TD Test Facility Operations: Our understanding of the covered scope

David Harding

12 September 2014

The KA25 Test Facilities B&R will fund work associated with the operation and maintenance of Fermilab's accelerator test facilities and associated infrastructure and support systems. These activities support development and testing of superconducting RF and superconducting magnet technology.

We understand this B&R to covers operational expenses of maintaining and improving technical facilities that support multiple activities. The facilities are the technical infrastructure that enables design, fabrication, and testing of accelerator components. Facility operations does not cover the direct costs of fabrication and testing. The project or program pays for attaching instrumentation, connecting equipment to power supplies, installation of devices to be tested, executing the test (except for time spent by operators providing liquid helium for cooling), or analyzing the data.

In Technical Division we have a wide variety of such facilities that we find useful to account for separately. What follows is a list with a short description of each facility and the projects and programs that rely on the facility, along with a few example expenses. We think that each of the listed facilities meets the criteria for a test facility that should have an operations budget, but would be happy to discuss the choices.

Funding for these facilities has historically come from several sources. The Magnet Test Facility, including the helium liquefaction plant, was for over three decades funded by Accelerator Operations, since the Fermilab accelerator complex, especially the Tevatron, was the primary program supported. We did an imperfect job in reassigning tasks when agreement was reached to move funding to Test Facility Operations, so there is still clean-up to do there. The construction and operation of the SRF facilities, including VTS-1, VTS-2, and VTS-3, which share a liquid helium source with the cryogenic magnet testing, have been funded through Project 18, using a mix of GARD and operations money. Operations in several smaller facilities have historically been funded with Program Support guidance through the TD department responsible for the facility, but we think they are more appropriately included with Test Facility Operations.

Facility	Location	Description	Example expenses	Current Users
QC Lab	IB4	The Quality Control Lab is responsible for	Equipment maintenance	Essentially every part
		inspecting incoming components for	Equipment calibration	that comes through TD
		conformity to the requirements. The	New equipment	for every project and
		capabilities include precision measurements	Operator training	program is measured
		of parts, vacuum leak testing, surveying for	Management effort	here first. Both AD and
		alignment, magnetic properties of materials,	(Effort for measuring components is	PPD also make use of
		and the chemical composition of metals.	charged to the project or program.)	our services on
				occasion.
Superconducting	IB3	The Superconducting Magnet Facility includes	Equipment maintenance	High Field Magnet
Magnet Facility		equipment for the construction and	Equipment upgrades	Program
		production tests of SC magnets. The	New equipment	LARP
		capabilities currently include winding	Operator training	LHC HiLumi Upgrade
		superconducting cable into long coils, reacting	(Forms, molds, and new specialized	
		the coils in a large oven in an argon	handling equipment are paid for by the	
		atmosphere, squeezing the coil in its collar,	projects, as is effort in building the	
		and assembling multiple coils into a magnet	magnets.)	
		cold mass. Needs include the modernization		
		of aging equipment (cabling, insulating and		
		winding machines, curing and welding presses,		
		reaction oven, etc.), installation and		
		commissioning of new test equipment (cable		
		quality control, coil size measurement, warm		
		magnetic measurement, etc.), and continued		
		support of safety and environment control		
		operations.		

Conventional	IB2	The Conventional Magnet Facility supports	Equipment maintenance	Essentially every
Magnet Facility		construction of room temperature magnets,	Equipment upgrades	magnet in the Fermilab
		small superconducting magnets, and	New equipment	accelerator complex is
		occasional other projects. The capabilities	Operator training	built, rebuilt, repaired,
		include a grit blast booth, rotating tables for	Production oversight	or at least inspected
		winding coils, a large oven for vacuum	(Forms, molds, and new specialized	here.
		impregnation, a large oven for coil curing,	handling equipment are paid for by the	CLAS12
		stacking tables for building laminated magnet	projects, as is all effort in building the	APS MBA Upgrade
		cores, a magnet for magnetizing permanent	magnets.)	
		magnets, instruments for in-process		
		inspection of mechanical and electrical		
		properties, an oven for debonding any vacuum		
		impregnated component.		
Helium	IB1,	The IB1 Helium refrigerator is a subset of the	Equipment maintenance	HFM
Refrigerator	IB1A	operations in IB1 that support testing of SRF	Equipment upgrades	LARP
		cavities and superconducting magnets. The	New equipment	LCLS II
		refrigerator liquefies helium gas, which is	Helium	PIP II
		stored in a buffer dewar. The helium that	Liquid nitrogen	SRF GARD
		boils off as a test subject is cooled is captured	Refrigerator operators and supervision	
		and recirculated. The refrigerator system	(The cost of installing piping to bring	
		includes compressors, their motors, the heat	helium to a new test area is meant to	
		exchange system, valves and piping, a liquid	be borne by the first user of the new	
		nitrogen system for precooling, and an	area, but the subsequent maintenance	
		elaborate controls system. The supply of	is an operating expense.)	
		deionized cooling water for the refrigerator,		
		magnets, and power supplies is also covered		
		here.		

Vertical Test	IB1	Vertical cavity test Stands provide testing	Equipment maintenance	LCLS II
Stands (VTS)		capability for individual superconducting RF	Equipment modifications to fulfill the	PIP II
		cavities. Three test stands (VTS-1, VTS-2, and	needs of high priority projects and	SRF R&D
		VTS-3) allow the testing of single-cell or	programs	
		multiple-cell SRF cavities, bare or dressed, in a	(Executing a test cycle, from preparing	
		vertical configuration. Each stand is a deep	the cavity, through making and	
		cryostat installed in the floor that can accept	analyzing a measurement is at the	
		liquid helium to cool the cavity under test.	expense of the program or project.)	
		The system includes RF power supplies,		
		controls, and instrumentation.		

Superconducting	IB1 &	The Superconducting Magnet Test Facility is	Equipment maintenance	HFM
Magnet Stands	CHL	the only facility in the US that can support	Equipment upgrades	LARP
C		testing of SC magnets at 1.9K. In this facility	New equipment	Mu2e
		current and quench measurements are carried	(Executing a test cycle, from preparing	LCLS II
		out, as well as detailed magnetic and	the magnet, through making and	
		performance measurements. Facility support	analyzing a measurement is at the	
		includes power supplies and current leads,	expense of the program or project.)	
		equipment and tooling for magnetic		
		measurements and consumable costs		
		(including He and LN2). Needs include		
		extension of capability to test long (>4 m)		
		magnets at higher currents and larger		
		apertures. The Vertical Magnet Test Facility		
		(VMTF) is a deep cryostat for testing magnet		
		cold masses. A horizontal test stand can test		
		large cryostated magnets. Another test stand		
		can measure smaller, Tevatron-scale magnets.		
		Another stand is configured to test HTS		
		magnet leads. Another stand has a Tevatron		
		dipole permanently mounted for calibration		
		uses. The Solenoid Test Facility, located in		
		CHL, can measure medium sized solenoid		
		coils. The test stands are served by		
		appropriate power supplies, controls,		
		instrumentation, and magnet measurement		
		systems.		

Room	IB1	The conventional test facility includes three	Equipment maintenance	PIP
Temperature		test stands, additional portable equipment,	Equipment upgrades	Booster
Magnet Test		and a calibration magnet. Various appropriate	New equipment	Main Injector
Stands		power supplies and controls, magnet	Historically, executing a test cycle, from	Recycler
		measurement instruments, electronics,	preparing the cavity, through making	NOvA
		motion control, computers, and software are	and analyzing a measurement has been	Mu2e
		covered.	covered by Accelerator Operations,	Muon g-2
			even for a Project.	Muon Campus AIP
			(Projects pay for any overtime	PXIE
			necessary to meet a schedule.)	ASTA
			(New measurement probes needed for	APS MBA Upgrade
			a specific geometry are usually at the	
			expense of the project, unless they are	
			so clearly generally useful that they are	
			absorbed as an operating expense.)	
T&I	IB1	The Test and Instrumentation (T&I)	All management effort in T&I, including	See above
Management		Department is responsible for the	administrative support	
		management of all the test facilities in IB1 and	M&S supporting the operation of the	
		CHL except the CHL refrigerator. T&I also	department	
		provides support for programs and projects,		
		for which the other programs and projects		
		pay.		

SC Strand and	IB3A	The Superconducting Strand and Cable Lab	Equipment maintenance	Superconductor R&D
Cable Lab		measures the performance of SC strands and	Calibration	High Field Magnet
		cables for both R&D efforts and for quality	Equipment upgrades	LARP
		control of production runs. A cabling machine	New equipment	Mu2e
		can make cables from strands. The lab	(Preparing samples and making	Muon g-2
		technicians prepare samples of strands and	measurements is at the expense of the	
		cables for testing. The lab has ovens for heat	program or project.	
		treatment of samples, including one high	New equipment needed for a specific	
		pressure oven. Cryostats with equipment to	program are usually at the expense of	
		apply high magnetic fields and pressures allow	the program, unless they are so clearly	
		performance testing under strenuous	generally useful that they are absorbed	
		conditions. The necessary power supplies,	as an operating expense.)	
		controls, instrumentation, and data		
		acquisition systems are available. Needs		
		include the modernization and safe operation		
		of cryogenics and vacuum equipment, power		
		supplies and DAQ.		
Advanced	ICB &	A suite of advanced analytical tools for surface	Equipment maintenance & calibration	SRF R&D
Analytical Tools	IB3	imaging and physical property measurements	(Preparing samples and making	Superconductor R&D
Suite		include scanning electron microscope with	measurements is at the expense of the	High Field Magnet
		EBSD and EDS attachments, laser confocal	program or project.)	LARP
		scanning microscope, optical microscopes,		Mu2e
		PPMS system, and sample preparation		Muon G-2
		equipment. Two Instron [®] machines measure		Accelerator Operations
		stress-strain curves, tensile strength, and the		Detector Operations
		like.		
MDTL	Village	Materials Development and Testing Lab	Equipment maintenance & calibration	Superconductor R&D
		includes chemical hoods, inventory of	Handling of chemical supplies	High Field Magnet
		chemicals, mechanical polishing and cutting		LARP
		equipment for a full sequence of chemical		Mu2e
		treatments (etching, polishing) and		Muon G-2
		mechanical preparation of parts and samples.		SRF R&D
				Accelerator Operations
				Detector Operations

Optical	ICB	Includes single and multicell cavity optical	Equipment maintenance & calibration	LCLS II
inspection lab		inspection systems, RRR measurement and	Equipment modifications to fulfill the	PIP II
		Eddy current scanning setups.	needs of high priority projects and	ILC
			programs	SRF R&D
ANL SRF Cavity	Argonne	Superconducting cavity surface processing	Equipment maintenance	LCLS II
Processing		facility (SCSPF) located at Argonne National	Equipment modifications to fulfill the	PIP II
		Laboratory and jointly operated by FNAL and	needs of high priority projects and	ILC
		ANL. This facility supports production	programs	SRF R&D
		processing of cavities intended for vertical,	(Processing cavities is at the expense	
		horizontal testing, and for cryomodules. The	of the program or project.)	
		ANL SRF Cavity Processing Facility is jointly run		
		by Fermilab and Argonne in support of		
		research and production at both Labs. The lab		
		provides buffered chemical polishing,		
		electropolishing, and high pressure rinsing for		
		SRF cavities.		
HTS/STC	MDB	Horizontal cavity test systems provide testing	Equipment maintenance	LCLS II
		capability for fully-dressed SRF cavities,	Equipment modifications to fulfill the	PIP II
		including high-power RF couplers. The SRF	needs of high priority projects and	ILC
		cavity Horizontal Test Stand (HTS) and Spoke	programs	SRF R&D
		Test Cryostat (STC) are located in Meson	(Testing cavities is at the expense of	
		Detector Building. HTS is a cryostat in which	the program or project.)	
		dressed SRF cavities are tested for production		
		QC or for R&D.		
CPL	IB4	Cavity processing laboratory includes vacuum	Equipment maintenance	LCLS II
		ovens for heat treatments and doping, clean	Handling of chemical supplies	SRF R&D
		room with high pressure water rinsing stand,	Equipment modifications to fulfill the	PIP II
		electropolishing setup for 1-cells, and	needs of high priority projects and	
		mechanical polishing (tumbling) machine for	programs	
		SRF cavities. Most of LCLS-II cavity recipe	(Processing cavities is at the expense	
		development is happening here. RF lab for	of the program or project.)	
		field flatness measurements and tuning is also		
		part of the facility.		

CAF/MP9	ICB and	Cavity preparation and cryomodule assembly	Equipment maintenance	LCLS II
	MP9	facility includes the facilities in which	Equipment modifications to fulfill the	PIP II
		superconducting RF cavities are received in a	needs of high priority projects and	SRF R&D
		polished and rinsed state and prepared,	programs	
		assembled into cavity strings, and assembled	(Assembling cryomodules is at the	
		with other hardware into cryomodules. The	expense of the program or project.)	
		Cavity Assembly Facility (CAF) is divided		
		between MP9 and ICB. At MP9, bare cavities		
		are dressed with their helium vessels and		
		assembled into a string. At ICB, cavity		
		assemblies are joined with magnets and other		
		components, instruments, and installed in		
		cryostats to complete a cryomodule.		
Engineering	Virtual	TD's engineering computing facility provides	Equipment upgrades and replacement	LCLS II
Computing		powerful computer servers and software tools	Software licenses and maintenance	PIP II
		for complex modeling problems for a variety		SRF R&D
		of SRF cavities and other radio frequency or		ILC
		microwave devices.		PIP
				SPT CMB