8% reduction in wall clock time (51 real events simulated over 2+ hours)

•  Presented at Hadronic working group
–  What is the state of this being put in the production code?

8

Surrogate Model: XS Usage

In the Hadronic section of the code:
•  Particle/Material/Process Triples
–  50% of cycles in ~10 triples
–  90% of cycles in ~85 triples
– Total ~18k triples

•  Implementing for tens of triples can utilize fast
path for nearly all of the calls.

Surrogate Model

•  The cross section of an interaction between a particle
and a complex material is (re-computed) on each call.
–  Look up each isotope. Use element and isotope abundance

tables to weight the result.
•  Typical materials

–  Air, Stainless steel, PbZO4 , Cu, Teflon, Circuit boards, …
•  Stainless ={ 12C, 13C, (14C), 54Fe, (55Fe), 57Fe,58Fe, 60Fe,

(50Cr), 52Cr, 53Cr, 54Cr, 55Mn, 58Ni, 60Ni, 61Ni, 62Ni, 64Ni,
28Si, 29Si, 30Si}

•  Previous versions of G4 used “pseudoelements” based
on natural abundances. This was judged in adequate
for the “what happened” calculations.

Building the Surrogate Model
•  Create fast path for CrossSection calculations (offline or in

initialization).
–  Identify common (particle, material, process) triples.

•  The number chosen depends on how much extra storage can be used.
–  Create Surrogate Model

•  Over sample using existing physics model.
•  Down sample to a simpler model with bounded error.

–  Evenly spaced sample points in E, ln(E), or log(E)
–  Or piecewise linear with adaptively placed nodes (Douglas-Peucker method).

•  Solve a linear system to adjust Y values to remove bias from the sign of the
errors in each interval.

•  Represent the reduced model using existing G4PhysicsVector sub-classes.
•  For triples where the fast path exists, use it for the mean free

path (interaction length) calculations.
–  Single query of a G4PhysicsVector

•  When an interaction occurs (rare)
–  Perform original physics calculations

11

Building the Surrogate Model
•  Create fast path for CrossSection calculations (offline or in

initialization).
–  Identify common (particle, material, process) triples.

•  The number chosen depends on how much extra storage can be used.
–  Create Surrogate Model

•  Over sample using existing physics model.
•  Down sample to a simpler model with bounded error.

–  Evenly spaced sample points in E, ln(E), or log(E)
–  Or piecewise linear with adaptively placed nodes (Douglas-Peucker method).

•  Solve a linear system to adjust Y values to remove bias from the sign of the
errors in each interval.

•  Represent the reduced model using existing G4PhysicsVector sub-classes.
•  For triples where the fast path exists, use it for the mean free

path (interaction length) calculations.
–  Single query of a G4PhysicsVector

•  When an interaction occurs (rare)
–  Perform original physics calculations

12

Building the Surrogate Model
•  Create fast path for CrossSection calculations (offline or in

initialization).
–  Identify common (particle, material, process) triples.

•  The number chosen depends on how much extra storage can be used.
–  Create Surrogate Model

•  Over sample using existing physics model.
•  Down sample to a simpler model with bounded error.

–  Evenly spaced sample points in E, ln(E), or log(E)
–  Or piecewise linear with adaptively placed nodes (Douglas-Peucker method).

•  Solve a linear system to adjust Y values to remove bias from the sign of the
errors in each interval.

•  Represent the reduced model using existing G4PhysicsVector sub-classes.
•  For triples where the fast path exists, use it for the mean free

path (interaction length) calculations.
–  Single query of a G4PhysicsVector

•  When an interaction occurs (rare)
–  Perform original physics calculations

13

Building the Surrogate Model

14

Over	 sample	 the	 exis=ng	 code.	

Douglas-Peucker Approximation.

15

Start	 with	 a	 piecewise-‐linear	 approxima=on.	
In	 each	 segment,	 Add	 the	 point	 at	 the	 largest	 error.	
Un=l	 total	 error	 is	 within	 the	 required	 bound.	

Douglas-Peucker Approximation.

16

Start	 with	 a	 piecewise-‐linear	 approxima=on.	
In	 each	 segment,	 Add	 the	 point	 at	 the	 largest	 error.	
Un=l	 total	 error	 is	 within	 the	 required	 bound.	

Douglas-Peucker Approximation.

17

Start	 with	 a	 piecewise-‐linear	 approxima=on.	
In	 each	 segment,	 Add	 the	 point	 at	 the	 largest	 error.	
Un=l	 total	 error	 is	 within	 the	 required	 bound.	

Adjust	 Y	 values	 in	 final	
phase	 to	 unbias	 errors.	

Building the Surrogate Model
•  Create fast path for CrossSection calculations (offline or in

initialization).
–  Identify common (particle, material, process) triples.

•  The number chosen depends on how much extra storage can be used.
–  Create Surrogate Model

•  Over sample using existing physics model.
•  Down sample to a simpler model with bounded error.

–  Evenly spaced sample points in E, ln(E), or log(E)
–  Or piecewise linear with adaptively placed nodes (Douglas-Peucker method).

•  Solve a linear system to adjust Y values to remove bias from the sign of the
errors in each interval.

•  Represent the reduced model using existing G4PhysicsVector sub-classes.
•  For triples where the fast path exists, use it for the mean free

path (interaction length) calculations.
–  Single query of a G4PhysicsVector

•  When an interaction occurs (rare)
–  Perform original physics calculations

18

G4double G4CrossSectionDataStore::GetCrossSection(part,mat){
 ...
 if(mat == currentMaterial && part->GetDefinition() == matParticle
 && part->GetKineticEnergy() == matKinEnergy)
 { return matCrossSection; }

 //Calculate CrossSection the regular way (including xsecelm)
 ...
}

G4double G4CrossSectionDataStore::SampleZandA(part,mat){
 ...

G4double cross = GetCrossSection(part, mat);
 ...
}
	

Existing CrossSection Calculation

G4double G4CrossSectionDataStore::GetCrossSection(part,mat,requireSlowPath){
 ...
 if(!requireSlowPath){
 fast_entry = (*fastPathMap)[searchkey];
 }
 if (!requireSlowPath && fast_entry != NULL){
 matCrossSection=GetCrossSectonFastPath(fast_entry,part);
 } else {
 //Calculate CrossSection the regular way (including xsecelm)
 }
 ...
}

G4double G4CrossSectionDataStore::SampleZandA(part,mat){
 ...

G4double cross = GetCrossSection(part, mat, true);
 ...
}
	

Modified CrossSection Calculation

Fast Path Usage: Runtime
Triples	 Samples	 Tolerance	 	 Time	 Percent	 Diff	

90%	 250K	 1E-‐05	 82:36	 8.0%	
90%	 10K	 1E-‐06	 85:26	 6.1%	
90%	 500K	 1E-‐05	 87:07	 5.1%	
90%	 200K	 1E-‐06	 89:03	 3.8%	
Slow	 Path	 Only	 N/A	 N/A	 94:57	 0.0%	
90%	 2M	 1E-‐06	 99:18	 -‐2.8%	

Fast Path Usage: Cycles
Samples	 Tol	 	 Cyc/Op	

(fast)	
Cyc/Op	
(slow)	

Cyc/Op	
(avg)	

Init	
Cycles	

Cyc/Op	
(avg)	 	
w/	 init	

Total	 Calls	

2M	 1E-‐6	 274	 3982	 839	 2.77E+12	 2731	 1,468,837,903	

1M	 1E-‐6	 252	 3936	 811	 1.24E+12	 1651	 1,475,681,237	

500K	 1E-‐5	 240	 3873	 786	 2.58E+11	 962	 1,467,516,422	

250K	 1E-‐5	 230	 3981	 801	 1.23E+11	 884	 1,486,080,112	

10K	 1E-‐6	 242	 3882	 820	 6.17E+9	 824	 1,520,218,543	

Questions?

