The Materials Science of Niobium
Superconducting Radio-frequency Cavities

LARP/HiLumi Collaboration Meeting
Fermilab, May 11, 2015

Denise C. Ford

NbO 000

X

© 0c®
ew
oo

AAAAAAAAAAAAAAAAAA



Outline of Talk

My background

SRF cavity performance and processing
Electropolishing studies

Modeling impurity phases in niobium

Niobium / precipitate interface studies
Modeling properties related to superconductivity
Interests in LARP
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My Background

B.S. Chemical Engineering, Certificate Technical
Communications

Part-time job with Computational Surface Science and
Catalysis group, also involved some experimental work

M.S., Ph.D. Chemical Engineering

M.S. thesis on diffusion in a porous material

Ph.D. thesis on niobium SRF cavity processing

Postdoc doing DFT calculations on niobium carbides
and the surface corrosion reactions of glass

USPAS, ILC School, and materials modeling courses
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Materials Modeling Example — Surface Reactivity
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Materials Modeling Example — Diffusion
in Porous Materials

Methane Hexane

Center of a
large cage
Stallmach F, et al. 2006 Angew.
Chem. Int. Ed. 45 2123-2126
Corners of
cages

Ford D C, etal. 2012 J. Phys. Chem. Lett. 3 930-933
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SRF Cavities

Provide accelerating gradient for high-performance linear
particle accelerators

Made from ultra pure niobium (>99.98%)
® Type Il superconductor with T, = 9.2 K

Operation in the superconducting state decreases losses
due to surface resistance by ~10°
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SRF Cavity Performance Characterization
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Cavity Forming and Processing

Forming — source of many lattice defects

Processing — some important techniques

Buffered chemical polishing of outer surface — increase heat transfer

Bulk electropolishing (~150 um) of inner surface — remove damage
layer from forming

600-800 °C bake — eliminate Q-disease

Tumbling — smooth surface

High pressure rinse — remove dust (prevent field emission)
100-160 °C bake — mitigate Q-slope

Nitrogen and titanium impurities — increase Q

Procedure is empirical
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The Electropolishing Process

|deally controlled by F- diffusion to the niobium surface

® Avoids crystallographic etching Acdout] + . |acdin

® Promotes surface leveling Temperature probe

e Affected by local temperature,

. Tank
flow, and electrolyte composition

Acid bath

Standard recipe:
® 9 parts 98% H,SO, : 1 part 489, HF

Nb anode Al cathode

Chemical processes:
e Oxidation: 2Nb + 5S0,2 + 5H,0 -> Nb,Os + 10H* + 5S0,2 + 10e’
e Dissolution: Nb,Og + 6HF -> H,NbOF; + NbO,F -> 0.5H,0 + 1.5H,0
® Product formation: NbO,F ¢ 0.5H,0 + 4HF -> H,NbOF; + 1.5H,0
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The Electropolishing Process — Nb Coupon Studies

Strong improvement of gloss
-> reduction of roughness

Quality of finish related to Nb

pretreatment N aplbefore EP
® (Cold work strongly promotes pitting

e Welding promotes pitting

Quality of finish related to EP process
parameters

e Agitation of bath promotes etching Nb sample after EP
e Temperature indirectly effects the process

Cooley L D, etal. 2011 IEEE Trans. Appl. Supercond. 21 2609-2014 10
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The Electropolishing Process — Spectroscopy Studies

Raman NMR
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Ford D C, et al. 2013 J. Electrochem. Soc. 160 H398-H403 14l
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Modeling of Impurity and Defect Structures in Nb

bcc Niobium NbH (B niobium hydride)
e, : T ¥
Build a crystal #» ‘3) J

structure -—r

N

Apply periodic
boundary conditions
Compare properties of different structures

Solve the electronic structure problem for the model systems
using density functional theory in VASP

Assess properties such as binding energy, electron distribution,
and niobium lattice strain
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Niobium Hydride Phases

16 H, gas phase

INb lattice vacancy formation
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Niobium lattice vacancies can nucleate ordered hydride phases

Ford D C, Cooley L D and Seidman D N 2013 Supercond. Sci. Technol. 26 095002

14

=
Denise Ford, ANL

=
May 11, 2015



Hydrogen and Oxygen in Niobium
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(O, N, C) and H in Niobium
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Interstitial O, N, and C atoms can trap interstitial H
atoms and prevent detrimental hydride formation

Ford D C, Zapol P, Cooley L D 2015 J. Phys. Chem. C in press 1 6
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Raman Spectrum of Hydrocarbon Chains
in N1obium

Stearic Acid
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Carbon Chains 1in Niobium

BE; (eV) -0.35 -0.88 0.51
BEsc (eV) -0.03 -0.24 0.45

Longer chains quickly become unfavorable
C-H in Nb spontaneously dissociates

|s a surface or surface-like defect, such as a grain boundary,
required for chain formation?

Ford D C, Zapol P, Cooley L D 2015 J. Phys. Chem. C in press ]. 8
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Carbon Clustering in Niobium

BE. (eV) -0.77 -1.84 -0.32
BEnsc (eV) -0.45 -0.88 0.64

Favorable for C to cluster

C can form Cottrell atmospheres around niobium
lattice vacancy-type defects

Ford D C, Zapol P, Cooley L D 2015 J. Phys. Chem. C in press ]. 9
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Experimental Evidence for NbC Precipitates
in SRF Nb

iSpectr umlmag )

Pt layer

50 nm

L
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A

b metal
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Coherent Nb / NbC interfaces are found in a variety
of SRF Nb samples

Cao C, et al. 2015 Phys. Rev. B 91 094302 20
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Creating an Coherent Interface Model

for Nb/NbC
@ Nbin top layer NbC (110) NbC (110) / Nb (110)
H nd
O Nbin 2" [ayer 316 A
NbC (111) :
4.47 A
Nb(110)

5.47 A
3.30A

+316A

Anisotropic compression is required to match the NbC (111)
plane to the Nb (110)

4.67 A

Relatively smaller isotropic expansion is required to match
NbC (110) to Nb (110)

Cao C, etal. 2015 Phys. Rev. B91 094302 21
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Raman Spectra and Calculated Phonon DOS

« Raman Intensity (arb. unit)

DOS (states / THz)
N E = ()]

o

. NbC, ..

Z= e

Jlab hot spot

----Bulk Nb Bulk Nb and NbC
— =Bulk NbC

[ ——Bulk NbC - 0.88 vol.
S
|\
| Y
|
) v A
6 12 18 24
Frequency (THz)

w
o

DOS (states / THz)

Raman Intensity (arb. unit)

(o]

)]

D

N

o

S
o

Nb (110) / NbC (110) Interface
Total

===-Total Nb in Nb layer
= =Total Nb in NbC layer
® o o Total Cin NbC layer

0 6 12 18 24 30

Frequency (THz)

The two-phonon signal dominates the experimental spectra

The Nb (110) / NbC (110) interface model provides a close
match to the experimental spectra

Cao C, etal. 2015 Phys. Rev. B91 094302
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Point Contact Tunneling Spectra

Normalized Conductance

Normalized Conductance

‘10 8 6 -4 2 0 2 4 6 8 10
Voltage (mV)

Increased gap -> possible increased T, at or near the
interface between Nb and NbC or in the NbC precipitates

Cao C, etal. 2015 Phys. Rev. B91 094302
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Niobium Lattice Strain and Superconductivity

g - Niobium 8
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Changes in electron and phonon structure lead to increased T,
for small expansive strains and decreased T, for small pressures

Ford D C, Zapol P, Cooley L D 2014 Appl. Supercond. Conf. 24
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Effect of Carbon on Nb T,

Bulk Niobium

Bulk Nb with 1 interstitial C
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Carbon atoms bind with Nb atoms, reducing N¢

Nb,C has a lower Ng than NbC and Nb -> likely lower T,

Ford D C, Zapol P, Cooley L D 2015 J. Phys. Chem. C in press
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Interests in LARP

Materials science studies of the
components for the HiLumi upgrade

® production issues with the crab cavities
® production issues with the quadrupoles
® radiation stability

Advanced accelerator materials
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Modeling of Impurity and Defect Structures in Nb

Calculation parameters

Vienna Ab Initio Simulation Package (VASP)

Plane wave basis set w/400 eV cutoff

PAW pseudopotentials to describe atomic cores
PBE-GGA exchange-correlation functional

~0.25/A gamma-centered k-point mesh for geometries
~0.12/A gamma-centered k-point mesh for eDOS

Bader Method to assign local properties

27

=
Denise Ford, ANL

=
May 11, 2015



Hydride Phases in Niobium

The niobium — hydrogen phase diagram is very complex
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Oxide Phases in Niobium

The niobium surface is covered with a complex system

of oxide layers which changes during processing

Properties range from metallic to insulating

Oxygen solubility is much lower than hydrogen
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Niobium Superconductivity

H A
A _/ superconductor
p
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Properties of the Interstitial Impurities

tetrahedral
(H) -

©

octahedral
(C,N, O)

Ford D C, Zapol P, Cooley L D 2015 J. Phys. Chem. C in press 3 1
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Impurity Binding Near
Niobium Lattice Vacancies

One Impurity Near Vacancy

Ford D C, Zapol P, Cooley L D 2015 J. Phys. Chem. C in press 32
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