CAPTAIN BNB Measuring SN Neutrino XS in Liquid Argon off-axis in the BNB

Ion Stancu University of Alabama (on behalf of the CAPTAIN collaboration)

> Fermilab PAC FNAL, January 16, 2015

Introduction

- Run the CAPTAIN detector near MI-12 of the BNB
- > Measure the neutrino Ar XS (mainly v_e) to about 10% for neutrino energies of O(10) MeV:
 - never been measured before
 - large theoretical errors
 - direct relevance to the interpretation of SN data
- Test the ability of detecting SNe with LAr detectors

(triggering, timing)

Potentially influence the ELBNF design (e.g., photodetection devices)

Physics Motivation: Stellar Collapse & SN Explosion

Gravitational binding energy $E_b \approx 3 \times 10^{53} \text{ erg} \approx 17\% \text{ M}_{SUN} \text{ c}^2$

This shows up as:
99% Neutrinos
1% Kinetic energy of explosion (1% of this into cosmic rays)
0.01% Photons, outshine host galaxy

Neutrino luminosity:

 $L_{v} \approx 3 \times 10^{53} \text{ erg / 3 sec}$ $\approx 3 \times 10^{19} L_{SUN}$

While it lasts, outshines the entire visible universe

Physics from the 1987A Supernova (LMC; 51 kpc)

SN-1987A: average of **1 citation every 10 days for last 26 years** – only 20 (26) events total!

- Most precise straightforward test of weak equivalence
- ♦ Direct neutrino TOF with 10⁵ LY baseline
- \diamond Limits on neutrino decay over 10⁵ years

Large Underground Detectors for SN Neutrinos

- Cross sections?
 - never been measured
 - large theoretical errors (at least 15%)
- Triggering?
- Timing?

P5 recommendation:

"The (ELBNF) experiment should have the <u>demonstrated</u> capability to search for SN bursts..."

Detection of the SN Neutronization Burst: v_e Sensitivity!

 $p + e^- \rightarrow n + v_e$

Burst is only 20 ms long and is essentially all $\nu_{\rm e}$

Mean energy of events is low, 10–12 MeV

IMB/Kamiokande detected higher energy cooling neutrinos, not neutrinos from the neutronization process

Potential for ν_{e} detection in liquid argon by ELBNF

10 kpc SN Event Rates

K. Scholberg: arXiv 1205.6003 astro-ph GKVM model: arXiv 0902.0317 hep-ph

(Gava, Kneller, Volpe, McLaughlin)

Rates in nominal 34 kton ELBNF detector:

$$v_e + {}^{40}Ar \rightarrow e^- + {}^{40}K^*$$
 (CC) 2848
 $\overline{v}_e + {}^{40}Ar \rightarrow e^+ + {}^{40}Cl^*$ (CC) 134
 $v_x + {}^{40}Ar \rightarrow v_x + {}^{40}Ar^*$ (NC) 200 (A. Hayes)
 $v_x + e^- \rightarrow v_x + e^-$ (ES) 178

Critical items for supernova physics with a LAr TPC:

- Accurate measurements of the CC and NC cross-sections
- Ability to clearly tag excited states ${}^{40}K^*$ and ${}^{40}Ar^*$ using de-excitation γ 's
- Ability to reject backgrounds such as neutron spallation
- Adequate energy resolution in a LAr TPC
- Reasonable event timing

O(10 MeV) Neutrino Source: Stopped Pion Facilities

BNB @ FNAL

S. Brice calculation for CENNS 20 m from MB target using modified MB G4 code Phys. Rev. D89 (2014) 072004 (arXiv 1311.5958 physics.ins-det)

For 5e+12 ppp at 5 Hz: neutrino flux is $\Phi = 5 \times 10^5 \text{ v/cm}^2/\text{s/flavour}$

The CAPTAIN Detector

Cryogenic Apparatus for Precision Tests of Argon Interactions with Neutrinos (LANL LDRD)

Liquid argon TPC detector:

 Portable and evacuable cryostat
 7700 L, 5-ton instrumented liquid argon
 All cryogenic and instrumentation
 connections made through top head
 Transportable purification system

Hexagonal prism, vertical upward drift (E = 500 V/cm, v_d = 1.6 mm/µs) 2001 channels (667/plane) 3 mm spacing

- Laser calibration system (Nd-YAG)
- Photon detection system
 Hamamatsu R8520 (24) & 11065 (4)
- µBooNE cold electronics

CAPTAIN Status & Schedule

At EDEN Cryogenics

- Electronics: done
- TPC: in progress
- Expected commissioning: during FY16
- Neutron data at WNR neutron beam:
 - test response to neutrons
 - test SN detection through NC

$$\nu_x + {}^{40} Ar \rightarrow \nu_x + {}^{40} Ar^*(NC)$$
$$n + {}^{40} Ar \rightarrow n + {}^{40} Ar^*$$

 Ready to be deployed at FNAL: end of FY16 (runs in BNB & NuMI)

MiniCAPTAIN

- Smaller version (1,700 | cryostat from UCLA)
- Apothem: 50 cm (vs 100 cm)
- Drift length: 32 cm (vs 100 cm)
- Number of channels: 337 per plane (vs 667)
- Instrumented volume: 1/3 tons (vs 5 tons)

- Commissioning underway ...
- Will be moved to WNR to take neutron data in 10/15

MiniCAPTAIN

... being prepared for LN cold electronics systems test

... being prepared for LAr engineering runs

LAr Cross-sections (RPA)

CC v_e^{40} Ar flux-averaged cross section $\sigma \approx 10^{-40}$ cm²

x (m)	d (m)	Nevt (CC)	Nevt (CC)
0	8.4	354	375
7.3	11.1	217	229
11 3	14 1	145	152

Rates: 2e20 POT (1 yr) & 100% efficiency u_{μ} (NC): +14%, $\overline{\nu}_{\mu}$ (NC): +31%

Space around MI-12

AC unit (could be moved ... \$\$\$)

Neutron Backgrounds @ MI-12

- SciBath detector (Indiana University)
 R. Tayloe & R. Cooper (FNAL IF fellow)
- 82 I volume of mineral oil based liquid scintillator.
- 768 wavelength shifting fibers readout to IU-built digitizers (\$80 / channel includes multi-anode PMTs). Each direction: 16x16 array (2.5 cm spacing).
- Flux @ 20 m from target, 180⁰ wrt beam
- Operated March April 2012*: 4.9x10¹⁹ POT (3.5x10¹⁹ POT for analysis)

Neutron Backgrounds @ MI-12

- New round of neutron background measurements is planned
- SciBath is being prepared:
 - fixing/upgrading electronics
 - new scintillator, etc.
- Start: ~ April 2015
- Duration: ~ 3 months (10⁴ neutrons)
- Configuration:
 - next to MI-12
 - 3 m shielding
 - -1 m shielding, top (?)
 - 5 kg array of EJ-301 LS (sensitivity: 0.5-20 MeV)

- Scenario A: BNB first, then MINERvA
- Scenario B: MINERvA first, then BNB

Discussed in detail in L. Whitehead's talk (next)

Conclusions

- CAPTAIN intends to measure DAR v XS on LAr at BNB Direct relevance to ELBNF SN detection – see P5 (currently: only experiment which can do it)
- Running time for O(10%) measurement:
 - 4e+20 POT in standard configuration
 - 2e+20 POT in beam off-target configuration
- Running order (BNB/MINERvA): TBD
- While completing, commissioning & running CAPTAIN detectors, developing/tuning MC & developing analysis tools (e/n), we need FNAL to:
 - support for n-bkgd measurements (SciBath)
 - support for engineering studies at/around MI-12

Thank you

CAPTAIN Collaboration

Los Alamos National Laboratory

G. Garvey, E. Guardincerri, T. Haines, D.M. Lee, Q. Liu,
W.C. Louis, <u>C. Mauger</u>, G. Mills, J. Ramsey, K. Rielage,
G. Sinnis, W. Sondheim, C. Taylor, R. Van de Water

Fermi National Accelerator Laboratory

O. Prokofiev, J. Yoo

Louisiana State University

F. Blaszczyk, T. Kutter, W. Metcalf, M. Tzanov

New Mexico State University F. Giuliani, M. Gold

> Stony Brook University <u>C. McGrew</u>, C. Yanagisawa

University of Alabama

S. Fernandes, I. Stancu

University of California, Davis

D. Danielson, C. Grant, E. Pantic, R. Svoboda, N. Walsh

University of California, Irvine C. Pitcher, M. Smy

University of California, Los Angeles D.B. Cline, K. Lee, J.H. Shin, H. Wang

University of Houston B. Bhandari, L. Whitehead

University of Hawii, Honolulu

J. Maricic, M. Rosen, Y. Sun

University of Minnesota

J. Bian, M. Marshak

Proton Improvement Plan Projection Main Injector -----mu2e PIP Minimum PIP Maximum 2.50E+17 (Protons/Hour 2.00E+17 1.50E+17 Flux 1.00E+17 Booster 8 GeV v: 4e+20 p/year 5.00E+16

Paul Derwent, Fermilab S&T Review, Nov. 5-7, 2013

2019

2020

2021

2018

2011

2012

2013

2014

0.00E+00

2016

2017

2015

Power needs: 30 kW cryogenics (480 V 3 phase) 2 kW electronics available at MI-12.

Data volume: Drift time = 625 μs TPC: integration time: 1800 μs, sampling: 2 MHz, bits: 12, channels: 2001 total = 4.3 MB/trigger (0.7 compression) PMT: integration time: 1800 μs, sampling: 200 MHz, bits: 12, channels: 24 total = 3.9 MB/trigger (0.7 compression)

Event size = 8.2 MB/trigger, 0.82 MB/trigger after zero suppression

Data size = 33 TB for 2e20 POT (not including beam-off & calibrations)

Neutron Rates & Shielding

Distance = 10 m from target

Neutron Runs @ WNR

- Characterize neutron interactions to understand energy carried by neutrons in neutrino interactions with argon
- Measure response of LAr TPC to neutrons

 multi-particle events in high-energy regime
 characterize reconstruction efficiency of these events
- Measure "cosmogenic" production of radioactive isotopes
 - validate simulations of spallation
 - background for neutrino interactions
- Want neutron beam with cosmic-ray energy spectrum
- Ability to know neutron energy on an event-by-event basis

n

16.01.2015 FNAL PAC

Ion Stancu - University of Alabama

1.3 GeV protons on Hg target (60 Hz, 695 ns) 1.4 MW: Neutrino production: 2.8e+22 per year (each flavour)

CAK RIDGE SPALLATION National Laboratory SOURCE

SNS experimental hall is a very busy place...

neutrino

World's most intense pulsed, accelerator-based neutron source

NEUTRONS.ORNL.GOV

16.01.2015 FNAL PAC

14-G00875/gim

- Previous proposed neutrino experiments at SNS have failed!
- Variety of reasons; in general difficult to mount an HEP/NP experiment at a BES facility!

NuSNS @ 20 m (XS): $\Phi = 3.5 \times 10^7 \text{ v/cm}^2/\text{s/flavour}$

OscSNS @ 60 m (oscillations): $\Phi = 3.9 \times 10^6 \text{ v/cm}^2/\text{s/flavour}$

CLEAR (coherent scattering) efforts on-going...

- Might not be ideal for measurements on a time scale which might affect the design of ELBNF in light of SN burst detection...
- Need alternative source(s) of DAR neutrinos...

Backup

 $\nu_{\rm e}$ + ⁴⁰Ar → ⁴⁰K_{GS} + e⁻ has a low threshold, but rarely occurs due to 0⁺→ 4⁻ (3rd forbidden) transition. Most all of the XS is into excited states of ⁴⁰K. ⁴⁰Ar is Z=18 (2 proton holes) and N=22 (2 neutron partial shell). Shell model calculations difficult and uncertain.

Can One Measure the Strengths?

Ion Stancu - University of Alabama

Backup

Neutrino survival probability

H. Duan, G. M. Fuller, and Y. Qian, Ann. Rev. Nucl. Part. Sci. 60 (2010) 569 arXiv:1001.2799 hep-ph

mCAPTAIN Drawings

