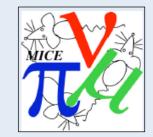

MICE BRIEFING

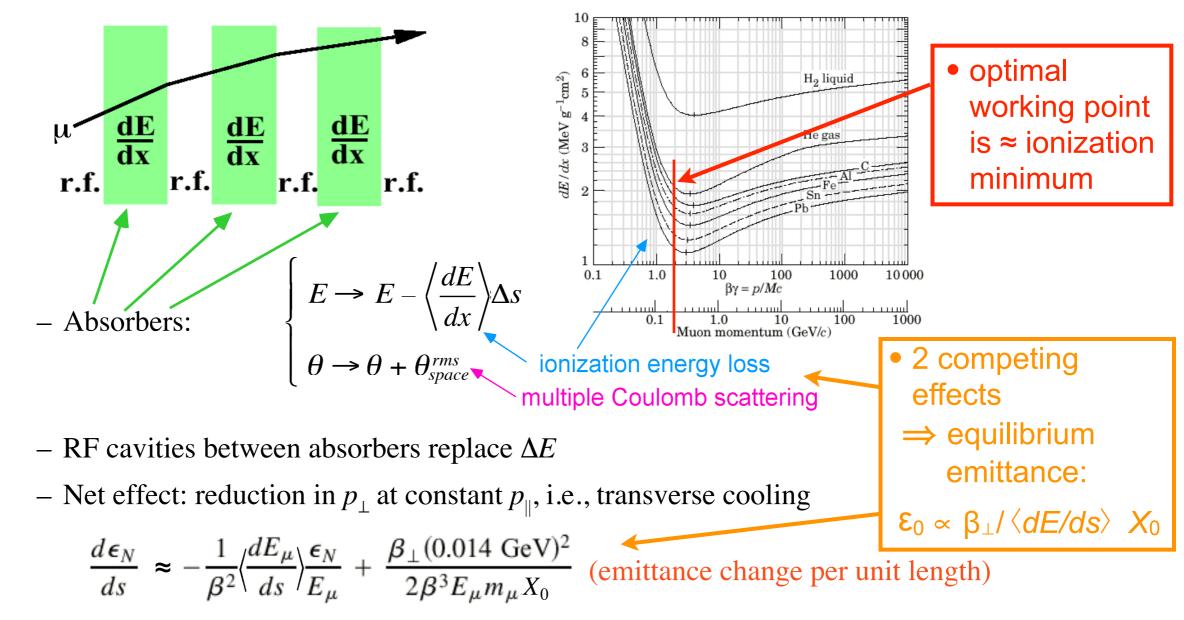
Daniel M. Kaplan

MICE BRIEFING: NSF-supported activities

Daniel M. Kaplan

National Science Foundation Arlington,VA Jan. 7, 2015

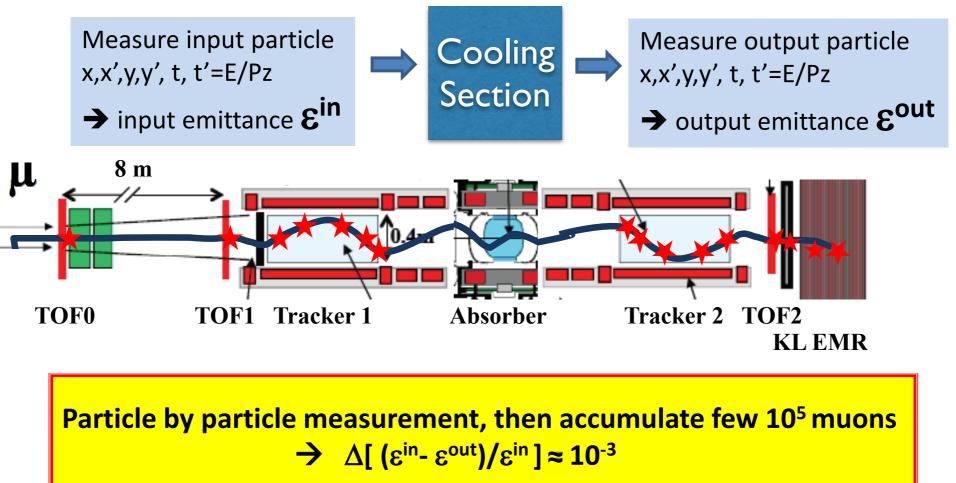



- Experimental Matters
- NSF-supported Collaborators and Activities
- Conclusions & Questions

Ionization Cooling

Muons cool via dE/dx in low-Z medium:

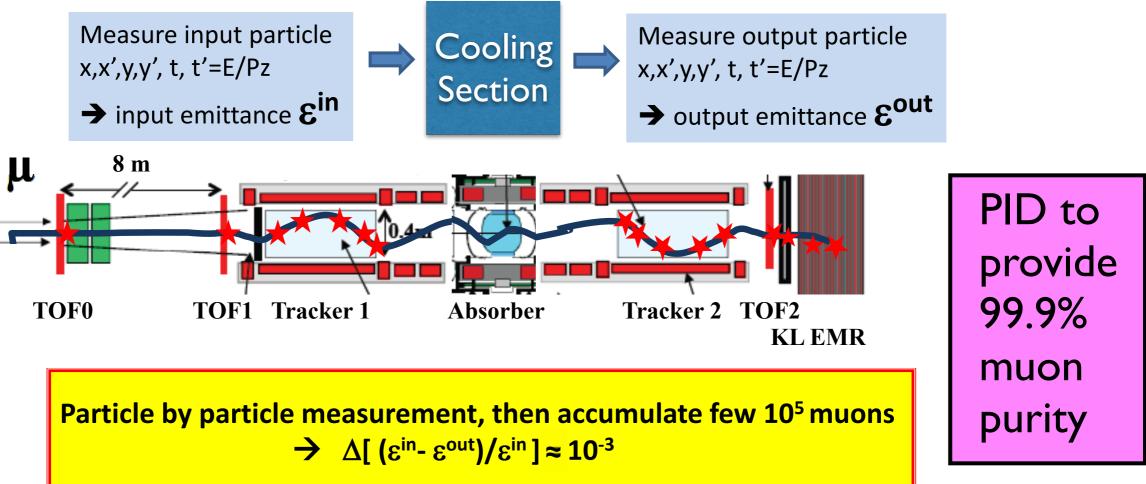
• Challenging engineering \Rightarrow need demonstration



www.iit.edu

Principle of the Measurement

• E.g., Step IV:

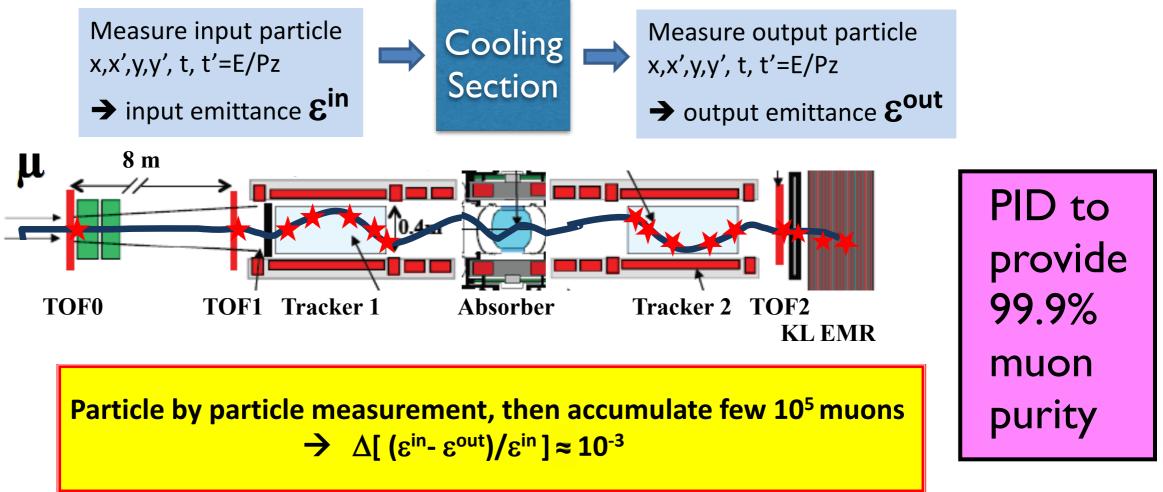


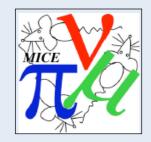
www.iit.edu

Principle of the Measurement

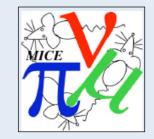
• E.g., Step IV:

Jan. 7, 2015

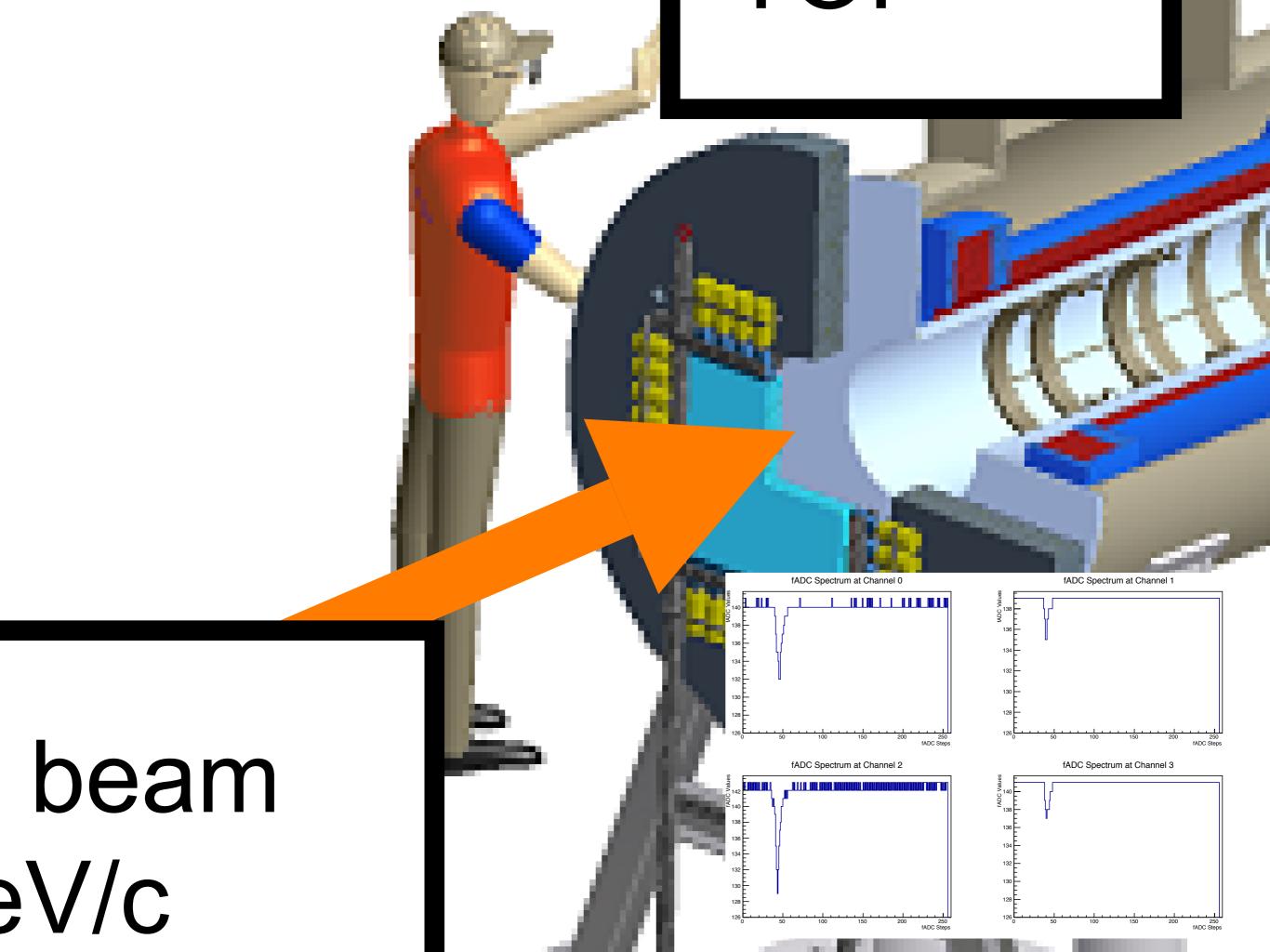

4 / 23


& detector calibrations to provide <10⁻³ systematics

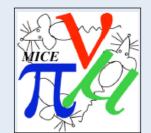
• E.g., Step IV:



Detectors

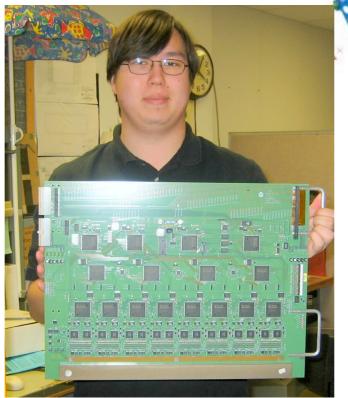


MICE Particle ID


- Need to suppress (to < 10⁻³ level) undecayed π in beam & decay electrons
- Performed using
 - 3 sets of TOF counters (Milan/Pavia/Geneva/Sofia)
 - 2 Cherenkov counters (U Miss/IIT/U Iowa)
 - KL sampling EM Calorimeter (Roma III), and
 - Electron-Muon Ranger (Geneva/FNAL/Trieste/Como)

In and workin

SciFi Spectrometers


5 stations of

350 µm SciFi

~330 mm

[US: FNAL, IIT, UCLA, UCR / UK: ICL, BrU, ULiv, RAL / JP: KEK, Osaka]

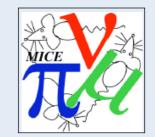
- The SciFi trackers in 4 T field make the precise track measurements needed for 10⁻³ emittance precision
- Tracker DAQ a complex system
 - its maintenance a
 US responsibility
 - calibrations,
 cryogenics,
 µcode mods as
 needed...

Cryogenic VLPC / readout (from DØ)

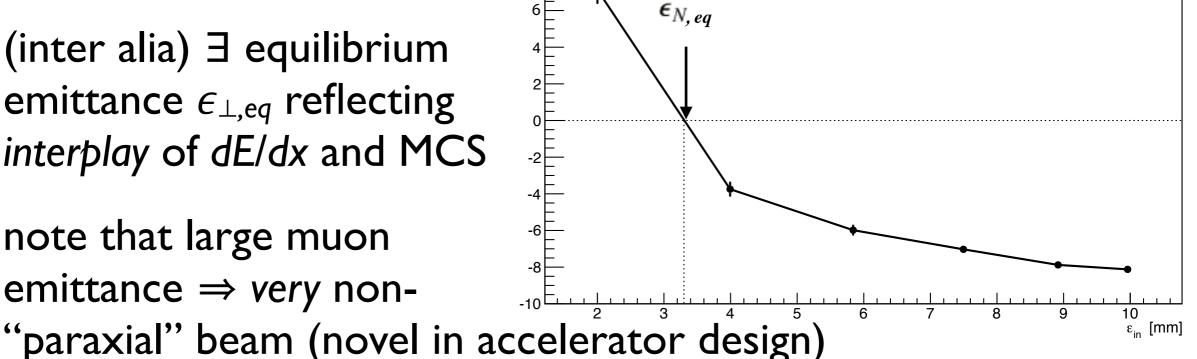
M. Ellis et al., "The design, construction and performance of the MICE scintillating fibre trackers," NIM A **659** (2010) 136

Cosmic test setup

1000 mm 🌌



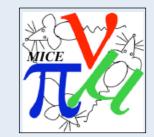
Measurements & Datasets


Needed Measurements

- Key is cooling "equation": $\frac{d\epsilon_N}{ds} \approx -\frac{1}{\beta^2} \left\langle \frac{dE_\mu}{ds} \right\rangle_{E_\mu}^{\epsilon_N} + \frac{\beta_\perp (0.014 \text{ GeV})^2}{2\beta^3 E_\mu m_\mu X_0}$
 - cooling rate depends on E_{μ} , β_{\perp} , absorber material, and details of dE/dx and MCS $\frac{3}{2}$ - MICE: Relative change in normalised transverse emittance demonstration of ionization cooling as a function of input emittance
 - \Rightarrow (inter alia) \exists equilibrium emittance $\epsilon_{\perp,eq}$ reflecting interplay of dE/dx and MCS

emittance \Rightarrow very non-

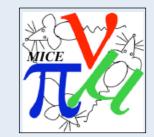
note that large muon



all these features are measurable

& need to be measured in order to complete validation of models

MICE Datasets: Step IV



- Goal: demonstrate in detail that energy loss, multiple scattering, and non-paraxial, nonlinear, beam optics behave as expected (match simulations)
 - \Longrightarrow vary p, absorber material, μ polarity, input emittance, and optics focal length β_{\perp}
 - 3 nominal momenta: p = 140, 200, 240 MeV/c
 - o 3 (or 4) absorbers: empty, LH₂, LiH, (possibly) plastic disk or wedge
 - o 3 nominal emittance settings: 3, 6, 10 mm rad
 - $\circ~$ 10 optics settings: {flip, solenoid} \times 5 β_{\perp} values
 - o 2 polarities: μ^{\pm}
 - need 10⁵ "good" muons per setting \Rightarrow 2(20) hr/setting for $\mu^+(\mu^-)$
 - Note $3^3 \times 2^2 \times 5 > 500$ potential run settings!

 \Rightarrow will have to take an intelligent subset! (+ setup time + calibration runs...)

MICE Datasets: Step IV

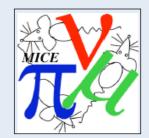


- Goal: demonstrate in detail that energy loss, multiple scattering, and non-paraxial, nonlinear, beam optics behave as expected (match simulations)
 - \Rightarrow vary p, absorber material, μ polarity, input emittance, and optics focal length β_{\perp}
 - 3 nominal momenta: p = 140, 200, 240 MeV/c
 - 3 (or 4) absorbers: empty, LH₂, LiH, (possibly) plastic disk or wedge
 - 3 nominal emittance settings: 3, 6, 10 mm rad
 - 10 optics settings: {flip, solenoid} × 5 β_{\perp} values
 - 2 polarities: μ^{\pm}
- Rich dataset with many thesis topics - need 10⁵ "good" muons per setting \Rightarrow 2(20) hr/setting for $\mu^+(\mu^-)$
 - Note $3^3 \times 2^2 \times 5 > 500$ potential run settings!

 \Rightarrow will have to take an intelligent subset! (+ setup time + calibration runs...)


MICE Datasets: Final Step

- Goal: demonstrate in detail that transverse cooling/ longitudinal heating/transmission vs $\epsilon_{\perp,in}$ match simulations
 - ⇒vary p, absorber material, µ
 polarity, emittance, and optics settings
 - 3 nominal momenta: $p = 140, 200, 240 \text{ MeV/c} = \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{7} + \frac{1$
 - 2 absorbers planned: empty, LiH
 - o 3 nominal emittance settings: 3, 6, 10 mm rad
 - $\circ~>10$ optics settings: flip, solenoid, with various β_{\perp} values
 - $\circ~2$ polarities: μ^{\pm}
 - need ~10⁶ "good" muons per setting \Rightarrow ~20(200) hr/setting for $\mu^+(\mu^-)$
 - now \gg 500 potential run settings!
 - \Rightarrow again, plan to take an intelligent subset! (+ setup time + calibrations...)


MICE Datasets: Final Step

- Goal: demonstrate in detail that transverse cooling/ longitudinal heating/transmission vs $\epsilon_{\perp,in}$ match simulations \Rightarrow vary p, absorber material, μ
 - polarity, emittance, and optics settings • 3 nominal momenta: $p = 140, 200, 240 \text{ MeV}/c^{\frac{12}{2}}$
 - 2 absorbers planned: empty, LiH
 - 3 nominal emittance settings: 3, 6, 10 mm rad
 - Rich dataset with any thesis topics \circ >10 optics settings: flip, solenoid, with various β_{\perp} values
 - 2 polarities: μ^{\pm}
 - need ~10⁶ "good" muons per setting \Rightarrow ~20(200) hr/setting for $\mu^+(\mu^-)$
 - now \gg 500 potential run settings!
 - \Rightarrow again, plan to take an intelligent subset! (+ setup time + calibrations...)

MICE Step IV

- Deliverables:
 - establish safe and routine LH₂ absorber operation
 - engineering test of beamline made of several magnetically coupled components
 - understand propagation of (imperfect) beam through the "magnetic bottle"
 - calibration of emittance measurement to 10⁻³
 - measurement of emittance change (normalized-emittance cooling)
 - precision validation of simulation codes and physics models
 - precision measurements of correlated multiple scattering and energy-loss straggling
- And desirable, if possible:
 - first test of emittance exchange (wedge absorbers, time permitting)

14/23

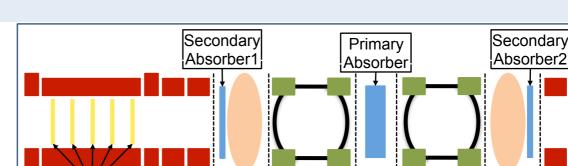
• And desirable, if possible:

detailed and precise verification of simulation codes

benchmark for many future cooling-channel options

cooling cell allowing multiple optics configurations: flip, non-flip, etc...

Tracker1

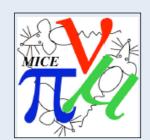

SS1

exact replenishment of energy (possible only with supplementary funding for extended running & more RF power)

- and absorber configurations
- longitudinal heating precise measurement of equilibrium emittance of various optical

- **MICE Ionization Cooling Demo** www.iit.edu **Deliverables:**
 - routine and safe operation of RF in B field

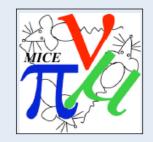
significant and measurable


RFA1

FC1

AFC1

AFC2


RFA2

Tracker2

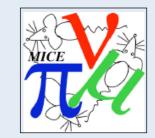
SS2

NSF-supported collaborators and activities

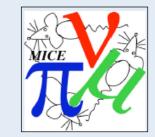
www.iit.edu

	Amt	Duration
2000. IIT NSF funding (via Cornell subcontract)	150k	Зу
 T. Roberts invents G4beamline to simulate MICE beam 		-
2005. MICE consortium grant (IIT/UCR/UMiss)	300k	Зу
2005. MRI grant (IIT)	750k	Зу
SS conductor & cryocoolers, SciFi planes & readout, Ckovs	}	
2007. MICE grant (UCR)	436k	Зу
2008. MICE consortium grant (IIT/UCR/UMiss)	252k	Зу
2010. MICE collab'tive grant (UCR/IIT/Iowa/UMiss/UNH)	1,051k	Зу
important contribs to Tracker, PID, online, C&M, operations	S	
2010. MRI grant (UMiss)	I,632k	3y
MICE RF equipment		
2013. MICE collaborative grant (UCR/IIT), terminal	<u>230k</u>	<u> </u>
total ≈	: 4,800k	κ
D. M. Kaplan, IIT MICE Briefing NSF Jan. 7, 2015	16/23	

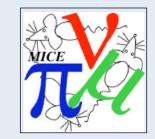
• During 3-year ramp-down, MAP will continue to support MICE participation by those scientists crucial to apparatus installation & commissioning



- During 3-year ramp-down, MAP will continue to support MICE participation by those scientists crucial to apparatus installation & commissioning
 - these include:
 - P. Hanlet, IIT: MICE Integration Physicist/C&M head
 - D. Rajaram, IIT: MICE Software head
 - Y.Torun, IIT: MTA Lead Scientist



- During 3-year ramp-down, MAP will continue to support MICE participation by those scientists crucial to apparatus installation & commissioning
 - these include:
 - P. Hanlet, IIT: MICE Integration Physicist/C&M head
 - D. Rajaram, IIT: MICE Software head
 - Y.Torun, IIT: MTA Lead Scientist
- With 24/7 running starting \approx 8/15, MICE will need more postdoc & student depth



- During 3-year ramp-down, MAP will continue to support MICE participation by those scientists crucial to apparatus installation & commissioning
 - these include:
 - P. Hanlet, IIT: MICE Integration Physicist/C&M head
 - D. Rajaram, IIT: MICE Software head
 - Y.Torun, IIT: MTA Lead Scientist
- With 24/7 running starting \approx 8/15, MICE will need more postdoc & student depth
 - hope for NSF support here, based on history of NSF consortium contributions to Tracker and PID detectors

- During 3-year ramp-down, MAP will continue to support MICE participation by those scientists crucial to apparatus installation & commissioning
 - these include:
 - P. Hanlet, IIT: MICE Integration Physicist/C&M head
 - D. Rajaram, IIT: MICE Software head
 - Y.Torun, IIT: MTA Lead Scientist
- With 24/7 running starting \approx 8/15, MICE will need more postdoc & student depth
 - hope for NSF support here, based on history of NSF consortium contributions to Tracker and PID detectors

• which are ongoing US responsibilities to int'l MICE Collaboration

• IIT

- PI summer salary (2 mo)
- postdoc
- grad student
- travel & incidentals

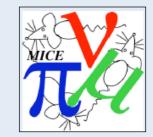
- U Mississippi
 - PI & Co-PI summer salary (I mo ea)
 - staff scientist (1 mo)
 - postdoc
 - part-time undergrads
 - travel & incidentals

• U Iowa

- PI summer salary (2 mo)
- adjunct fac. summer salaries (2 mo)
- grad student & part-time undergrads
- travel & incidentals

- NYIT (new)
 - PI summer salary (2 mo)
 - postdoc
 - travel & incidentals

• IIT


- D. Kaplan, Pl (2 mo)
- P. Snopok, Fac. Assoc.
- Y.Torun, Fac.Assoc.
- P. Hanlet, Rsch. Faculty
 - MICE Integration Physicist/C&M head
- D. Rajaram, Rsch. Faculty
 - MICE Software head
- postdoc
- grad & undergrad students
- U Iowa
 - J. Nachtman, PI (2 mo)
 - Y. Onel, Fac. Assoc.
 - U.Akgun (Coe Coll.), Adjunct (1 mo)
 - R. Rahmat (Mid-America Chr. U), Adjunct (1 mo)
 - grad & undergrad students

- U Mississippi
 - D. Summers, PI (1 mo)
 - L. Cremaldi, Co-PI (1 mo)
 - D. Sanders, Rsch. Faculty (1 mo)
 - postdoc
 - undergrads

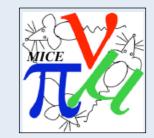
- NYIT (new)
 - D.Adey PI (2 mo)
 - postdoc

* desired NSF salary support

• IIT

- Tracker calibration & support
- Software development
- Operations & analysis

- U Mississippi
 - Particle ID calibration & support
 - Absorber windows
 - Operations & analysis


• U Iowa

- Particle ID calibration & support
- Operations & analysis

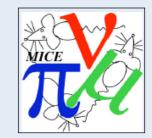
• NYIT

- Tracker calibration & support
- Operations & analysis

- U Mississippi
 - Particle ID calibration & support
 - Absorber windows
 - Operations & analysis
- **1.** Tracker is most important, and most complex, detection system in MICE, and its readout and calibration systems a U.S. responsibility

- U Iowa
 - Particle ID calibration & support

Tracker calibration & support


Software development

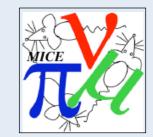
Operations & analysis

Operations & analysis

- NYIT
 - Tracker calibration & support
 - Operations & analysis

- U Mississippi
 - Particle ID calibration & support
 - Absorber windows
 - Operations & analysis
- **1.** Tracker is most important, and most complex, detection system in MICE, and its readout and calibration systems a U.S. responsibility
 - good coverage essential for MICE success
- U Iowa
 - Particle ID calibration & support

Tracker calibration & support


Software development

Operations & analysis

Operations & analysis

- NYIT
 - Tracker calibration & support
 - Operations & analysis

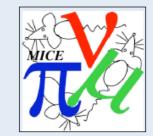
- U Mississippi
 - Particle ID calibration & support
 - Absorber windows
 - Operations & analysis
- **1.** Tracker is most important, and most complex, detection system in MICE, and its readout and calibration systems a U.S. responsibility
 - good coverage essential for MICE success
 - D. Adey, current world expert, is ideal person to supervise a new Tracker-DAQ postdoc

• U Iowa

Particle ID calibration & support

Tracker calibration & support

Software development


Operations & analysis

Operations & analysis

• NYIT

- Tracker calibration & support
 - Operations & analysis

- U Mississippi
 - Particle ID calibration & support
 - Absorber windows
 - Operations & analysis
- **1.** Tracker is most important, and most complex, detection system in MICE, and its readout and calibration systems a U.S. responsibility
 - good coverage essential for MICE success
 - D. Adey, current world expert, is ideal person to supervise a new Tracker-DAQ postdoc
- U Iowa
 - Particle ID calibration & support

Tracker calibration & support

Software development


Operations & analysis

Operations & analysis

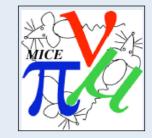
- Tracker calibration & support
 - Operations & analysis
- 2. To succeed, MICE requires full intellectual engagement (not just equipment) from *all* collaborating regions—not least the U.S.

- U Mississippi
 - Particle ID calibration & support
 - Absorber windows
 - Operations & analysis
- **1.** Tracker is most important, and most complex, detection system in MICE, and its readout and calibration systems a U.S. responsibility
 - good coverage essential for MICE success
 - D. Adey, current world expert, is ideal person to supervise a new Tracker-DAQ postdoc
- U Iowa
 - Particle ID calibration & support

Tracker calibration & support

Software development

Operations & analysis


Operations & analysis

- NYIT
 - Tracker calibration & support
 - Operations & analysis
- 2. To succeed, MICE requires full intellectual engagement (not just equipment) from

I NSF university personnel can play a crucial role, leading key analysis efforts

Broad-brush-estimate (since each univ. slightly different), fully loaded:

postdoc	90 k
GRA	50 k
2 fac. summer mo.	20 k
travel+incidentals	50 k
Total/institute:	≈ 200 k

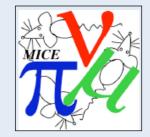
\Rightarrow 4-university consortium \approx 700k/yr

Conclusions

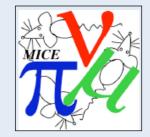
- MICE is substantial international effort to achieve:
 - 1. a thorough demonstration that ionization cooling is well understood and works as expected
 - 2. calibration and validation of Monte Carlo models used to design and characterize ionization cooling channels
 - 3. a major step on the way to Neutrino Factories and Muon Colliders!
- Major equipment built with DOE + NSF MRI funds
- To succeed, need sufficient US personnel for experimental support, data-taking, and analysis
 - Great training ground for young HEP & accelerator physicists

Great opportunity for NSF-supported university groups

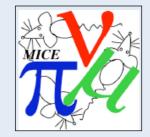
- IIT & U Miss: continuous core MICE-US participants
 - U Miss requests minimal (1 mo.) partial Staff Sci. support



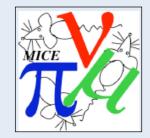
- IIT & U Miss: continuous core MICE-US participants
 - U Miss requests minimal (1 mo.) partial Staff Sci. support
- U lowa has contributed to Ckov construction & calibration
 - can involve non-graduate institutes via adjunct relationships



- IIT & U Miss: continuous core MICE-US participants
 - U Miss requests minimal (1 mo.) partial Staff Sci. support
- U lowa has contributed to Ckov construction & calibration
 - can involve non-graduate institutes via adjunct relationships
- NYIT-Nanjing would be new MICE institute



- IIT & U Miss: continuous core MICE-US participants
 - U Miss requests minimal (1 mo.) partial Staff Sci. support
- U lowa has contributed to Ckov construction & calibration
 - can involve non-graduate institutes via adjunct relationships
- NYIT-Nanjing would be new MICE institute
 - "seeded" by MICE PhD/postdoc ideally suited to "hit the ground running"



- IIT & U Miss: continuous core MICE-US participants
 - U Miss requests minimal (1 mo.) partial Staff Sci. support
- U lowa has contributed to Ckov construction & calibration
 - can involve non-graduate institutes via adjunct relationships
- NYIT-Nanjing would be new MICE institute
 - "seeded" by MICE PhD/postdoc ideally suited to "hit the ground running"
 - o but needing proposal submitted prior to employment start

- IIT & U Miss: continuous core MICE-US participants
 - U Miss requests minimal (1 mo.) partial Staff Sci. support
- U lowa has contributed to Ckov construction & calibration
 - can involve non-graduate institutes via adjunct relationships
- NYIT-Nanjing would be new MICE institute
 - "seeded" by MICE PhD/postdoc ideally suited to "hit the ground running"
 - but needing proposal submitted prior to employment start

We solicit your guidance on how to proceed...