

Dynamic Aperture: Field quality requirements update including beam-beam effects

T. Pieloni, D. Banfi, J. Barranco,

Acknowledgements: C. Tambasco, G. Arduini, A. Valishev, M. Giovannozzi, E. Mc Intosh, I. Zacarov and volunteers of LHC@home

USLARP – HiLumi Collaboration Meeting 11th May 2015, Fermilab

Outline

- HL-LHC scenarios in the presence of Beam-beam Effects
- Effect of multipolar errors element by element
- Effect of the Inner Triplet Errors b10 and b14 on BB
 - General Observations
 - Average versus Minima Dynamic Aperture
 - Compensation effects
- Summary

Outline

- HL-LHC scenarios in the presence of Beam-beam Effects
- Effect of multipolar errors element by element
- Effect of the Inner Triplet Errors b10 and b14 on BB
 - General Observations
 - Average versus Minima Dynamic Aperture
 - Compensation effects
- Summary

The beauty of β^* leveling: Dynamic Aperture

 β^* leveling is extremely "beautiful" for beam-beam dynamics Baseline Scenario is robust \rightarrow very large margins

The beauty of β^* leveling: Dynamic Aperture

 β^* leveling is extremely "beautiful" for beam-beam dynamics Baseline Scenario with reduced xing angle is robust \rightarrow at limit only end of store

The beauty of β^* leveling

 β^* leveling is extremely "beautiful" for beam-beam dynamics Ultimate Scenario is robust \rightarrow still margins

If no β^* leveling is possible?

A larger angle will be needed, extreme case is NOT acceptable, yet!

Dynamic aperture HL-LHC IP1&5: summary

In nominal condition 590 μ rad DA=8.4 σ Plenty of margin but...to be used for other knobs (Q', Landau Damping...)

Dynamic aperture HL-LHC IP1&5: Error Bars

10% increase ε_n (bbb fluctuations injectors, growth) \rightarrow reduces DA 8.4 $\sigma \rightarrow$ 7.5 σ

Dynamic aperture HL-LHC IP1&5: Extreme case NO β* leveling

Dynamic aperture HL-LHC IP1&5: Extreme case NO β* leveling

$$d_{sep} = \alpha \cdot \sqrt{\frac{\beta^*}{\epsilon/\gamma}}$$

 $DA \propto d_{sep} \propto \alpha$

- 10% larger ε_n (2.5→2.75)
- Equivalent to reduction of the angle 590µrad→560µrad
- Equivalent to reduction of DA 0.9σ

Dynamic aperture HL-LHC: IP1&5

$$d_{sep} = \alpha \cdot \sqrt{\frac{\beta^*}{\epsilon/\gamma}}$$

 $DA \propto d_{sep} \propto \alpha$

- 10% larger ε_n (2.5→2.75)
- Equivalent to reduction of the angle 590µrad→560µrad
- 3. Equivalent to reduction of DA 1σ

Margins can be lost very fast with Beam-beam if not attentive! Beams will not explode but integrated Luminosity reduced!

Dynamic aperture HL-LHC IP1&5: Intensity

Dynamic aperture HL-LHC IP1&5: Intensity

Dynamic aperture HL-LHC IP1&5: Intensity

Anything larger equal to 0.5 s is not negligible!

Outline

- HL-LHC scenarios in the presence of Beam-beam Effects
- Effect of multipolar errors element by element
- Effect of the Inner Triplet Errors b10 and b14 on BB
 - General Observations
 - Average versus Minima Dynamic Aperture
 - Compensation effects
- Summary

Multipolar Errors and crossing angle

The impact is clearly negligible when beam-beam is strong < 500 μ rad

Multipolar Errors and crossing angle

In all other cases Errors do have an important impact "positive or negative" on DA

Multipolar Errors and crossing angle

Negative effects more pronounced for larger angle where errors are stronger!

Outline

- HL-LHC scenarios in the presence of Beam-beam Effects
- Effect of multipolar errors element by element
- Effect of the Inner Triplet Errors b10 and b14 & BB
 - General Observations: preliminary results
 - Average versus Minima Dynamic Aperture
 - Compensation effects
- Summary

Multipolar errors elements impact: 1.0e11 ppb

Multipolar errors elements impact: 2.2e11 ppb

Minima is reduced but average increases DA

Multipoles b10 and b14 in the INNER TRIPLET

Multipoles b10 and b14 in the INNER TRIPLET

Strong Beam-Beam

What is happening?

DA =6.4 σ

Errors do have an impact (1 σ reduction) Driven by Inner Triplet element errors

Multipolar errors: average seed

Larger Average DA due to "compensation" \rightarrow reduction of spread visible

No Multipolar errors

Errors do have an impact (1 σ reduction) Driven by Inner Triplet element errors

Multipolar errors: minimum DA seed

Minimum DA has larger spread and shift

Multipolar errors: average seed

The effect is stronger for 1.0e11 ppb case!

Similar results confirmed by Lifetrac

Ultimate intensity (extreme) case N_p=2.2×10¹¹

Multipolar Errors

The effects change significantly depending on crossing angle

Multipolar Errors in Inner Triplet: b10 & b14

B10 and b14 do have an important impact they seem compensating some BB effects. Can we rely on this? NO! Is then the minima DA criteria (how this value deviates from BB only) the right way to quantify the impact?

Multipolar Errors in Inner Triplet: b10 & b14

b10 and b14 have an effect which changes the dynamics. Is the minima DA criteria the one to use with Beam-Beam?

Summary

- Baseline scenario for HL-LHC is robust, extreme case is not yet acceptable
- Beam-Beam effects put an error bar on simulations of 0.5-1 σ anything that affects DA by such quantity is NOT NEGLIGIBLE! And does affect the dynamics!
- Multipolar errors are not negligible INNER TRIPLET dominates
- The study of errors (i.e. b10 and b14 multipoles from Ezio) have shown:
 - STRONG BB multipolar errors are marginal and negligible!
 - \rightarrow Not our scenario!
 - MEDIUM and WEAK BB: multipolar errrors do have important effects
 - Negative effect → reductions of DA
 - **Positive effect** \rightarrow increase of DA \rightarrow Compensation effects
 - The impact on DA depends on the beams working point variations (10⁻³)
 - In the picture not yet in IP2-IP8 and other knobs Q', Octupoles...

Conclusions

- The dynamics in the presence of BB is very complicated with multipolar errors it becomes difficult to define tolerances: many effects (degradation/compensation)
 - Models have been tested versus BB dominated cases
 - Experimental studies are foreseen to study effects of controlled multipoles
- How to evaluate the tolerances on multipolar errors in the presence of BB?
 → Different seeds give different effects
 - Take deviations from Beam-Beam driven DA due to errors: Maxima- Average-Minima should be evaluated versus Beam-Beam error bars (intensity and emittance fluctuations)
 - The single beam studies are simpler to estimate multipole impacts/ tolerances, maybe a bit over constraining but robust
 → Proved to be a successful point in the LHC

It is necessary to keep a "certain" margin between BB driven DA and single beam→ LHC design used factor 2 for HILUMI LHC we need further studies to evaluate

Multipolar errors impact IP1&5: β* leveling

Minimum DA rigorous criteria for LHC design we all profited of in 2012. Intensities up to 1.6e11 and emittances of 2-2.5μm

Multipolar errors impact IP1&5: NO β^* leveling

Minimum DA criteria \rightarrow LHC design criteria shown to be successful

What do we need these margins for?

🏓 ΔDA = -0.5 σ

We optimize the scenarios to put IP8 (LHCb) in the shadow of the two main IP1&5 (ATLAS and CMS) but they do take part of the margins! Then IP2 (ALICE)....³Something else?...

What do we need these margins for?

CHROMATICITY HAS A VERY STRONG IMPACT!

If for any reason we need to use it (i.e. stability in collision) then no margins! Have we seen this in 2012? Yes!

With high chroma integrated lumi per fill much smaller despite higher brightness Something else....

2) Second Part Year: Q' = 15 (No Octupoles)

Chromaticity has a BAD impact on DA!

During physics fills without octupoles we were on the limit any particle at 4-5 sigma was lost!

Chaotic motion starts before, 2 sigma particles.

optics files:

SLHC optics:

/afs/<u>cern.ch/eng/lhc/optics/SLHCV3.1b/opt_0400_0400thin.madx</u> beta*=40cm in IR1/5, beta*=10 m in IR2/8 /afs/<u>cern.ch/eng/lhc/optics/SLHCV3.1b/opt_0330_0330thin.madx</u> beta*=33cm in IR1/5, beta*=10 m in IR2/8 /afs/<u>cern.ch/eng/lhc/optics/SLHCV3.1b/opt_0150_0150thin.madx</u> beta*=15cm in IR1/5, beta*=10 m in IR2/8 /afs/<u>cern.ch/eng/lhc/optics/SLHCV3.1b/opt_0100_0100thin.madx</u> beta*=10cm in IR1/5, beta*=10 m in IR2/8

/afs/cern.ch/eng/lhc/optics/HLLHCV1.0/opt round thin.madx

error tables:

for old simulations:

/afs/cern.ch/eng/lhc/optics/SLHCV3.1b/errors/IT_errortable_v3 target error table for the new IT /afs/cern.ch/eng/lhc/optics/SLHCV3.1b/errors/D1_errortable_v1 target error table for the new D1 /afs/cern.ch/eng/lhc/optics/SLHCV3.1b/errors/D2_errortable_v1 target error table for the new D2 /afs/cern.ch/eng/lhc/optics/SLHCV3.1b/errors/Q4_errortable_v1 target error table for the new Q4 in IR1 and IR5 /afs/cern.ch/eng/lhc/optics/SLHCV3.1b/errors/Q5_errortable_v0 target error table for the new Q5 in IR1 and IR5 and IR6 new error study:

/afs/cern.ch/eng/lhc/optics/HLLHCV1.0/errors/IT_errortable_v3_spec";! target error table for the new IT /afs/cern.ch/eng/lhc/optics/HLLHCV1.0/errors/D1_errortable_v1_spec";! target error table for the new D1 /afs/cern.ch/eng/lhc/optics/HLLHCV1.0/errors/D2_errortable_v5_spec ";! target error table for the new D2 /afs/cern.ch/eng/lhc/optics/HLLHCV1.0/errors/Q4_errortable_v1_spec";! target error table for the new Q4 in IR1 and IR5 /afs/cern.ch/eng/lhc/optics/HLLHCV1.0/errors/Q5_errortable_v0_spec";! target error table for the new Q5 in IR1 & IR5 & IR6