THE HL-LHC OPERATIONAL SCENARIOS: MACHINE PARAMETERS

G. Arduini, D. Banfi, J. Barranco, N. Biancacci, O. Brüning, R. De Maria, M. Giovannozzi, W. Höfle, K. Li, E. Métral, J.E. Muller, Y. Papaphilippou, T. Pieloni, B. Salvant, E. Shaposhnikova, C. Tambasco, A. Valishev, D. Valuch, A. Wolski ($25+5 \mathrm{~min}$ talk, 20 slides)

THE HL-LHC OPERATIONAL SCENARIOS: MACHINE PARAMETERS

G. Arduini, D. Banfi, J. Barranco, N. Biancacci, O. Brüning, R. De Maria, M. Giovannozzi, W. Höfle, K. Li, E. Métral, J.E. Muller, Y. Papaphilippou, T. Pieloni, B. Salvant, E. Shaposhnikova, C. Tambasco, A. Valishev, D. Valuch, A. Wolski ($25+5 \mathrm{~min}$ talk, 20 slides)

- Goal of HL-LHC

THE HL-LHC OPERATIONAL SCENARIOS: MACHINE PARAMETERS

G. Arduini, D. Banfi, J. Barranco, N. Biancacci, O. Brüning, R. De Maria, M. Giovannozzi, W. Höfle, K. Li, E. Métral, J.E. Muller, Y. Papaphilippou, T. Pieloni, B. Salvant, E. Shaposhnikova, C. Tambasco, A. Valishev, D. Valuch, A. Wolski ($25+5 \mathrm{~min}$ talk, 20 slides)

- Goal of HL-LHC
- Inputs from experiments

THE HL-LHC OPERATIONAL SCENARIOS: MACHINE PARAMETERS

G. Arduini, D. Banfi, J. Barranco, N. Biancacci, O. Brüning, R. De Maria, M. Giovannozzi, W. Höfle, K. Li, E. Métral, J.E. Muller, Y. Papaphilippou, T. Pieloni, B. Salvant, E. Shaposhnikova, C. Tambasco, A. Valishev, D. Valuch, A. Wolski ($25+5 \mathrm{~min}$ talk, 20 slides)

- Goal of HL-LHC
- Inputs from experiments

HL-LHC parameters page (PLC, 16/12/2014)

THE HL-LHC OPERATIONAL SCENARIOS: MACHINE PARAMETERS

G. Arduini, D. Banfi, J. Barranco, N. Biancacci, O. Brüning, R. De Maria, M. Giovannozzi, W. Höfle, K. Li, E. Métral, J.E. Muller, Y. Papaphilippou, T. Pieloni, B. Salvant, E. Shaposhnikova, C. Tambasco, A. Valishev, D. Valuch, A. Wolski ($25+5 \mathrm{~min}$ talk, 20 slides)

- Goal of HL-LHC
- Inputs from experiments

HL-LHC parameters page (PLC, 16/12/2014)

- The 2 baseline HL-LHC operational scenarios => Beam and machine parameters from injection till stable beams

THE HL-LHC OPERATIONAL SCENARIOS: MACHINE PARAMETERS

G. Arduini, D. Banfi, J. Barranco, N. Biancacci, O. Brüning, R. De Maria, M. Giovannozzi, W. Höfle, K. Li, E. Métral, J.E. Muller, Y. Papaphilippou, T. Pieloni, B. Salvant, E. Shaposhnikova, C. Tambasco, A. Valishev, D. Valuch, A. Wolski ($25+5 \mathrm{~min}$ talk, 20 slides)

- Goal of HL-LHC
- Inputs from experiments

HL-LHC parameters page (PLC, 16/12/2014)

- The 2 baseline HL-LHC operational scenarios => Beam and machine parameters from injection till stable beams
- Conclusion

GOAL OF HL-LHC

GOAL OF HL-LHC

- Deliver an integrated luminosity of at least $250 \mathrm{fb}^{-1} /$ year during proton operation in ATLAS \& CMS

GOAL OF HL-LHC

- Deliver an integrated luminosity of at least $250 \mathrm{fb}^{-1} /$ year during proton operation in ATLAS \& CMS
- Various alternatives have been identified with the aim either to improve the potential performance of the machine or to provide options for addressing possible limitations or changes in parameters => 2 baseline scenarios discussed here

GOAL OF HL-LHC

- Deliver an integrated luminosity of at least $250 \mathrm{fb}^{-1} /$ year during proton operation in ATLAS \& CMS
- Various alternatives have been identified with the aim either to improve the potential performance of the machine or to provide options for addressing possible limitations or changes in parameters => 2 baseline scenarios discussed here
- NOMINAL (pile-up of 140 events / crossing)

GOAL OF HL-LHC

- Deliver an integrated luminosity of at least $250 \mathrm{fb}^{-1} /$ year during proton operation in ATLAS \& CMS
- Various alternatives have been identified with the aim either to improve the potential performance of the machine or to provide options for addressing possible limitations or changes in parameters => 2 baseline scenarios discussed here
- NOMINAL (pile-up of 140 events / crossing)
- ULTIMATE (pile-up of 210 events / crossing)

GOAL OF HL-LHC

- Deliver an integrated luminosity of at least $250 \mathrm{fb}^{-1} /$ year during proton operation in ATLAS \& CMS
- Various alternatives have been identified with the aim either to improve the potential performance of the machine or to provide options for addressing possible limitations or changes in parameters => 2 baseline scenarios discussed here
- NOMINAL (pile-up of 140 events / crossing)
- ULTIMATE (pile-up of 210 events / crossing)
- The LHC physics programme will also provide lead collisions to ALICE \& ATLAS \& CMS (overall goal to accumulate $10 \mathrm{nb}{ }^{-1}$ during the whole LHC operating period after Run 2)

INPUTS FROM EXPERIMENTS

INPUTS FROM EXPERIMENTS

- ATLAS \& CMS will be upgraded to handle an average number of pile-up events per bunch crossing of at least 140

INPUTS FROM EXPERIMENTS

- ATLAS \& CMS will be upgraded to handle an average number of pile-up events per bunch crossing of at least 140
\Leftrightarrow Peak lumi of $\sim 5 E 34 \mathrm{~cm}^{-2} \mathrm{~s}^{-1}(7 \mathrm{TeV}, 25 \mathrm{~ns}$, visible cross section of 85 mb)

INPUTS FROM EXPERIMENTS

- ATLAS \& CMS will be upgraded to handle an average number of pile-up events per bunch crossing of at least 140
\Leftrightarrow Peak lumi of $\sim 5 E 34 \mathrm{~cm}^{-2} \mathrm{~s}^{-1}(7 \mathrm{TeV}, 25 \mathrm{~ns}$, visible cross section of 85 mb)
- ATLAS \& CMS will also be upgraded to handle a line density of pileup events of 1.3 events / mm / bunch crossing

INPUTS FROM EXPERIMENTS

- ATLAS \& CMS will be upgraded to handle an average number of pile-up events per bunch crossing of at least 140
\Leftrightarrow Peak lumi of $\sim 5 \mathrm{E} 34 \mathrm{~cm}^{-2} \mathrm{~s}^{-1}(7 \mathrm{TeV}, 25 \mathrm{~ns}$, visible cross section of 85 mb)
- ATLAS \& CMS will also be upgraded to handle a line density of pileup events of 1.3 events / mm / bunch crossing
- Parameters assumed for HL-LHC performance estimates

INPUTS FROM EXPERIMENTS

- ATLAS \& CMS will be upgraded to handle an average number of pile-up events per bunch crossing of at least 140
\Leftrightarrow Peak lumi of $\sim 5 E 34 \mathrm{~cm}^{-2} \mathrm{~s}^{-1}(7 \mathrm{TeV}, 25 \mathrm{~ns}$, visible cross section of 85 mb)

ATLAS \& CMS will also be upgraded to handle a line density of pileup events of 1.3 events / mm / bunch crossing

- Parameters assumed for HL-LHC performance estimates

Scheduled physics time for p-p luminosity production/year $\left(\mathrm{T}_{\text {phys }}\right)$ [days]	160
Minimum turn-around time [h]	3
Performance efficiency - goal [\%]	50
Pile-up limit IP1/5 [events/crossing]	$140 / 200$
Pile-up density limit - IP1/5 [events/mm/crossing]	1.3
Visible cross-section IP1/5 [mb]	85

INPUTS FROM EXPERIMENTS

- ATLAS \& CMS will be upgraded to handle an average number of pile-up events per bunch crossing of at least 140
\Leftrightarrow Peak lumi of $\sim 5 E 34 \mathrm{~cm}^{-2} \mathrm{~s}^{-1}(7 \mathrm{TeV}, 25 \mathrm{~ns}$, visible cross section of 85 mb)

ATLAS \& CMS will also be upgraded to handle a line density of pileup events of 1.3 events / mm / bunch crossing

- Parameters assumed for HL-LHC performance estimates

Scheduled physics time for p-p luminosity production/year $\left(\mathrm{T}_{\text {phys }}\right)$ [days]	160
Minimum turn-around time [h]	3
Performance efficiency - goal [\%]	210
Pile-up limit IP1/5 [events/crossing]	50
Pile-up density limit - IP1/5 [events/mm/crossing]	$140 / 200$
Visible cross-section IP1/5 [mb]	1.3

	Parameter	Nominal LHC (design report)	HL-LHC 25ns (standard)	$\begin{array}{r} \text { HL-LHC 25ns } \\ \text { (BCMS) }^{9} \end{array}$	HL-LHC 50ns
	Beam energy in collision [TeV]	7	7	7	7
b)	N_{b}	$1.15 \mathrm{E}+11$	$2.2 \mathrm{E}+11$	$2.2 \mathrm{E}+11$	$3.5 \mathrm{E}+11$
	n_{b}	2808	2748	2604	1374
	Number of collisions in IP1 and IP5 ${ }^{1}$	2808	$\underline{2736}$	$\underline{2592}$	1368
	$\mathrm{N}_{\text {tot }}$	$3.2 \mathrm{E}+14$	$6.0 \mathrm{E}+14$	$5.7 \mathrm{E}+14$	$4.9 \mathrm{E}+14$
(0)	beam current [A]	0.58	1.09	1.03	0.89
	x-ing angle [$\mu \mathrm{rad}$]	285	590	590	590
	beam separation [σ]	9.4	12.5	12.5	11.4
	$B^{*}{ }^{\text {[}}$ [ml	0.55	0.15	0.15	0.15
	$\varepsilon_{\mathrm{n}}[\mu \mathrm{m}]$	3.75	2.50	2.50	3
10	$\varepsilon_{\mathrm{L}}[\mathrm{eVs}]$	2.50	2.50	2.50	2.50
	r.m.s. energy spread	$1.13 \mathrm{E}-04$	$1.13 \mathrm{E}-04$	1.13E-04	1.13E-04
	r.m.s. bunch length [m]	$7.55 \mathrm{E}-02$	$7.55 \mathrm{E}-02$	$7.55 \mathrm{E}-02$	$7.55 \mathrm{E}-02$
(1) 40	IBS horizontal [h]	$80->106$	18.5	18.5	17.2
40	IBS longitudinal [h]	$61->60$	20.4	20.4	16.1
	Piwinski parameter	0.65	3.14	3.14	2.87
0	Total loss factor RO without crab-cavity	0.836	0.305	0.305	0.331
(c) 10	Total loss factor R1 with crab-cavity	(0.981)	0.829	0.829	0.838
	beam-beam / IP without Crab Cavity	3.1E-03	3.3E-03	3.3E-03	$4.7 \mathrm{E}-03$
(b) 1	beam-beam / IP with Crab cavity	$3.8 \mathrm{E}-03$	$1.1 \mathrm{E}-02$	$1.1 \mathrm{E}-02$	$1.4 \mathrm{E}-02$
(b)	Peak Luminosity without crab-cavity [$\mathrm{cm}^{-2} \mathrm{~s}^{-1}$]	$1.00 \mathrm{E}+34$	$7.18 \mathrm{E}+34$	$6.80 \mathrm{E}+34$	$8.44 \mathrm{E}+34$
(1) (b)	Virtual Luminosity with crab-cavity: Lpeak*R1/RO [$\mathrm{cm}^{-2} \mathrm{~s}^{-1}$]	(1.18E+34)	$19.54 \mathrm{E}+34$	$18.52 \mathrm{E}+34$	$21.38 \mathrm{E}+34$
	Events / crossing without levelling and without crab-cavity	27	198	198	454
10	Levelled Luminosity [$\mathrm{cm}^{-2} \mathrm{~s}^{-1}$]	-	$5.00 \mathrm{E}+34^{5}$	$5.00 \mathrm{E}+34$	$2.50 \mathrm{E}+34$
(1)	Events / crossing (with leveling and crab-cavities for HL-LHC) ${ }^{8}$	27	138	146	135
0	Peak line density of pile up event [event/mm] (max over stable beams)	0.21	1.25	1.31	1.20
\square	Leveling time [h] (assuming no emittance growth) ${ }^{8}$	-	8.3	7.6	18.0
\square	Number of collisions in IP2/IP8	2808	2452/2524 ${ }^{7}$	2288/2396	04/1262
	N_{b} at LHC injection ${ }^{2}$	$1.20 \mathrm{E}+11$	$2.30 \mathrm{E}+11$	$2.30 \mathrm{E}+11$	$3.68 \mathrm{E}+11$
	$\mathrm{n}_{\mathrm{b}} /$ injection	288	288	288	144
	$\mathrm{N}_{\text {tot }}$ / injection	$3.46 \mathrm{E}+13$	$6.62 \mathrm{E}+13$	$6.62 \mathrm{E}+13$	$5.30 \mathrm{E}+13$
Elias Métral, Joint HiLur	ε_{n} at SPS extraction $[\mu \mathrm{m}]^{3}$	3.40	2.00	$<2.00^{6}$	2.30

	Parameter	Nominal LHC (design report)	HL-LHC 25ns (standard)	$\begin{array}{r} \text { HL-LHC 25ns } \\ \text { (BCMS) }^{9} \end{array}$	HL-LHC 50ns
	Beam energy in collision [TeV]	7	7	7	7
b	N_{b}	$1.15 \mathrm{E}+11$	2.2E+11	2.2E+11	$3.5 \mathrm{E}+11$
	n_{b}	2808	2748	2604	1374
	Number of collisions in IP1 and IP5 ${ }^{1}$	2808	$\underline{2736}$	$\underline{2592}$	1368
	$\mathrm{N}_{\text {tot }}$	$3.2 \mathrm{E}+14$	$6.0 \mathrm{E}+14$	$5.7 \mathrm{E}+14$	$4.9 \mathrm{E}+14$
(o)	beam current [A]	0.58	1.09	1.03	0.89
	x -ing angle [$\mu \mathrm{rad}$]	285	590	590	590
	beam separation [σ]	9.4	12.5	12.5	11.4
-	$B^{*}{ }^{\text {[}}$ [ml	0.55	0.15	0.15	0.15
	$\varepsilon_{\mathrm{n}}[\mu \mathrm{m}]$	3.75	2.50	2.50	3
10	$\varepsilon_{\mathrm{L}}[\mathrm{eVs}]$	2.50	2.50	2.50	2.50
	r.m.s. energy spread	1.13E-04	1.13E-04	1.13E-04	1.13E-04
	r.m.s. bunch length [m]	$7.55 \mathrm{E}-02$	$7.55 \mathrm{E}-02$	$7.55 \mathrm{E}-02$	$7.55 \mathrm{E}-02$
(1) 40	IBS horizontal [h]	$80->106$	18.5	18.5	17.2
40	IBS longitudinal [h]	$61->60$	20.4	20.4	16.1
0	Piwinski parameter	0.65	3.14	3.14	2.87
0	Total loss factor RO without crab-cavity	0.836	0.305	0.305	0.331
(c) 10	Total loss factor R1 with crab-cavity	(0.981)	0.829	0.829	0.838
	beam-beam / IP without Crab Cavity	3.1E-03	3.3E-03	3.3E-03	$4.7 \mathrm{E}-03$
(b) 1	beam-beam / IP with Crab cavity	$3.8 \mathrm{E}-03$	$1.1 \mathrm{E}-02$	$1.1 \mathrm{E}-02$	$1.4 \mathrm{E}-02$
(b)	Peak Luminosity without crab-cavity [$\mathrm{cm}^{-2} \mathrm{~s}^{-1}$]	$1.00 \mathrm{E}+34$	$7.18 \mathrm{E}+34$	$6.80 \mathrm{E}+34$	$8.44 \mathrm{E}+34$
(1) (b)	Virtual Luminosity with crab-cavity: Lpeak*R1/RO $\left[\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right]$	(1.18E+34)	$19.54 \mathrm{E}+34$	$18.52 \mathrm{E}+34$	$21.38 \mathrm{E}+34$
	Events / crossing without levelling and without crab-cavity	27	198	198	454
10	Levelled Luminosity [$\mathrm{cm}^{-2} \mathrm{~s}^{-1}$]	-	$5.00 \mathrm{E}+34^{5}$	$5.00 \mathrm{E}+34$	$2.50 \mathrm{E}+34$
(1)	Events / crossing (with leveling and crab-cavities for HL-LHC) ${ }^{8}$	27	138	146	135
(1)	Peak line density of pile up event [event/mm] (max over stable beams)	0.21	1.25	1.31	1.20
\square	Leveling time [h] (assuming no emittance growth) ${ }^{8}$	-	8.3	7.6	18.0
\square	Number of collisions in IP2/IP8	2808	2452/2524 ${ }^{7}$	2288/2396	04/1262
	N_{b} at LHC injection ${ }^{2}$	$1.20 \mathrm{E}+11$	$2.30 \mathrm{E}+11$	$2.30 \mathrm{E}+11$	$3.68 \mathrm{E}+11$
	$\mathrm{n}_{\mathrm{b}} /$ injection	288	288	288	144
	$\mathrm{N}_{\text {tot }}$ / injection	$3.46 \mathrm{E}+13$	$6.62 \mathrm{E}+13$	$6.62 \mathrm{E}+13$	$5.30 \mathrm{E}+13$
Elias Métral, Joint HiLur	ε_{n} at SPS extraction $[\mu \mathrm{m}]^{3}$	3.40	2.00	$<2.00^{6}$	2.30

	Parameter	Nominal LHC (design report)	HL-LHC 25ns (standard)	$\begin{aligned} & \text { HL-LHC 25ns } \\ & \text { (BCMS) }^{9} \end{aligned}$	HL-LHC 50ns
	Beam energy in collision [TeV]	7	7	7	7
b)	N_{b}	$1.15 \mathrm{E}+11$	$2.2 \mathrm{E}+11$	2.2E+11	$3.5 \mathrm{E}+11$
	n_{b}	2808	2748	2604	1374
	Number of collisions in IP1 and IP5 ${ }^{1}$	2808	$\underline{2736}$	$\underline{2592}$	1368
	$\mathrm{N}_{\text {tot }}$	$3.2 \mathrm{E}+14$	$6.0 \mathrm{E}+14$	5.7E+14	$4.9 \mathrm{E}+14$
co	beam current [A]	0.58	1.09	1.03	0.89
	x-ing angle [$\mu \mathrm{rad}$]	285	590	590	590
4 ?	beam separation [б] 1.08E-4	9.4	12.5	12.5	11.4
	B^{*} [m]	0.55	0.15	0.15	0.15
	$\varepsilon_{\mathrm{n}}[\mu \mathrm{m}]$	3.75	2.50	2.50	3
	$\varepsilon_{\mathrm{L}}[\mathrm{eVs}]$ 8.1 cm	+ $\times 10$	2.50	2.50	2.50
	r.m.s. energy spread	$\cdots 13 \mathrm{~F}-04$	1.13E-04	1.13E-04	1.13E-04
	r.m.s. bunch length [m]	$7.55 \mathrm{E}-02$	$7.55 \mathrm{E}-02$	$7.55 \mathrm{E}-02$	$7.55 \mathrm{E}-02$
(1) 40	IBS horizontal [h]	$80->106$	18.5	18.5	17.2
40	IBS longitudinal [h]	$61->60$	20.4	20.4	16.1
	Piwinski parameter	0.65	3.14	3.14	2.87
0	Total loss factor RO without crab-cavity	0.836	0.305	0.305	0.331
(4) 10	Total loss factor R1 with crab-cavity	(0.981)	0.829	0.829	0.838
	beam-beam / IP without Crab Cavity	3.1E-03	3.3E-03	3.3E-03	$4.7 \mathrm{E}-03$
(b) 1	beam-beam / IP with Crab cavity	3.8E-03	1.1E-02	1.1E-02	$1.4 \mathrm{E}-02$
(b)	Peak Luminosity without crab-cavity [$\mathrm{cm}^{-2} \mathrm{~s}^{-1}$]	$1.00 \mathrm{E}+34$	$7.18 \mathrm{E}+34$	$6.80 \mathrm{E}+34$	$8.44 \mathrm{E}+34$
(1) (b)	Virtual Luminosity with crab-cavity: Lpeak*R1/RO $\left[\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right]$	(1.18E+34)	$19.54 \mathrm{E}+34$	$18.52 \mathrm{E}+34$	$21.38 \mathrm{E}+34$
	Events / crossing without levelling and without crab-cavity	27	198	198	454
10 E	Levelled Luminosity [$\mathrm{cm}^{-2} \mathrm{~s}^{-1}$]	-	$5.00 \mathrm{E}+34^{5}$	$5.00 \mathrm{E}+34$	$2.50 \mathrm{E}+34$
(1)	Events / crossing (with leveling and crab-cavities for HL-LHC) ${ }^{8}$	27	138	146	135
0	Peak line density of pile up event [event/mm] (max over stable beams)	0.21	1.25	1.31	1.20
\square	Leveling time [h] (assuming no emittance growth) ${ }^{8}$	-	8.3	7.6	18.0
\square	Number of collisions in IP2/IP8	2808	2452/2524 ${ }^{7}$	2288/2396	04/1262
\square	N_{b} at LHC injection ${ }^{2}$	$1.20 \mathrm{E}+11$	$2.30 \mathrm{E}+11$	$2.30 \mathrm{E}+11$	$3.68 \mathrm{E}+11$
	$\mathrm{n}_{\mathrm{b}} /$ injection	288	288	288	144
	$\mathrm{N}_{\text {tot }}$ / injection	$3.46 \mathrm{E}+13$	$6.62 \mathrm{E}+13$	$6.62 \mathrm{E}+13$	$5.30 \mathrm{E}+13$
Elias Métral, Joint HiLur	ε_{n} at SPS extraction $[\mu \mathrm{m}]^{3}$	3.40	2.00	$<2.00{ }^{6}$	2.30

	Parameter	Nominal LHC (design report)	HL-LHC 25ns (standard)	$\begin{aligned} & \text { HL-LHC 25ns } \\ & \text { (BCMS) }^{9} \end{aligned}$	HL-LHC 50ns
	Beam energy in collision [TeV]	7	7	7	7
b)	N_{b}	$1.15 \mathrm{E}+11$	$2.2 \mathrm{E}+11$	2.2E+11	$3.5 \mathrm{E}+11$
	n_{b}	2808	2748	2604	1374
	Number of collisions in IP1 and IP5 ${ }^{1}$	2808	$\underline{2736}$	$\underline{2592}$	1368
	$\mathrm{N}_{\text {tot }}$	$3.2 \mathrm{E}+14$	$6.0 \mathrm{E}+14$	5.7E+14	$4.9 \mathrm{E}+14$
(0)	beam current [A]	0.58	1.09	1.03	0.89
	x -ing angle [$\mu \mathrm{rad}$]	285	590	590	590
4 ?	beam separation [σ] 1.08E-4	9.4	12.5	12.5	11.4
O	$B^{*}[\mathrm{ml}$	0.55	0.15	0.15	0.15
	$\varepsilon_{\mathrm{n}}[\mu \mathrm{m}]$	2.55 \times	2.50	2.50	3
$\frac{1}{10}$	$\varepsilon_{\mathrm{L}}[\mathrm{eVs}]$ 8.1 cm	2.50	$\bigcirc 2.50$	2.50	2.50
O	r.m.s. energy spread	1.1504	$1.13 \mathrm{E}-04$	- 1.13E-04	1.13E-04
	r.m.s. bunch length [m]	$7.55 \mathrm{E}-02$	$7.55 \mathrm{E}-02$	- 7.55E-02	$7.55 \mathrm{E}-02$
(1) 40	IBS horizontal [h]	$80->106$	18.5	18.5	17.2
10	IBS longitudinal [h]	$61->60$	20.4	20.4	16.1
	Piwinski parameter	0.65	3.14	3.14	2.87
0	Total loss factor RO without crab-cavity	0.836	0.305	0.305	0.331
(c) 10	Total loss factor R1 with crab-cavity	(0.981)	0.829	0.829	0.838
	beam-beam / IP without Crab Cavity	$3.1 \mathrm{E}-03$	$3.3 \mathrm{E}-03$	3.3E-03	$4.7 \mathrm{E}-03$
(b) 1	beam-beam / IP with Crab cavity	$3.8 \mathrm{E}-03$	1.1E-02	$1.1 \mathrm{E}-02$	$1.4 \mathrm{E}-02$
(b)	Peak Luminosity without crab-cavity [$\mathrm{cm}^{-2} \mathrm{~s}^{-1}$]	$1.00 \mathrm{E}+34$	$7.18 \mathrm{E}+34$	$6.80 \mathrm{E}+34$	$8.44 \mathrm{E}+34$
(1) (b)	Virtual Luminosity with crab-cavity: Lpeak*R1/RO $\left[\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right]$	(1.18E+34)	$19.54 \mathrm{E}+34$	$18.52 \mathrm{E}+34$	$21.38 \mathrm{E}+34$
	Events / crossing without levelling and without crab-cavity	27	198	198	454
10 E	Levelled Luminosity [$\mathrm{cm}^{-2} \mathrm{~s}^{-1}$]	-	$5.00 \mathrm{E}+34^{5}$	$5.00 \mathrm{E}+34$	$2.50 \mathrm{E}+34$
(1)	Events / crossing (with leveling and crab-cavities for HL-LHC) ${ }^{8}$	27	138	146	135
5	Peak line density of pile up event [event/mm] (max over stable beams)	0.21	1.25	1.31	1.20
\square	Leveling time [h] (assuming no emittance growth) ${ }^{8}$	-	8.3	7.6	18.0
\square	Number of collisions in IP2/IP8	2808	2452/2524 ${ }^{7}$	2288/2396	04/1262
\square	N_{b} at LHC injection ${ }^{2}$	$1.20 \mathrm{E}+11$	$2.30 \mathrm{E}+11$	$2.30 \mathrm{E}+11$	$3.68 \mathrm{E}+11$
	$\mathrm{n}_{\mathrm{b}} /$ injection	288	288	288	144
	$\mathrm{N}_{\text {tot }}$ / injection	$3.46 \mathrm{E}+13$	$6.62 \mathrm{E}+13$	$6.62 \mathrm{E}+13$	$5.30 \mathrm{E}+13$
Elias Métral, Joint HiLur	ε_{n} at SPS extraction $[\mu \mathrm{m}]^{3}$	3.40	2.00	$<2.00^{6}$	2.30

	Parameter	Nominal LHC (design report)	HL-LHC 25ns (standard)	$\begin{aligned} & \text { HL-LHC 25ns } \\ & \text { (BCMS) }^{9} \end{aligned}$	HL-LHC 50ns
	Beam energy in collision [TeV]	7	7	7	7
b)	N_{b}	$1.15 \mathrm{E}+11$	$2.2 \mathrm{E}+11$	2.2E+11	$3.5 \mathrm{E}+11$
	n_{b}	2808	2748	2604	1374
	Number of collisions in IP1 and IP5 ${ }^{1}$	2808	$\underline{2736}$	$\underline{2592}$	1368
	$\mathrm{N}_{\text {tot }}$	$3.2 \mathrm{E}+14$	$6.0 \mathrm{E}+14$	5.7E+14	$4.9 \mathrm{E}+14$
co	beam current [A]	0.58	1.09	1.03	0.89
	x -ing angle [$\mu \mathrm{rad}$]	285	590	590	590
4 ?	beam separation [б] 1.08E-4	9.4	12.5	12.5	11.4
	B^{*} [ml	0.55	0.15	0.15	0.15
	$\varepsilon_{\mathrm{n}}[\mu \mathrm{m}]$	3.75	+ 2.50	2.50	3
$\frac{10}{10}$	的[eVs$]$ 8.1 cm	2.50	2.50	2.50	2.50
	r.m.s. energy spread	1.13E-04	01	1.13E-04	- 1.13E-04
	r.m.s. bunch length [m]	7.55E-02	$7.55 \mathrm{E}-02$	$7.55 \mathrm{E}-02$	- 7.55E-02
(1) 40	IBS horizontal [h]	$80->106$	18.5	18.5	17.2
10	IBS longitudinal [h]	$61->60$	20.4	20.4	16.1
	Piwinski parameter	0.65	3.14	3.14	2.87
0	Total loss factor RO without crab-cavity	0.836	0.305	0.305	0.331
(4) 10	Total loss factor R1 with crab-cavity	(0.981)	0.829	0.829	0.838
	beam-beam / IP without Crab Cavity	3.1E-03	3.3E-03	3.3E-03	4.7E-03
(b) 1	beam-beam / IP with Crab cavity	3.8E-03	$1.1 \mathrm{E}-02$	1.1E-02	$1.4 \mathrm{E}-02$
(b)	Peak Luminosity without crab-cavity [$\mathrm{cm}^{-2} \mathrm{~s}^{-1}$]	$1.00 \mathrm{E}+34$	$7.18 \mathrm{E}+34$	$6.80 \mathrm{E}+34$	$8.44 \mathrm{E}+34$
(1) (b)	Virtual Luminosity with crab-cavity: Lpeak*R1/RO $\left[\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right]$	(1.18E+34)	$19.54 \mathrm{E}+34$	$18.52 \mathrm{E}+34$	$21.38 \mathrm{E}+34$
	Events / crossing without levelling and without crab-cavity	27	198	198	454
10 E	Levelled Luminosity [$\mathrm{cm}^{-2} \mathrm{~s}^{-1}$]	-	$5.00 \mathrm{E}+34^{5}$	$5.00 \mathrm{E}+34$	$2.50 \mathrm{E}+34$
(1)	Events / crossing (with leveling and crab-cavities for HL-LHC) ${ }^{8}$	27	138	146	135
5	Peak line density of pile up event [event/mm] (max over stable beams)	0.21	1.25	1.31	1.20
\square	Leveling time [h] (assuming no emittance growth) ${ }^{8}$	-	8.3	7.6	18.0
\square	Number of collisions in IP2/IP8	2808	2452/2524 ${ }^{7}$	2288/2396	04/1262
\square	N_{b} at LHC injection ${ }^{2}$	$1.20 \mathrm{E}+11$	$2.30 \mathrm{E}+11$	$2.30 \mathrm{E}+11$	$3.68 \mathrm{E}+11$
	$\mathrm{n}_{\mathrm{b}} /$ injection	288	288	288	144
	$\mathrm{N}_{\text {tot }}$ / injection	$3.46 \mathrm{E}+13$	$6.62 \mathrm{E}+13$	$6.62 \mathrm{E}+13$	$5.30 \mathrm{E}+13$
Elias Métral, Joint HiLur	ε_{n} at SPS extraction $[\mu \mathrm{m}]^{3}$	3.40	2.00	$<2.00{ }^{6}$	2.30

	Parameter	Nominal LHC (design report)	HL-LHC 25ns (standard)	$\begin{aligned} & \text { HL-LHC 25ns } \\ & \text { (BCMS) }^{9} \end{aligned}$	HL-LHC 50ns
	Beam energy in collision [TeV]	7	7	7	7
(b)	N_{b}	$1.15 \mathrm{E}+11$	$2.2 \mathrm{E}+11$	$2.2 \mathrm{E}+11$	3.5E+11
	n_{b}	2808	2748	2604	1374
	Number of collisions in IP1 and IP5 ${ }^{1}$	2808	$\underline{2736}$	2592	1368
	$\mathrm{N}_{\text {tot }}$	$3.2 \mathrm{E}+14$	$6.0 \mathrm{E}+14$	$5.7 \mathrm{E}+14$	$4.9 \mathrm{E}+14$
Co	beam current [A]	0.58	1.09	1.03	0.89
	x-ing angle [$\mu \mathrm{rad}$]	285	590	590	590
	beam separation [σ]	9.4	12.5	12.5	11.4
O	B^{*} [m]	0.55	0.15	0.15	0.15
	$\varepsilon_{\mathrm{n}}[\mu \mathrm{m}]$	3.75	2.50	2.50	3
\cdots	$\varepsilon_{L}[\mathrm{eVs}]$	2.50	2.50	2.50	2.50
	r.m.s. energy spread	$1.13 \mathrm{E}-04$	$1.13 \mathrm{E}-04$	$1.13 \mathrm{E}-04$	$1.13 \mathrm{E}-04$
	r.m.s. bunch length [m]	$7.55 \mathrm{E}-02$	$7.55 \mathrm{E}-02$	$7.55 \mathrm{E}-02$	$7.55 \mathrm{E}-02$
(1) 40	IBS horizontal [h]	$80->106$	18.5	18.5	17.2
10	IBS longitudinal [h]	$61->60$	20.4	20.4	16.1
\bigcirc	Piwinski parameter	0.65	3.14	3.14	2.87
0	Total loss factor R0 without crab-cavity	0.836	0.305	0.305	0.331
(4) 10	Total loss factor R1 with crab-cavity	(0.981)	0.829	0.829	0.838
	beam-beam / IP without Crab Cavity	3.1E-03	3.3E-03	3.3E-03	$4.7 \mathrm{E}-03$
(b) 1	beam-beam / IP with Crab cavity	3.8E-03	$1.1 \mathrm{E}-02$	$1.1 \mathrm{E}-02$	$1.4 \mathrm{E}-02$
ב (b)	Peak Luminosity without crab-cavity [$\mathrm{cm}^{-2} \mathrm{~s}^{-1}$]	$1.00 \mathrm{E}+34$	$7.18 \mathrm{E}+34$	$6.80 \mathrm{E}+34$	$8.44 \mathrm{E}+34$
(10 (b)	Virtual Luminosity with crab-cavity: Lpeak*R1/RO [$\mathrm{cm}^{-2} \mathrm{~s}^{-1}$]	(1.18E+34)	$19.54 \mathrm{E}+34$	$18.52 \mathrm{E}+34$	$21.38 \mathrm{E}+34$
	Events / crossing without levelling and without crab-cavity	27	198	198	454
10	Levelled Luminosity [$\mathrm{cm}^{-2} \mathrm{~s}^{-1}$]	-	$5.00 \mathrm{E}+34^{5}$	$5.00 \mathrm{E}+34$	$2.50 \mathrm{E}+34$
4	Events / crossing (with leveling and crab-cavities for HL-LHC) ${ }^{8}$	27	138	146	135
0	Peak line density of pile up event [event/mm] (max over stable beams)	0.21	1.25	1.31	1.20
\square	Leveling time [h] (assuming no emittance growth) ${ }^{8}$	-	8.3	7.6	18.0
\square	Number of collisions in IP2/IP8	2808	2452/2524 ${ }^{7}$	2288/2396	04/1262
	N_{b} at LHC injection ${ }^{2}$	$1.20 \mathrm{E}+11$	$2.30 \mathrm{E}+11$	$2.30 \mathrm{E}+11$	$3.68 \mathrm{E}+11$
	$\mathrm{n}_{\mathrm{b}} /$ injection	288	288	288	144
	$\mathrm{N}_{\text {tot }}$ / injection	$3.46 \mathrm{E}+13$	$6.62 \mathrm{E}+13$	$6.62 \mathrm{E}+13$	$5.30 \mathrm{E}+13$
Elias Métral, Joint HiLu	ε_{n} at SPS extraction $[\mu \mathrm{m}]^{3}$	3.40	2.00	< $2.00{ }^{6}$	2.30

=> HL-LHC aims to achieve a "virtual" peak lumi much higher than the acceptable lumi from detectors ($\sim 20 \mathrm{E} 34 \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$) and to control the instantaneous lumi by "luminosity leveling"

THE 2 BASELINE HL-LHC OPERATIONAL SCENARIOS

THE 2 BASELINE HL-LHC OPERATIONAL SCENARIOS

\Rightarrow See

THE 2 BASELINE HL-LHC OPERATIONAL SCENARIOS

"> See

- Main assumptions

THE 2 BASELINE HL-LHC OPERATIONAL SCENARIOS

\Rightarrow See

- Main assumptions
- ATS optics

THE 2 BASELINE HL-LHC OPERATIONAL SCENARIOS

\Rightarrow See

- Main assumptions
- ATS optics
- New Mo-Gr collimators with a $5 \mu \mathrm{~m}$ Mo coating are installed, in LSS7 only

THE 2 BASELINE HL-LHC OPERATIONAL SCENARIOS

\Rightarrow See

- Main assumptions
- ATS optics
- New Mo-Gr collimators with a $5 \mu \mathrm{~m}$ Mo coating are installed, in LSS7 only
- Leveling with β^{*} in IP1\&5 and // separation in IP2\&8

THE 2 BASELINE HL-LHC OPERATIONAL SCENARIOS

\Rightarrow See

- Main assumptions
- ATS optics
- New Mo-Gr collimators with a $5 \mu \mathrm{~m}$ Mo coating are installed, in LSS7 only
- Leveling with β^{*} in IP1\&5 and // separation in IP2\&8
- Few non-colliding bunches for the experiments (for background studies)

THE 2 BASELINE HL-LHC OPERATIONAL SCENARIOS

\Rightarrow SeC https://espace.cern.ch/HiLumi/WP2/task4/Shared\ Documents/HLLHC-OperationalScenarios-FinalVersion_06-05-2015_EM.pdf

- Main assumptions
- ATS optics
- New Mo-Gr collimators with a $5 \mu \mathrm{~m}$ Mo coating are installed, in LSS7 only
- Leveling with β^{*} in IP1\&5 and // separation in IP2\&8
- Few non-colliding bunches for the experiments (for background studies)
- Crab Cavities are active providing full compensation of the crossing angle in IP1\&5. Reduction of the impedance of the Crab Cavities to the required level (and good control of the impedance of new equipment, in particular at large β values)

THE 2 BASELINE HL-LHC OPERATIONAL SCENARIOS

\Rightarrow See $\underline{\text { https:/lespace.cern.ch/HiLumi/WP2/task4/Shared\%20Documents/HLLHC-OperationalScenarios-FinalVersion_06-05-2015_EM.pdf }}$

- Main assumptions
- ATS optics
- New Mo-Gr collimators with a $5 \mu \mathrm{~m}$ Mo coating are installed, in LSS7 only
- Leveling with β^{*} in IP1\&5 and // separation in IP2\&8
- Few non-colliding bunches for the experiments (for background studies)
- Crab Cavities are active providing full compensation of the crossing angle in IP1\&5. Reduction of the impedance of the Crab Cavities to the required level (and good control of the impedance of new equipment, in particular at large β values)
- All the existing circuits should operate at their nominal performance (e.g. non-conformities observed so far should be repaired by Run 4)
- SPS extraction
- Q20 optics
- Gamma transition = 17.951
- 10 MV in the 200 MHz RF cavities + 1 MV in the 800 MHz RF cavities (in bunch shortening mode)

Parameters at SPS ${ }^{1}$ extraction [2]	HL-LHC (standard)	HL-LHC (BCMS)
Beam total energy [TeV]	0.45	
Particles per bunch, $N\left[10^{11}\right]$	2.30	
Maximum number of bunches	288	
$\varepsilon_{n}[\mu \mathrm{~m}]$	2.00	1.40
$\varepsilon_{L}[\mathrm{eVs}]$	0.66	
r.m.s. energy spread (Gaussian fit) $\left[10^{-4}\right]$	2.7	
r.m.s. bunch length (Gaussian fit) [cm]	13.7	

- SPS extraction
- Q20 optics
- Gamma transition = 17.951
- 10 MV in the 200 MHz RF cavities + 1 MV in the 800 MHz RF cavities (in bunch shortening mode)

Parameters at SPS ${ }^{1}$ extraction [2]	HL-LHC (standard)	HL-LHC (BCMS)	
Beam total energy [TeV]	0.45		
Particles per bunch, $N\left[10^{11}\right]$	2.30		
Maximum number of bunches	288		
$\varepsilon_{n}[\mu \mathrm{~m}]$	2.00		
$\varepsilon_{L}[\mathrm{eVs}]$	0.66		
r.m.s. energy spread (Gaussian fit) $\left[10^{-4}\right]$	2.7		
r.m.s. bunch length (Gaussian fit) $[\mathrm{cm}]$	13.7		

- SPS extraction
- Q20 optics
- Gamma transition = 17.951
- 10 MV in the 200 MHz RF cavities + 1 MV in the 800 MHz RF cavities (in bunch shortening mode)

- SPS extraction
- Q20 optics
- Gamma transition = 17.951
- 10 MV in the 200 MHz RF cavities + 1 MV in the 800 MHz RF cavities (in bunch shortening mode)

Parameters at SPS ${ }^{1}$ extraction [2]	HL-LHC (standard)		HL-LHC (BCMS)
Beam total energy [TeV]	0.45		
Particles per bunch, N [1011]	2.30		
Maximum number of bunches	288		
$\varepsilon_{n}[\mu \mathrm{~m}]$	2.00		1.40
$\varepsilon_{L}[\mathrm{eVs}]$	0.66		
r.m.s. energy spread (Gaussian fit) [10-4]	2.7		
r.m.s. bunch length (Gaussian fit) [cm]	13.7		

	Parameters at the injection plateau after RF capture	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]	0.4	
	Particles per bunch, N [10^{11}]	2.3	
	Maximum number of bunches per beam	2748	2604
	Filling pattern	standard ${ }^{2}$	BCMS ${ }^{3}$
	$\varepsilon_{n}[\mu \mathrm{~m}]$	2.0	1.6
	Total RF voltage [MV]	8	
	$\varepsilon_{L}[\mathrm{eVs}]$	0.7	
	r.m.s. energy spread (Gaussian fit) [10-4]	3.7	
	r.m.s. bunch length (Gaussian fit) [cm]	10.	
	β^{*} [m] in IP1/2/5/8	6/10/6	
	Optics	HL-LHCV1	ction ${ }^{4}$
	Tunes (H/V)	62.28/60	
	Transition gamma (average B1/B2)	53.8	
	Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]	± 295	
	Half parallel separation at the IP for ATLAS (IP1) [mm]	± 2.0	
	Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]	± 170	
	Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]	± 1259	
	Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0	
	Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]	+295	
	Half parallel separation at the IP for CMS (IP5) [mm]	± 2.0	
	Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$	-170	
	Half crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]	1930	
	Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]	± 30 (V)	
	Half parallel separation at IP for LHCb (IP8) [mm]	± 3.5 (V)	
	Transverse damper damping time [turns]	50 [
	Chromaticity Q' (dQ/(dp/p))	+3 [
Elias M	Landau octupole Current (LOF) [A]	-20 [1	

	Parameters at the injection plateau after RF capture	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]	0.4	
	Particles per bunch, N [10 ${ }^{11}$]	2.3	
	Maximum number of bunches per beam	2748	2604
	Filling pattern	standard ${ }^{2}$	BCMS ${ }^{3}$
	$\varepsilon_{n}[\mu \mathrm{~m}]$	2.0	1.6
	Total RF voltage [MV]	8	
	$\varepsilon_{L}[\mathrm{eVs}]$	0.7	
	r.m.s. energy spread (Gaussian fit) [10-4]	3.7	
	r.m.s. bunch length (Gaussian fit) [cm]	10.	
	$\beta^{*}[\mathrm{~m}]$ in IP1/2/5/8	6/10/	
	Optics	HL-LHCV1.1	ection ${ }^{4}$
	Tunes (H/V)	62.28/60	
	Transition gamma (average B1/B2)	53.8	
	Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]	± 295	
	Half parallel separation at the IP for ATLAS (IP1) [mm]	± 2.0	
	Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]	± 170	
	Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]	± 1259	
	Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0	
	Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]	+295	
	Half parallel separation at the IP for CMS (IP5) [mm]	± 2.0	
	Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]	-170	
	Half crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]	1930	
	Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]	± 30 (V)	
	Half parallel separation at IP for LHCb (IP8) [mm]	± 3.5 (V)	
	Transverse damper damping time [turns]	50 [
	Chromaticity Q' (dQ/(dp/p))	+3	
Elias M	Landau octupole Current (LOF) [A]	-20 [1	

	Parameters at the injection plateau after RF capture	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]	0.4	
	Particles per bunch, N [10 ${ }^{11}$]	2.3	
	Maximum number of bunches per beam	2748	2604
	Filling pattern	standard ${ }^{2}$	BCMS ${ }^{3}$
	$\varepsilon_{n}[\mu \mathrm{~m}]$	2.0	1.6
	Total RF voltage [MV]	8	
	$\varepsilon_{L}[\mathrm{eVs}]$	0.7	
	r.m.s. energy spread (Gaussian fit) [10-4]	3.7	
	r.m.s. bunch length (Gaussian fit) [cm]	10.4	
	$\beta^{*}[\mathrm{~m}]$ in IP1/2/5/8	6/10/	
	Optics	HL-LHCV1.	ection ${ }^{4}$
	Tunes (H/V)	62.28/6	
	Transition gamma (average B1/B2)	53.8	
	Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]	± 295	
	Half parallel separation at the IP for ATLAS (IP1) [mm]	± 2.0	
	Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]	± 170	
	Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]	± 1259	
	Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0	
	Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]	+295	
	Half parallel separation at the IP for CMS (IP5) [mm]	± 2.0	
	Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]	-170	
	Half crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]	1930	
	Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]	± 30 (V)	
	Half parallel separation at IP for LHCb (IP8) [mm]	± 3.5 (V)	
	Transverse damper damping time [turns]	50 [
	Chromaticity Q' (dQ/(dp/p))	+3 [
Elias M	Landau octupole Current (LOF) [A]	-20 [1	

	Parameters at the injection plateau after RF capture	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]	0.4	
	Particles per bunch, N [10 ${ }^{11}$]	2.3	
	Maximum number of bunches per beam	2748	2604
	Filling pattern	standard ${ }^{2}$	BCMS ${ }^{3}$
	$\varepsilon_{n}[\mu \mathrm{~m}]$	2.0	1.6
	Total RF voltage [MV]	8	
	$\varepsilon_{L}[\mathrm{eVs}]$	0.7	
	r.m.s. energy spread (Gaussian fit) [10-4]	3.7	
	r.m.s. bunch length (Gaussian fit) [cm]	10.	
	$\beta^{*}[\mathrm{~m}]$ in IP1/2/5/8	6/10/	
	Optics	HL-LHCV1.1	jection ${ }^{4}$
	Tunes (H/V)	62.28/60	
	Transition gamma (average B1/B2)	53.8	
	Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]	± 295	
	Half parallel separation at the IP for ATLAS (IP1) [mm]	± 2.0	
	Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]	± 170	
	Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]	± 1259	
	Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0	
	Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]	+295	
	Half parallel separation at the IP for CMS (IP5) [mm]	± 2.0	
	Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]	-170	
	Half crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]	1930	
	Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]	± 30 (V)	
	Half parallel separation at IP for LHCb (IP8) [mm]	± 3.5 (V)	
	Transverse damper damping time [turns]	50 [
	Chromaticity Q' (dQ/(dp/p))	+3	
Elias M	Landau octupole Current (LOF) [A]	-20 [1	

	Parameters at the injection plateau after RF capture	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]	0.4	
	Particles per bunch, N [10 ${ }^{11}$]	2.3	
	Maximum number of bunches per beam	2748	2604
	Filling pattern	standard ${ }^{2}$	BCMS ${ }^{3}$
	$\varepsilon_{n}[\mu \mathrm{~m}]$	2.0	1.6
	Total RF voltage [MV]	8	
	$\varepsilon_{L}[\mathrm{eVs}]$	0.7	
	r.m.s. energy spread (Gaussian fit) [10-4]	3.7	
	r.m.s. bunch length (Gaussian fit) [cm]	10.	
	$\beta^{*}[\mathrm{~m}]$ in IP1/2/5/8	6/10/	
	Optics	HL-LHCV1.1	jection ${ }^{4}$
	Tunes (H/V)	62.28/	
	Transition gamma (average B1/B2)	53.8	
	Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]	± 295	
	Half parallel separation at the IP for ATLAS (IP1) [mm]	± 2.0	
	Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]	± 170	
	Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]	± 1259	
	Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0	
	Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]	+295	
	Half parallel separation at the IP for CMS (IP5) [mm]	± 2.0	
	Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]	-170	
	Half crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]	1930	
	Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]	± 30 (V)	
	Half parallel separation at IP for LHCb (IP8) [mm]	± 3.5 (V)	
	Transverse damper damping time [turns]	50 [
	Chromaticity Q' (dQ/(dp/p))	+3	
Elias M	Landau octupole Current (LOF) [A]	-20 [1	

	Parameters at the injection plateau after RF capture	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]	0.4	
	Particles per bunch, N [10 ${ }^{11}$]	2.3	
	Maximum number of bunches per beam	2748	2604
	Filling pattern	standard ${ }^{2}$	BCMS ${ }^{3}$
	$\varepsilon_{n}[\mu \mathrm{~m}]$	2.0	1.6
	Total RF voltage [MV]	8	
	$\varepsilon_{L}[\mathrm{eVs}]$	0.7	
	r.m.s. energy spread (Gaussian fit) [10-4]	3.7	
	r.m.s. bunch length (Gaussian fit) [cm]	10	
	$\beta^{*}[\mathrm{~m}]$ in IP1/2/5/8	6/10	
	Optics	HL-LHCV1.1	jection ${ }^{4}$
	Tunes (H/V)	62.28	
	Transition gamma (average B1/B2)	53.8	
	Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]	± 295	
	Half parallel separation at the IP for ATLAS (IP1) [mm]	± 2.	
	Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]	± 170	
	Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]	± 1259	
	Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0	
	Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]	+295	
	Half parallel separation at the IP for CMS (IP5) [mm]	± 2.0	
	Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]	-170	
	Half crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]	1930	
	Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]	± 30 (V)	
	Half parallel separation at IP for LHCb (IP8) [mm]	± 3.5 (V)	3]
	Transverse damper damping time [turns]	50	
	Chromaticity Q' (dQ/(dp/p))	+3	
Elias M	Landau octupole Current (LOF) [A]	-20 [

	Parameters at the injection plateau after RF capture	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]	0.4	
	Particles per bunch, N [10 ${ }^{11}$]	2.3	
	Maximum number of bunches per beam	2748	2604
	Filling pattern	standard ${ }^{2}$	BCMS ${ }^{3}$
	$\varepsilon_{n}[\mu \mathrm{~m}]$	2.0	1.6
	Total RF voltage [MV]	8	
	$\varepsilon_{L}[\mathrm{eVs}]$	0.	
	r.m.s. energy spread (Gaussian fit) [10-4]	3.7	
	r.m.s. bunch length (Gaussian fit) [cm]	10	
	$\beta^{*}[\mathrm{~m}]$ in IP1/2/5/8	6/10	
	Optics	HL-LHCV1. 1	jection ${ }^{4}$
	Tunes (H/V)	62.28/	
	Transition gamma (average B1/B2)	53.	
	Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]	± 295	
	Half parallel separation at the IP for ATLAS (IP1) [mm]	± 2.0	
	Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]	± 170	
	Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]	± 125	
	Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0	
	Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]	+295	
	Half parallel separation at the IP for CMS (IP5) [mm]	± 2.0	
	Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]	-170	
	Half crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]	1930	
	Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]	± 30 (V)	
	Half parallel separation at IP for LHCb (IP8) [mm]	± 3.5 (V)	
	Transverse damper damping time [turns]	50	
	Chromaticity Q' (dQ/(dp/p))	+3	
Elias M	Landau octupole Current (LOF) [A]	-20 [

	Parameters at the injection plateau after RF capture	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]	0.45	
	Particles per bunch, N [$10{ }^{11}$]	2.3	
	Maximum number of bunches per beam	2748	2604
	Filling pattern	standard ${ }^{2}$	BCMS ${ }^{3}$
	$\varepsilon_{n}[\mu \mathrm{~m}]$	2.0	1.6
	Total RF voltage [MV]	8	
	$\varepsilon_{L}[\mathrm{eVs}]$	0.7	
	r.m.s. energy spread (Gaussian fit) [10-4]	3.7	
	r.m.s. bunch length (Gaussian fit) [cm]	10.4	
	β^{*} [m] in IP1/2/5/8	6/10/6/10	
	Optics	HL-LHCV1.1 injection ${ }^{4}$	
	Tunes (H/V)	62.28/60.31	
	Transition gamma (average B1/B2)	53.83	
	Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]	± 295 (V)	
	Half parallel separation at the IP for ATLAS (IP1) [mm]	± 2.0 (H)	
	Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]	± 170 (V)	
	Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]	± 1259 (V)	
	Half parallel separation + +2	± 2.0 (H)	
	Half crossing Negative sign $=>$ Be	+295 (H)	
	Half para for 1-beam impedance in	± 2.0 (V)	
	Half exter instabilities. $\pm 6.5 \mathrm{~A}$ u	-170 (H)	
	Half crossinga	1930 (H)	
	Half parallel angle at ther1 2012	± 30 (V) [3]	
	Half parallel separation at IP for LHCb (IP8) [mm]	± 3.5 (V) [3]	
	Transverse damper damping time [turns]		50 [1]
	Chromaticity Q' (dQ/(dp/p))		+3 [1]
Elias M	Landau octupole Current (LOF) [A]	-20 [1,4]	

Parameters during ramp	HL-LHC (standard)	HL-LHC (BCMS)
Beam total energy [TeV]	0.45-7	
Particles per bunch, N [10 ${ }^{11}$]	2.30	
Maximum number of bunches per beam	2748	2604
Filling pattern	standard ${ }^{2}$	BCMS ${ }^{3}$
$\varepsilon_{n}[\mu \mathrm{~m}]$	2.0	1.6
Total RF voltage [MV]	$8(0.45 \mathrm{TeV})$ to $16(7 \mathrm{TeV})$ linearly with time	
$\varepsilon_{L}[\mathrm{eVs}]$	$0.7(0.45 \mathrm{TeV})$ to 2.5 (7 TeV)	
r.m.s. energy spread (Gaussian fit) [10-4]	$3.7(0.45 \mathrm{TeV})$ to $1.08(7 \mathrm{TeV})$	
r.m.s. bunch length (Gaussian fit) [cm]	$10.4(0.45 \mathrm{TeV})$ to $8.1(7 \mathrm{TeV})$	
$\beta^{*}[\mathrm{~m}]$ in IP1/2/5/8	6/10/6/10	
Optics	HL-LHCV1.1 injection ${ }^{6}(0.45 \mathrm{TeV})$ - HL-LHCV1.1 end of ramp ${ }^{7}(7 \mathrm{TeV})$	
Tunes (H/V)	62.28/60.31 to 62.31/60.32	
Transition gamma (average B1/B2)	53.83 to 53.86	
Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]	± 295 (V)	
Half parallel separation at the IP for ATLAS (IP1) [mm]	± 2 (H) [5]	
Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]	± 170 (V)	
Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]	\pm 1259 (0.45 TeV$)$ to ± 240 (7 TeV) (V) scaling with p	
Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0 (H) [5]	
Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]	+295 (H)	
Half parallel separation at the IP for CMS (IP5) [mm]	± 2.0 (V)	
Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$	-250(H)	
Half crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$	1930 (0.45 TeV) to -115 (7 TeV) (H) scaling with p	
Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]	$\pm 30(0.45 \mathrm{TeV})$ to $0(7 \mathrm{TeV})(\mathrm{V})$ [3]	
Half parallel separation at IP for LHCb (IP8) [mm]	± 3.5 to ± 2.0 (V) [3]	
Transverse damper damping time [turns]	50 [1]	
Chromaticity Q' (dQ/(dp/p))	+3 [1]	
Landau octupole Current (LOF) [A]	-20 (0.45 TeV) to -570 ${ }^{8}(7 \mathrm{TeV})$ scaling with $\sim \mathrm{p}^{2}[1,4]$	

Parameters during ramp	HL-LHC (standard)	HL-LHC (BCMS)
Beam total energy [TeV]	0.45-7	
Particles per bunch, N [10 ${ }^{11}$]	2.30	
Maximum number of bunches per beam	2748	2604
Filling pattern	standard ${ }^{2}$	BCMS ${ }^{3}$
$\varepsilon_{n}[\mu \mathrm{~m}]$	2.0	1.6
Total RF voltage [MV]	$8(0.45 \mathrm{TeV})$ to $16(7 \mathrm{TeV})$ linearly with time	
$\varepsilon_{L}[\mathrm{eVs}]$	$0.7(0.45 \mathrm{TeV})$ to $2.5(7 \mathrm{TeV})$	
r.m.s. energy spread (Gaussian fit) [10-4]	$3.7(0.45 \mathrm{TeV})$ to $1.08(7 \mathrm{TeV})$	
r.m.s. bunch length (Gaussian fit) [cm]	$10.4(0.45 \mathrm{TeV})$ to $8.1(7 \mathrm{TeV})$	
$\beta^{*}[\mathrm{~m}]$ in IP1/2/5/8	6/10/6/10	
Optics	$\begin{gathered} \text { HL-LHCV1.1 injection }^{6}(0.45 \mathrm{TeV})-\text { HL-LHCV1.1 end of } \\ \text { ramp }^{7}(7 \mathrm{TeV}) \end{gathered}$	
Tunes (H/V)	62.28/60.31 to 62.31/60.32	
Transition gamma (average B1/B2)	53.83 to 53.86	
Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]	± 295 (V)	
Half parallel separation at the IP for ATLAS (IP1) [mm]	± 2 (H) [5]	
Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]	± 170 (V)	
Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]	\pm 1259 (0.45 TeV$)$ to ± 240 (7 TeV) (V) scaling with p	
Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0 (H) [5]	
Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]	+295 (H)	
Half parallel separation at the IP for CMS (IP5) [mm]	± 2.0 (V)	
Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$	-250(H)	
Half crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$	1930 (0.45 TeV) to -115 (7 TeV) (H) scaling with p	
Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]	$\pm 30(0.45 \mathrm{TeV})$ to $0(7 \mathrm{TeV})(\mathrm{V})$ [3]	
Half parallel separation at IP for LHCb (IP8) [mm]	± 3.5 to ± 2.0 (V) [3]	
Transverse damper damping time [turns]	50 [1]	
Chromaticity Q' (dQ/(dp/p))	+3 [1]	
Landau octupole Current (LOF) [A]	-20 (0.45 TeV) to -570 ${ }^{8}(7 \mathrm{TeV})$ scaling with $\sim \mathrm{p}^{2}[1,4]$	

Parameters during ramp	HL-LHC (standard)	HL-LHC (BCMS)
Beam total energy [TeV]	0.45-7	
Particles per bunch, N [10 ${ }^{11}$]	2.30	
Maximum number of bunches per beam	2748	2604
Filling pattern	standard ${ }^{2}$	BCMS ${ }^{3}$
$\varepsilon_{n}[\mu \mathrm{~m}]$	2.0	1.6
Total RF voltage [MV]	$8(0.45 \mathrm{TeV})$ to $16(7 \mathrm{TeV})$ linearly with time	
$\varepsilon_{L}[\mathrm{eVs}]$	$0.7(0.45 \mathrm{TeV})$ to $2.5(7 \mathrm{TeV})$	
r.m.s. energy spread (Gaussian fit) [10-4]	$3.7(0.45 \mathrm{TeV})$ to $1.08(7 \mathrm{TeV})$	
r.m.s. bunch length (Gaussian fit) [cm]	$10.4(0.45 \mathrm{TeV})$ to $8.1(7 \mathrm{TeV})$	
$\beta^{*}[\mathrm{~m}]$ in IP1/2/5/8	6/10/6/10	
Optics	HL-LHCV1.1 injection ${ }^{6}(0.45 \mathrm{TeV})$ - HL-LHCV1.1 end of ramp ${ }^{7}(7 \mathrm{TeV})$	
Tunes (H/V)	62.28/60.3	/60.32
Transition gamma (average B1/B2)	53.83 to 53.86	
Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]	± 295 (V)	
Half parallel separation at the IP for ATLAS (IP1) [mm]	± 2 (H) [5]	
Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]	± 170 (V)	
Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]	\pm 1259 (0.45 TeV$)$ to ± 240 (7 TeV) (V) scaling with p	
Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0 (H) [5]	
Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]	+295 (H)	
Half parallel separation at the IP for CMS (IP5) [mm]	± 2.0 (V)	
Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$	-250(H)	
Half crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$	1930 (0.45 TeV) to -115 (7 TeV) (H) scaling with p	
Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]	$\pm 30(0.45 \mathrm{TeV})$ to $0(7 \mathrm{TeV})(\mathrm{V})$ [3]	
Half parallel separation at IP for LHCb (IP8) [mm]	± 3.5 to ± 2.0 (V) [3]	
Transverse damper damping time [turns]	50 [1]	
Chromaticity Q' (dQ/(dp/p))	+3 [1]	
Landau octupole Current (LOF) [A]	-20 (0.45 TeV) to -570 ${ }^{8}(7 \mathrm{TeV})$ scaling with $\sim \mathrm{p}^{2}[1,4]$	

Parameters during ramp	HL-LHC (standard)	HL-LHC (BCMS)
Beam total energy [TeV]	0.45-7	
Particles per bunch, N [10 ${ }^{11}$]	2.30	
Maximum number of bunches per beam	2748	2604
Filling pattern	standard ${ }^{2}$	BCMS ${ }^{3}$
$\varepsilon_{n}[\mu \mathrm{~m}]$	2.0	1.6
Total RF voltage [MV]	$8(0.45 \mathrm{TeV})$ to $16(7 \mathrm{TeV})$ linearly with time	
$\varepsilon_{L}[\mathrm{eVs}]$	$0.7(0.45 \mathrm{TeV})$ to $2.5(7 \mathrm{TeV})$	
r.m.s. energy spread (Gaussian fit) [10-4]	3.7 (0.45 TeV) to $1.08(7 \mathrm{TeV})$	
r.m.s. bunch length (Gaussian fit) [cm]	$10.4(0.45 \mathrm{TeV})$ to $8.1(7 \mathrm{TeV})$	
$\beta^{*}[\mathrm{~m}]$ in IP1/2/5/8	6/10/6/10	
Optics	$\begin{gathered} \text { HL-LHCV1.1 injection }{ }^{6}(0.45 \mathrm{TeV}) \text { - HL-LHCV1.1 end of } \\ \text { ramp }^{7}(7 \mathrm{TeV}) \end{gathered}$	
Tunes (H/V)	62.28/60.31 to 62.31/60.32	
Transition gamma (average B1/B2)	53.83 to 53.86	
Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]	± 295 (V)	
Half parallel separation at the IP for ATLAS (IP1) [mm]	± 2 (H) [5]	
Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]	± 170 (V)	
Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]	± 1259 (0.45 TeV) to ± 240 (7 TeV) (V) scaling with p	
Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0 (H) [5]	
Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]	+295 (H)	
Half parallel separation at the IP for CMS (IP5) [mm]	± 2.0 (V)	
Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]	-250(H)	
Half crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$	1930 (0.45 TeV) to -115 (7 TeV) (H) scaling with p	
Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]	± 30 (0.45 TeV) to 0 (7 TeV) (V) [3]	
Half parallel separation at IP for LHCb (IP8) [mm]	± 3.5 to ± 2.0 (V) [3]	
Transverse damper damping time [turns]	50 [1]	
Chromaticity Q' (dQ/(dp/p))	+3 [1]	
Landau octupole Current (LOF) [A]	$-20(0.45 \mathrm{TeV})$ to $-570^{8}(7 \mathrm{TeV})$ scaling with $\sim \mathrm{p}^{2}[1,4]$	

NOMINAL

Parameters during pre-squeeze (nominal)	HL-LHC (standard)	HL-LHC (BCMS)
Beam total energy [TeV]	7	
Particles per bunch, N [10 ${ }^{11}$]	2.30	
Maximum number of bunches per beam	2748	2604
Filling pattern	standard 2	BCMS ${ }^{3}$
$\varepsilon_{n}[\mu \mathrm{~m}]$	2.0	1.6
Total RF voltage [MV]	16	
$\varepsilon_{L}[\mathrm{eVs}]$	2.5	
r.m.s. energy spread (Gaussian fit) [10-4]	1.08	
r.m.s. bunch length (Gaussian fit) [cm]	8.1	
β^{*} [m] in IP1/2/5/8	6/10/6/10 to 0.7/10/0.7/3	
Optics	HL-LHCV1.1 end of ramp ${ }^{9}$ to HL-LHCV1.1 pre-squeeze (0.7 m)	
Tunes (H/V)	62.31/60.32	
Transition gamma (average B1/B2)	53.86 to 53.78	
Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]	± 295 (V)	
Half parallel separation at the IP for ATLAS (IP1) [mm]	± 2.0 (H)	
Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]	± 170 (V)	
Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]	± 240 (V)	
Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0 (H)	
Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]	+295 (H)	
Half parallel separation at the IP for CMS (IP5) [mm]	± 2.0 (V)	
Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$	-250(H)	
Half crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$	-115(H)	
Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]	0 (V) [3]	
Half parallel separation at IP for LHCb (IP8) [mm]	± 2 (V) [3]	
Transverse damper damping time [turns]	50 [1]	
Chromaticity Q' (dQ/(dp/p))	+3 [6,8]	
Landau octupole Current (LOF) [A]	-570 [1,4,8]	

Parameters during pre-squeeze (nominal)	HL-LHC (standard)	HL-LHC (BCMS)
Beam total energy [TeV]	7	
Particles per bunch, N [10 ${ }^{11}$]	2.30	
Maximum number of bunches per beam	2748	2604
Filling pattern	standard 2	BCMS ${ }^{3}$
$\varepsilon_{n}[\mu \mathrm{~m}]$	2.0	1.6
Total RF voltage [MV]	16	
$\varepsilon_{L}[\mathrm{eVs}]$	2.5	
r.m.s. energy spread (Gaussian fit) [10-4]	1.08	
r.m.s. bunch length (Gaussian fit) [cm]	8.1	
β^{*} [m] in IP1/2/5/8	6/10/6/10 to 0.7/10/0.7/3	
Optics	HL-LHCV1.1 end of ramp ${ }^{9}$ to HL-LHCV1.1 pre-squeeze (0.7 m)	
Tunes (H/V)	62.31/60.32	
Transition gamma (average B1/B2)	53.86 to 53.78	
Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]	± 295 (V)	
Half parallel separation at the IP for ATLAS (IP1) [mm]	± 2.0 (H)	
Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]	± 170 (V)	
Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]	± 240 (V)	
Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0 (H)	
Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]	+295 (H)	
Half parallel separation at the IP for CMS (IP5) [mm]	± 2.0 (V)	
Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$	-250(H)	
Half crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$	-115(H)	
Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]	0 (V) [3]	
Half parallel separation at IP for LHCb (IP8) [mm]	± 2 (V) [3]	
Transverse damper damping time [turns]	50 [1]	
Chromaticity Q' (dQ/(dp/p))	+3 [6,8]	
Landau octupole Current (LOF) [A]	-570 [1,4,8]	

Parameters during pre-squeeze (nominal)	HL-LHC (standard)	HL-LHC (BCMS)
Beam total energy [TeV]	7	
Particles per bunch, N [10 ${ }^{11}$]	2.30	
Maximum number of bunches per beam	2748	2604
Filling pattern	standard 2	BCMS ${ }^{3}$
$\varepsilon_{n}[\mu \mathrm{~m}]$	2.0	1.6
Total RF voltage [MV]	16	
$\varepsilon_{L}[\mathrm{eVs}]$	OSIty 2.5	
r.m.s. energy spread (Gaussian fit) [10-4]	1.08	
r.m.s. bunch length (Gaussian fit) [cm]	$\xrightarrow[\sim]{\sim}$	
β^{*} [m] in IP1/2/5/8	6/10/6	/0.7/3
Optics	HL-LHCV1.1 end of ramp ${ }^{9}$ to HL-LHCV1.1 pre-squeeze (0.7 m)	
Tunes (H/V)	62.31/60.32	
Transition gamma (average B1/B2)	53.86 to 53.78	
Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]	± 295 (V)	
Half parallel separation at the IP for ATLAS (IP1) [mm]	± 2.0 (H)	
Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]	± 170 (V)	
Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]	± 240 (V)	
Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0 (H)	
Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]	+295 (H)	
Half parallel separation at the IP for CMS (IP5) [mm]	± 2.0 (V)	
Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$	-250(H)	
Half crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$	-115(H)	
Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]	0 (V) [3]	
Half parallel separation at IP for LHCb (IP8) [mm]	± 2 (V) [3]	
Transverse damper damping time [turns]	50 [1]	
Chromaticity Q' (dQ/(dp/p))	+3 [6,8]	
Landau octupole Current (LOF) [A]	-570 [1,4,8]	

Parameters during pre-squeeze (nominal)	HL-LHC (standard)	HL-LHC (BCMS)
Beam total energy [TeV]	7	
Particles per bunch, N [10 ${ }^{11}$]	2.30	
Maximum number of bunches per beam	2748	2604
Filling pattern	standard 2	BCMS ${ }^{3}$
$\varepsilon_{n}[\mu \mathrm{~m}]$	2.0	1.6
Total RF voltage [MV]	16	
$\varepsilon_{L}[\mathrm{eVs}]$	2.5	
r.m.s. energy spread (Gaussian fit) [10-4]	1.08	
r.m.s. bunch length (Gaussian fit) [cm]	8.1	
β^{*} [m] in IP1/2/5/8	6/10/6/10 to 0.7/10/0.7/3	
Optics	HL-LHCV1.1 end of ramp ${ }^{9}$ to HL-LHCV1.1 pre-squeeze (0.7 m)	
Tunes (H/V)	62.31/60.32	
Transition gamma (average B1/B2)	53.86 to 53.78	
Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]	± 295 (V)	
Half parallel separation at the IP for ATLAS (IP1) [mm]	± 2.0 (H)	
Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]	± 170 (V)	
Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]	± 240 (V)	
Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0 (H)	
Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]	+295 (H)	
Half parallel separation at the IP for CMS (IP5) [mm]	± 2.0 (V)	
Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$	-250(H)	
Half crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$	-115(H)	
Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]	0 (V) [3]	
Half parallel separation at IP for LHCb (IP8) [mm]	± 2 (V) [3]	
Transverse damper damping time [turns]	50 [1]	
Chromaticity Q' (dQ/(dp/p))	+3 [6,8]	
Landau octupole Current (LOF) [A]	-570 [1,4,8]	

Parameters during pre-squeeze (nominal)	HL-LHC (standard)	HL-LHC (BCMS)
Beam total energy [TeV]	7	
Particles per bunch, N [10^{11}]	2.30	
Maximum number of bunches per beam	2748	2604
Filling pattern	standard 2	BCMS 3
$\varepsilon_{n}[\mu \mathrm{~m}]$	2.0	1.6
Total RF voltage [MV]	16	
$\varepsilon_{L}[\mathrm{eVs}]$	2.5	
r.m.s. energy spread (Gaussian fit) [10-4]	1.08	
r.m.s. bunch length (Gaussian fit) [cm]	8.1	
β^{*} [m] in IP1/2/5/8	6/10/6/10 to 0.7/10/0.7/3	
Optics	HL-LHCV1.1 end of ramp ${ }^{9}$ to HL-LHCV1.1 pre-squeeze (0.7 m)	
Tunes (H/V) Separation preserved	62.31/60.32	
Transitiongar $\quad \Rightarrow$ Better for stability	53.86 to 53.78	
Half crossing	± 295 (V)	
Half parallel se diagram with octupoles		
Half external cros (LOF <0) and BBLR	± 170 (V)	
Half crossing angle at the>.	± 240 (V)	
Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0 (H)	
Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]	+295 (H)	
Half parallel separation at the IP for CMS (IP5) [mm]	± 2.0 (V)	
Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$	-250(H)	
Half crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$	-115(H)	
Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]	0 (V) [3]	
Half parallel separation at IP for LHCb (IP8) [mm]	± 2 (V) [3]	
Transverse damper damping time [turns]	50 [1]	
Chromaticity Q' (dQ/(dp/p))	+3 [6,8]	
Landau octupole Current (LOF) [A]	-570 [1,4,8]	

Parameters during pre-squeeze (nominal)	HL-LHC (standard)	HL-LHC (BCMS)
Beam total energy [TeV]	7	
Particles per bunch, N [10 ${ }^{11}$]	2.30	
Maximum number of bunches per beam	2748	2604
Filling pattern	standard 2	BCMS ${ }^{3}$
$\varepsilon_{n}[\mu \mathrm{~m}]$	2.0	1.6
Total RF voltage [MV]	16	
$\varepsilon_{L}[\mathrm{eVs}]$	2.5	
r.m.s. energy spread (Gaussian fit) [10-4]	1.08	
r.m.s. bunch length (Gaussian fit) [cm]	8.1	
β^{*} [m] in IP1/2/5/8	6/10/6/10 to 0.7/10/0.7/3	
Optics	HL-LHCV1.1 end of ramp ${ }^{9}$ to HL-LHCV1.1 pre-squeeze (0.7 m)	
Tunes (H/V)	62.31/60.32	
Transition gamma (average B1/B2)	53.86 to 53.78	
Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]	± 295 (V)	
Half parallel separation at the IP for ATLAS (IP1) [mm]	± 2.0 (H)	
Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]	± 170 (V)	
Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]	± 240 (V)	
Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0 (H)	
Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]	+295 (H)	
Half parallel separation at the IP for CMS (IP5) [mm]	± 2.0 (V)	
Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$	-250(H)	
Half crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$	-115(H)	
Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]	0 (V) [3]	
Half parallel separation at IP for LHCb (IP8) [mm]	± 2 (V) [3]	
Transverse damper damping time [turns]	50 [1]	
Chromaticity Q' (dQ/(dp/p))	+3 [6,8]	
Landau octupole Current (LOF) [A]	-570 [1,4,8]	

Elias Métral, Join	Parameters for the collision process (nominal)	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]		
	Particles per bunch, N [$\left.10^{11}\right]$		
	Maximum number of bunches per beam	2748	2604
	Number of colliding pairs in IP1/2/5/8 (at the end of the collision process) ${ }^{10}$	2736/2452/2736/2524	2592/2288/2592/2396
	Filling pattern	standard 2	BCMS ${ }^{3}$
	Levelled pile-up in IP1/5/8	140	/4.5
	Levelled luminosity [$10^{34} \mathrm{~cm}^{-2} \mathrm{~S}^{-1}$] in IP1/2/5/8 ${ }^{11}$	5.1/0.001/5.1/0.17	4.8/0.001/4.8/0.16
	$\varepsilon_{n}[\mu \mathrm{~m}]$		
	Total RF voltage [MV]		
	$\varepsilon_{L}[\mathrm{eVs}]$		
	r.m.s. energy spread (Gaussian fit) [10-4]		
	r.m.s. bunch length (Gaussian fit)[cm]		
	$\beta^{*}[\mathrm{~m}]$ in IP1/2/5/8	0.7/	7/3
	Optics	HL-LHCV1.1	ueeze (0.7 m)
	Tunes (H/V)		. 32
	Transition gamma (average B1/B2)		
	Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]		
	Half parallel separation at the IP for ATLAS (IP1) [mm]		H)
	Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]		
	Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]		
	Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0 to	$8^{12}(\mathrm{H})$
	Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]		
	Half parallel separation at the IP for CMS (IP5) [mm]		(V)
	Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$		
	Half crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]		
	Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]		
	Half parallel separation at IP for LHCb (IP8) [mm]	± 2 to \pm	$3^{13}(\mathrm{~V})$
	Delay in the start of the collision process in IP1/2/5/8	Synchronised IP1 and IP5 then	head-on collision first, and d IP8
	Time to go in collision in IP1/5 (from 2σ full separation to 0σ) [s]. No time constraint for IP2/8		
	Transverse damper damping time [turns]		
	Chromaticity Q' (dQ/(dp/p))		
	Landau octupole Current (LOF) [A]		

Elias Métral, Join	Parameters for the collision process (nominal)	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]		
	Particles per bunch, $N\left[10^{11}\right]$		
	Maximum number of bunches per beam	2748	2604
	Number of colliding pairs in IP1/2/5/8 (at the end of the collision process) ${ }^{10}$	2736/2452/2736/2524	2592/2288/2592/2396
	Filling pattern	standard 2	BCMS ${ }^{3}$
	Levelled pile-up in IP1/5/8	140	/4.5
	Levelled luminosity [$10^{34} \mathrm{~cm}^{-2} \mathrm{~S}^{-1}$] in IP1/2/5/8 ${ }^{11}$	5.1/0.001/5.1/0.17	4.8/0.001/4.8/0.16
	$\varepsilon_{n}[\mu \mathrm{~m}]$		
	Total RF voltage [MV]		
	$\varepsilon_{L}[\mathrm{eVs}]$		
	r.m.s. energy spread (Gaussian fit) [10-4]		
	r.m.s. bunch length (Gaussian fit)[cm]		
	$\beta^{*}[\mathrm{~m}]$ in IP1/2/5/8	0.7/	7/3
	Optics	HL-LHCV1.1	ueeze (0.7 m)
	Tunes (H/V)		. 32
	Transition gamma (average B1/B2)		
	Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]		
	Half parallel separation at the IP for ATLAS (IP1) [mm]		H)
	Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]		
	Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]		
	Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0 to	$8^{12}(\mathrm{H})$
	Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]		
	Half parallel separation at the IP for CMS (IP5) [mm]		(V)
	Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$		
	Half crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]		
	Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]		
	Half parallel separation at IP for LHCb (IP8) [mm]	± 2 to \pm	$3^{13}(\mathrm{~V})$
	Delay in the start of the collision process in IP1/2/5/8	Synchronised IP1 and IP5 then	head-on collision first, and d IP8
	Time to go in collision in IP1/5 (from 2σ full separation to 0σ) [s]. No time constraint for IP2/8		
	Transverse damper damping time [turns]		
	Chromaticity Q' (dQ/(dp/p))		
	Landau octupole Current (LOF) [A]		

Elias Métral, Join	Parameters for the collision process (nominal)	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]		
	Particles per bunch, $N\left[10^{11}\right]$		
	Maximum number of bunches per beam	2748	2604
	Number of colliding pairs in IP1/2/5/8 (at the end of the collision process) ${ }^{10}$	2736/2452/2736/2524	2592/2288/2592/2396
	Filling pattern	standard 2	BCMS ${ }^{3}$
	Levelled pile-up in IP1/5/8	140	/4.5
	Levelled luminosity [$10^{34} \mathrm{~cm}^{-2} \mathrm{~S}^{-1}$] in IP1/2/5/8 ${ }^{11}$	5.1/0.001/5.1/0.17	4.8/0.001/4.8/0.16
	$\varepsilon_{n}[\mu \mathrm{~m}]$		
	Total RF voltage [MV]		
	$\varepsilon_{L}[\mathrm{eVs}]$		
	r.m.s. energy spread (Gaussian fit) [10-4]		
	r.m.s. bunch length (Gaussian fit)[cm]		
	$\beta^{*}[\mathrm{~m}]$ in IP1/2/5/8	0.7/	7/3
	Optics	HL-LHCV1.1	ueeze (0.7 m)
	Tunes (H/V)		. 32
	Transition gamma (average B1/B2)		
	Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]		
	Half parallel separation at the IP for ATLAS (IP1) [mm]		H)
	Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]		
	Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]		
	Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0 to	$8^{12}(\mathrm{H})$
	Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]		
	Half parallel separation at the IP for CMS (IP5) [mm]		(V)
	Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$		
	Half crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]		
	Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]		
	Half parallel separation at IP for LHCb (IP8) [mm]	± 2 to \pm	$3^{13}(\mathrm{~V})$
	Delay in the start of the collision process in IP1/2/5/8	Synchronised IP1 and IP5 then	head-on collision first, and d IP8
	Time to go in collision in IP1/5 (from 2σ full separation to 0σ) [s]. No time constraint for IP2/8		
	Transverse damper damping time [turns]		
	Chromaticity Q' (dQ/(dp/p))		
	Landau octupole Current (LOF) [A]		

Elias Métral, Join	Parameters for the collision process (nominal)	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]	7	
	Particles per bunch, $N\left[10^{11}\right]$	2.2	
	Maximum number of bunches per beam	2748	2604
	Number of colliding pairs in IP1/2/5/8 (at the end of the collision process) ${ }^{10}$	2736/2452/2736/2524	2592/2288/2592/2396
	Filling pattern	standard 2	BCMS ${ }^{3}$
	Levelled pile-up in IP1/5/8	140/140/4.5	
	Levelled luminosity [$10^{34} \mathrm{~cm}^{-2} \mathrm{~S}^{-1}$] in IP1/2/5/8 ${ }^{11}$	5.1/0.001/5.1/0.17	4.8/0.001/4.8/0.16
	$\varepsilon_{n}[\mu \mathrm{~m}]$	2.5	
	Total RF voltage [MV]	16	
	$\varepsilon_{L}[\mathrm{eVs}]$	2.5	
	r.m.s. energy spread (Gaussian fit) [10-4]	1.08	
	r.m.s. bunch length (Gaussian fit)[cm]	8.1	
	$\beta^{*}[\mathrm{~m}]$ in IP1/2/5/8	0.7/10/0.7/3	
	Optics	HL-LHCV1.1 pre-squeeze (0.7 m)	
	Tunes (H/V)	62.31/60.32	
	Transition gamma (average B1/B2)	53.78	
	Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]	± 295 (V)	
	Half parallel separation at the IP for ATLAS (IP1) [mm]	± 2.0 to 0 (H)	
	Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]	± 170 (V)	
	Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]	± 240 (V)	
	Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0 to $\pm 0.138^{12}(\mathrm{H})$	
	Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]	+295 (H)	
	Half parallel separation at the IP for CMS (IP5) [mm]	± 2.0 to 0 (V)	
	Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$	-250(H)	
	Half crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]	-115 (H)	
	Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]	0 (V) [3]	
	Half parallel separation at IP for LHCb (IP8) [mm]	± 2 to $\pm 0.043^{13}(\mathrm{~V})$	
	Delay in the start of the collision process in IP1/2/5/8	Synchronised IP1 and IP5 to full head-on collision first, and then IP2 and IP8	
	Time to go in collision in IP1/5 (from 2σ full separation to 0σ) [s]. No time constraint for IP2/8	<1	
	Transverse damper damping time [turns]	50 [1]	
	Chromaticity Q' (dQ/(dp/p))	+3 [6,8]	
	Landau octupole Current (LOF) [A]	-570 [1,4,8]	

Elias Métral, Join	Parameters for the collision process (nominal)	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]		
	Particles per bunch, $N\left[10^{11}\right]$		
	Maximum number of bunches per beam	2748	2604
	Number of colliding pairs in IP1/2/5/8 (at the end of the collision process) ${ }^{10}$	2736/2452/2736/2524	2592/2288/2592/2396
	Filling pattern	standard 2	BCMS ${ }^{3}$
	Levelled pile-up in IP1/5/8	140	/4.5
	Levelled luminosity [$10^{34} \mathrm{~cm}^{-2} \mathrm{~S}^{-1}$] in IP1/2/5/8 ${ }^{11}$	5.1/0.001/5.1/0.17	4.8/0.001/4.8/0.16
	$\varepsilon_{n}[\mu \mathrm{~m}]$		
	Total RF voltage [MV]		
	$\varepsilon_{L}[\mathrm{eVs}]$		
	r.m.s. energy spread (Gaussian fit) [10-4]		
	r.m.s. bunch length (Gaussian fit)[cm]		
	β^{*} [m] in IP1/2/5/8	0.7/	7/3
	Optics	HL-LHCV1.1	ueeze (0.7 m)
	Tunes (H/V)		. 32
	Transition gamma (average B1/B2)		
	Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]		
	Half parallel separation at the IP for ATLAS (IP1) [mm]		H)
	Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]		
	Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]		
	Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0 to	$8^{12}(\mathrm{H})$
	Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]		
	Half parallel separation at the IP for CMS (IP5) [mm]		(V)
	Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$		
	Half crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]		
	Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]		
	Half parallel separation at IP for LHCb (IP8) [mm]	± 2 to \pm	3^{13} (V)
	Delay in the start of the collision process in IP1/2/5/8	Synchronised IP1 and IP5 then	head-on collision first, and d IP8
	Time to go in collision in IP1/5 (from 2σ full separation to 0σ) [s]. No time constraint for IP2/8		
	Transverse damper damping time [turns]		
	Chromaticity Q' (dQ/(dp/p))		
	Landau octupole Current (LOF) [A]		

Elias Métral, Join	Parameters for the collision process (nominal)	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]	7	
	Particles per bunch, $N\left[10^{11}\right]$	2.2	
	Maximum number of bunches per beam	2748	2604
	Number of colliding pairs in IP1/2/5/8 (at the end of the collision process) ${ }^{10}$	2736/2452/2736/2524	2592/2288/2592/2396
	Filling pattern	standard 2	BCMS ${ }^{3}$
	Levelled pile-up in IP1/5/8	140/140/4.5	
	Levelled luminosity [$10^{34} \mathrm{~cm}^{-2} \mathrm{~S}^{-1}$] in IP1/2/5/8 ${ }^{11}$	5.1/0.001/5.1/0.17	4.8/0.001/4.8/0.16
	$\varepsilon_{n}[\mu \mathrm{~m}]$	2.5	
	Total RF voltage [MV]	16	
	$\varepsilon_{L}[\mathrm{eVs}]$	2.5	
	r.m.s. energy spread (Gaussian fit) [10-4]	1.08	
	r.m.s. bunch length (Gaussian fit)[cm]	8.1	
	β^{*} [m] in IP1/2/5/8	0.7/10/0.7/3	
	Optics	HL-LHCV1.1 pre-squeeze (0.7 m)	
	Tunes (H/V)	62.31/60.32	
	Transition gamma (average B1/B2)	53.78	
	Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]	± 295 (V)	
	Half parallel separation at the IP for ATLAS (IP1) [mm]	± 2.0 to 0 (H)	
	Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]	± 170 (V)	
	Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]	± 240 (V)	
	Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0 to $\pm 0.138^{12}(\mathrm{H})$	
	Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]	+295 (H)	
	Half parallel separation at the IP for CMS (IP5) [mm]	± 2.0 to 0 (V)	
	Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$	-250(H)	
	Half crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]	-115 (H)	
	Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]	0 (V) [3]	
	Half parallel separation at IP for LHCb (IP8) [mm]	± 2 to $\pm 0.043^{13}(\mathrm{~V})$	
	Delay in the start of the collision process in IP1/2/5/8	Synchronised IP1 and IP5 to full head-on collision first, and then IP2 and IP8	
	Time to go in collision in IP1/5 (from 2σ full separation to 0σ) [s]. No time constraint for IP2/8	<1	
	Transverse damper damping time [turns]	50 [1]	
	Chromaticity Q' (dQ/(dp/p))	+3 $[6,8]$	
	Landau octupole Current (LOF) [A]	-570 [1,4,8]	

Elias Métral, Join	Parameters for the collision process (nominal)	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]	7	
	Particles per bunch, $N\left[10^{11}\right]$	2.2	
	Maximum number of bunches per beam	2748	2604
	Number of colliding pairs in IP1/2/5/8 (at the end of the collision process) ${ }^{10}$	2736/2452/2736/2524	2592/2288/2592/2396
	Filling pattern	standard 2	BCMS ${ }^{3}$
	Levelled pile-up in IP1/5/8	140/140/4.5	
	Levelled luminosity [$10^{34} \mathrm{~cm}^{-2} \mathrm{~S}^{-1}$] in IP1/2/5/8 ${ }^{11}$	5.1/0.001/5.1/0.17	4.8/0.001/4.8/0.16
	$\varepsilon_{n}[\mu \mathrm{~m}]$	2.5	
	Total RF voltage [MV]	16	
	$\varepsilon_{L}[\mathrm{eVs}]$	2.5	
	r.m.s. energy spread (Gaussian fit) [10-4]	1.08	
	r.m.s. bunch length (Gaussian fit)[cm]	8.1	
	β^{*} [m] in IP1/2/5/8	0.7/10/0.7/3	
	Optics	HL-LHCV1.1 pre-squeeze (0.7 m)	
	Tunes (H/V)	62.31/60.32	
	Transition gamma (average B1/B2)	53.78	
	Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]	± 295 (V)	
	Half parallel separation at the IP for ATLAS (IP1) [mm]	± 2.0 to 0 (H)	
	Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]	± 170 (V)	
	Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]	± 240 (V)	
	Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0 to $\pm 0.138^{12}(\mathrm{H})$	
	Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]	+295 (H)	
	Half parallel separation at the IP for CMS (IP5) [mm]	± 2.0 to 0 (V)	
	Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$	-250(H)	
	Half crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]	-115 (H)	
	Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]	0 (V) [3]	
	Half parallel separation at IP for LHCb (IP8) [mm]	± 2 to $\pm 0.043^{13}(\mathrm{~V})$	
	Delay in the start of the collision process in IP1/2/5/8	Synchronised IP1 and IP5 to full head-on collision first, and then IP2 and IP8	
	Time to go in collision in IP1/5 (from 2σ full separation to 0σ) [s]. No time constraint for IP2/8	<1	
	Transverse damper damping time [turns]	50 [1]	
	Chromaticity Q' (dQ/(dp/p))	+3 [6,8]	
	Landau octupole Current (LOF) [A]	-570 [1,4,8]	

Elias Métral, Join	Parameters for the collision process (nominal)	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]	7	
	Particles per bunch, $N\left[10^{11}\right]$	2.2	
	Maximum number of bunches per beam Number of colliding pairs in IP1/2/5/8 (at the end of the collision process ${ }^{10}$	2748	2604
		2736/2452/2736/2524	2592/2288/2592/2396
	Filling pattern	standard 2	BCMS ${ }^{3}$
	Levelled pile-up in IP1/5/8	140/140/4.5	
	Levelled luminosity [$10^{34} \mathrm{~cm}^{-2} \mathrm{~S}^{-1}$] in IP $1 / 2 / 5 / 8{ }^{11}$	5.1/0.001/5.1/0.17	4.8/0.001/4.8/0.16
	$\varepsilon_{n}[\mu \mathrm{~m}]$	2.5	
	Total RF voltage [MV]	16	
	$\varepsilon_{L}[\mathrm{eVs}]$	2.5	
	r.m.s. energy spread (Gaussian fit) [10-4]	1.08	
	r.m.s. bunch length (Gaussian fit) $[\mathrm{cm}]$	8.1	
	$\beta^{*}[\mathrm{~m}]$ in $\mathrm{IP} 1 / 2 / 5 / 8$	0.7/10/0.7/3	
	Optics	HL-LHCV1.1 pre-squeeze (0.7 m)	
	Tunes (H/V)	62.31/60.32	
	Transition gamma (average B1/B2)	53.78	
	Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]	± 295 (V)	
	Half parallel separation at the IP for ATLAS (IP1) [mm]	± 2.0 to 0 (H)	
	Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]	± 170 (V)	
	Half crossing angle at the IP for ALICE (IP2) ${ }^{\text {[}}$ [rad]	± 240 (V)	
	Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0 to $\pm 0.138^{12}(\mathrm{H})$	
	Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]	+295 (H)	
	Half parallel separation at the IP for CMS (IP5) [mm]	± 2.0 to 0 (V)	
	Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\left.\mu \mathrm{rad}\right]$	-250(H)	
	Half crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]	-115 (H)	
	Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]	0 (V) [3]	
	Half parallel separation at IP for LHCb (IP8) [mm]	± 2 to $\pm 0.043^{13}$ (V)	
	Delay in the start of the collision process in IP $1 / 2 / 5 / 8$	Synchronised IP1 and IP5 to full head-on collision first, andthen IP2 and IP8	
	Time to go in collision in IP1/5 (from 2σ full separation to 0σ) [s]. No time constraint for IP2/8	<1	
	Transverse damper damping time [turns]	50 [1]	
	Chromaticity Q' (dQ/(dp/p))	+3 [6,8]	
	Landau octupole Current (LOF) [A]	-570 [1,4,8]	

Elias Métral, Join	Parameters for the collision process (nominal)	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]	7	
	Particles per bunch, $N\left[10^{11}\right]$	2.2	
	Maximum number of bunches per beam	2748	2604
	Number of colliding pairs in IP1/2/5/8 (at the end of the collision process) ${ }^{10}$	2736/2452/2736/2524	2592/2288/2592/2396
	Filling pattern	standard 2	BCMS ${ }^{3}$
	Levelled pile-up in IP1/5/8	140/140/4.5	
	Levelled luminosity [$10^{34} \mathrm{~cm}^{-2} \mathrm{~S}^{-1}$] in IP1/2/5/8 ${ }^{11}$	5.1/0.001/5.1/0.17	4.8/0.001/4.8/0.16
	$\varepsilon_{n}[\mu \mathrm{~m}]$	2.5	
	Total RF voltage [MV]	16	
	$\varepsilon_{L}[\mathrm{eVs}]$	2.5	
	r.m.s. energy spread (Gaussian fit) [10-4]	1.08	
	r.m.s. bunch length (Gaussian fit)[cm]	8.1	
	β^{*} [m] in IP1/2/5/8	0.7/10/0.7/3	
	Optics	HL-LHCV1.1 pre-squeeze (0.7 m)	
	Tunes (H/V)	62.31/60.32	
	Transition gamma (average B1/B2)	53.78	
	Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]	± 295 (V)	
	Half parallel separation at the IP for ATLAS (IP1) [mm]	± 2.0 to 0 (H)	
	Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]	± 170 (V)	
	Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]	± 240 (V)	
	Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0 to $\pm 0.138^{12}(\mathrm{H})$	
	Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]	+295 (H)	
	Half parallel separation at the IP for CMS (IP5) [mm]	± 2.0 to 0 (V)	
	Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$	-250(H)	
	Half crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]	-115 (H)	
	Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]	0 (V) [3]	
	Half parallel separation at IP for LHCb (IP8) [mm]	± 2 to $\pm 0.043{ }^{13}$ (V)	
	Delay in the start of the collision process in IP1/2/5/8	Synchronised IP1 and IP5 to full head-on collision first, and then IP2 and IP8	
	Time to go in collision in IP1/5 (from 2σ full separation to 0σ) [s]. No time constraint for IP2/8	<1	
	Transverse damper damping time [turns]	50 [1]	
	Chromaticity Q' (dQ/(dp/p))	+3 $[6,8]$	
	Landau octupole Current (LOF) [A]	-570 [1,4,8]	4,8]

	Parameters in stable beams (nominal)	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]	7	
	Particles per bunch, $N\left[10^{11}\right]$	2.2 (start of fill)	
	$\varepsilon_{n}[\mu \mathrm{~m}]$	2.5 (start of fill)	
	Maximum number of bunches per beam	2748	2604
	Number of colliding pairs in IP1/2/5/8 ${ }^{10}$	2736/2452/2736/2524	2592/2288/2592/2396
	Filling pattern	standard ${ }^{2}$	BCMS^{3}
	Levelled pile-up in IP1/5/8	140/140/4.5	
	Levelled luminosity [$\left.10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right]$ in IP1/2/5/8 ${ }^{11}$	5.1/0.001/5.1/0.17	4.8/0.001/4.8/0.16
	Levelling method in IP1/2/5/8	$\beta^{*} /$ separation $/ \beta^{*} /$ separation	
	Total RF voltage [MV]	16	
	$\varepsilon_{L}[\mathrm{eVs}]$	2.5 (start of fill)	
	r.m.s. energy spread (Gaussian fit) [10-4]	1.08 (start of fill)	
	r.m.s. bunch length (Gaussian fit) [cm]	8.1 (start of fill)	
	$\beta^{*}[\mathrm{~m}]$ in IP1/2/5/8	0.7 to 0.15/10/0.7 to 0.15/3	
	Optics	HL-LHCV1.1 pre-squeeze (0.7 m) to HL -LHCV1.1 pre-squeeze $(0.44 \mathrm{~m})^{14}$ to HL -LHCV1.1 collision round $(0.15 \mathrm{~m})^{15}$	
	Tunes (H/V)	62.31/60.32	
	Transition gamma (average B1/B2)	53.78 to 53.73	
	Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]	± 295 (V) [7]	
	Half parallel separation at the IP for ATLAS (IP1) [mm]	0 (H)	
	Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]	± 170 (V)	
	Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]	± 240 (V) [7]	
	Half parallel separation at the IP for ALICE (IP2) [mm]	± 0.13816 to 0 (H)	
	Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]	+295 (H) [7]	
	Half parallel separation at the IP for CMS (IP5) [mm]	0 (V)	
	Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]	-250(H)	
	Half crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mathrm{\mu rad}$]	-115(H) [7]	
	Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]	0 (V) [3]	
	Half parallel separation at IP for LHCb (IP8) [mm]	$\pm 0.043{ }^{17}$ to 0 (V) [1]	
	Transverse damper damping time [turns]	50^{18} [1]	
	Chromaticity Q' (dQ/(dp/p))	$+3^{18}[6,8]$	
Elias Métra	Landau octupole Current (LOF) [A]	$-570^{18}[1,4,8]$	

	Parameters in stable beams (nominal)	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]		
	Particles per bunch, $N\left[10^{11}\right]$	2.2 (s	of fill)
	$\varepsilon_{n}[\mu \mathrm{~m}]$	2.5 (s	of fill)
	Maximum number of bunches per beam	2748	2604
	Number of colliding pairs in IP1/2/5/8 ${ }^{10}$	2736/2452/2736/2524	2592/2288/2592/2396
	Filling pattern	standard ${ }^{2}$	BCMS^{3}
	Levelled pile-up in IP1/5/8	140	/4.5
	Levelled luminosity [$\left.10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right]$ in IP1/2/5/8 ${ }^{11}$	5.1/0.001/5.1/0.17	4.8/0.001/4.8/0.16
	Levelling method in IP1/2/5/8	β \%/separatio	/separation
	Total RF voltage [MV]		
	$\varepsilon_{L}[\mathrm{eVs}]$	2.5 (s	f fill)
	r.m.s. energy spread (Gaussian fit) [10^{-4}]	1.08 (of fill)
	r.m.s. bunch length (Gaussian fit) [cm]	8.1 (s	of fill)
	β^{*} [m] in IP1/2/5/8	0.7 to 0.15/	. 7 to 0.15/3
	Optics	HL-LHCV1.1 pre-squeeze (0 $(0.44 \mathrm{~m})^{14}$ to $\mathrm{HL}-\mathrm{LHCV}$	to HL -LHCV1.1 pre-squeeze llision round $(0.15 \mathrm{~m})^{15}$
	Tunes (H/V)	62.3	0.32
	Transition gamma (average B1/B2)	53.7	3.73
	Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]		
	Half parallel separation at the IP for ATLAS (IP1) [mm]		
	Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]		
	Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [rad]		
	Half parallel separation at the IP for ALICE (IP2) [mm]	± 0.13	0 (H)
	Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]		[7]
	Half parallel separation at the IP for CMS (IP5) [mm]		
	Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]		
	Half crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]		
	Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]		
	Half parallel separation at IP for LHCb (IP8) [mm]	± 0.043	(V) [1]
	Transverse damper damping time [turns]		
	Chromaticity Q' (dQ/(dp/p))		
Elias Métra	Landau octupole Current (LOF) [A]	-570	4,8]

	Parameters in stable beams (nominal)	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]		
	Particles per bunch, $N\left[10^{11}\right]$	2.2	of fill)
	$\varepsilon_{n}[\mu \mathrm{~m}]$	2.5	of fill)
	Maximum number of bunches per beam	2748	2604
	Number of colliding pairs in IP1/2/5/8 ${ }^{10}$	2736/2452/2736/2524	2592/2288/2592/2396
	Filling pattern	standard ${ }^{2}$	BCMS^{3}
	Levelled pile-up in IP1/5/8		/4.5
	Levelled luminosity [$\left.10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right]$ in IP1/2/5/8 ${ }^{11}$	5.1/0.001/5.1/0.17	4.8/0.001/4.8/0.16
	Levelling method in IP1/2/5/8	β \%/separati	/separation
	Total RF voltage [MV]		
	$\varepsilon_{L}[\mathrm{eVs}]$	2.5 (f fill)
	r.m.s. energy spread (Gaussian fit) [10^{-4}]	1.08	of fill)
	r.m.s. bunch length (Gaussian fit) [cm]	8.1 (f fill)
	β^{*} [m] in IP1/2/5/8	0.7 to 0.15	. 7 to 0.15/3
	Optics	HL-LHCV1.1 pre-squeeze (0 $(0.44 \mathrm{~m})^{14}$ to $\mathrm{HL}-\mathrm{LHCV}$	to $\mathrm{HL}-\mathrm{LHCV} 1.1$ pre-squeeze llision round $(0.15 \mathrm{~m})^{15}$
	Tunes (H/V)		0.32
	Transition gamma (average B1/B2)	53.7	3.73
	Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]		[7]
	Half parallel separation at the IP for ATLAS (IP1) [mm]		
	Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]		
	Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [rad]		
	Half parallel separation at the IP for ALICE (IP2) [mm]	± 0.13	0 (H)
	Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]		[7]
	Half parallel separation at the IP for CMS (IP5) [mm]		
	Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]		
	Half crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]		
	Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]		
	Half parallel separation at IP for LHCb (IP8) [mm]	± 0.043	(V) [1]
	Transverse damper damping time [turns]		
	Chromaticity Q' (dQ/(dp/p))		
Elias Métra	Landau octupole Current (LOF) [A]		4,8]

Elias Métra	Parameters in stable beams (nominal)	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]	7	
	Particles per bunch, $N\left[10^{11}\right]$	2.2 (start of fill)	
	$\varepsilon_{n}[\mu \mathrm{~m}]$	2.5 (start of fill)	
	Maximum number of bunches per beam	2748	2604
	Number of colliding pairs in IP1/2/5/8 ${ }^{10}$	2736/2452/2736/2524	2592/2288/2592/2396
	Filling pattern	standard ${ }^{2}$	BCMS^{3}
	Levelled pile-up in IP1/5/8	140/140/4.5	
	Levelled luminosity [$\left.10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right]$ in IP1/2/5/8 ${ }^{11}$	5.1/0.001/5.1/0.17	4.8/0.001/4.8/0.16
	Levelling method in IP1/2/5/8	$\beta^{*} /$ separation/ $\beta^{*} /$ separation	
	Total RF voltage [MV]	16	
	$\varepsilon_{L}[\mathrm{eVs}]$	2.5 (start of fill)	
	r.m.s. energy spread (Gaussian fit) [10-4]	1.08 (start of fill)	
	r.m.s. bunch length (Gaussian fit) [cm]	8.1 (start of fill)	
	$\beta^{*}[\mathrm{~m}]$ in IP1/2/5/8	0.7 to 0.15/10/0.7 to 0.15/3	
	Optics	HL-LHCV1.1 pre-squeeze (0.7 m) to HL-LHCV1.1 pre-squeeze $(0.44 \mathrm{~m})^{14}$ to HL -LHCV1.1 collision round $(0.15 \mathrm{~m})^{15}$	
	Tunes (H/V)	62.31/60.32	
	Transition gamma (average B1/B2)	53.78 to 53.73	
	Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]	± 295 (V) [7]	
	Half parallel separation at the IP for ATLAS (IP1) [mm]	0 (H)	
	Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]	± 170 (V)	
	Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]	± 240 (V) [7]	
	Half parallel separation at the IP for ALICE (IP2) [mm]	± 0.13816 to 0 (H)	
	Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]	+295 (H) [7]	
	Half parallel separation at the IP for CMS (IP5) [mm]	0 (V)	
	Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]	-250(H)	
	Half crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mathrm{\mu rad}$]	-115 (H) [7]	
	Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]	0 (V) [3]	
	Half parallel separation at IP for LHCb (IP8) [mm]	$\pm 0.043{ }^{17}$ to 0 (V) [1]	
	Transverse damper damping time [turns]	50^{18} [1]	
	Chromaticity Q' (dQ/(dp/p))	$+3^{18}[6,8]$	
	Landau octupole Current (LOF) [A]	$-570^{18}[1,4,8]$	

ULTIMATE

	Parameters during pre-squeeze (ultimate)	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]	7	
	Particles per bunch, N [$\left.10^{11}\right]$	2.30	
	Maximum number of bunches per beam	2748	2604
	Filling pattern	standard ${ }^{2}$	BCMS ${ }^{3}$
	$\varepsilon_{n}[\mu \mathrm{~m}]$	2.0	1.6
	Total RF voltage [MV]	16	
	$\varepsilon L[\mathrm{eVs}]$	2.5	
	r.m.s. energy spread (Gaussian fit) [10-4]	1.08	
	r.m.s. bunch length (Gaussian fit) [cm]	8.1	
	β^{*} [m] in IP1/2/5/8	6/10/6/10 to 0.46/10/0.46/3	
	Optics	HL-LHCV1. 1 end of ramp to HL-LHCV1.1 pre-squeeze (0.46 m)	
	Tunes (H/V)	62.31/60.32	
	Transition gamma (average B1/B2)	53.86 to 53.78	
	Half crossing angle at the IP for ATLAS (IP1) [± 295 (V)	
	Half parallel separation at the IP for ATLAS (± 2 (H)	
	Half external crossing angle at IP for ALICE	± 170 (V)	
	Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$	± 240 (V)	
	Half parallel separation at the IP for ALICE (± 2.0 (H)	
	Half crossing angle at the IP for CMS (IP5)	+295 (H)	
	Half parallel separation at the IP for CMS (IP	± 2 (V)	
	Half external crossing angle at the IP for LH [$\mu \mathrm{rad}$]	-250 (H)	
	Half crossing angle at the IP for LHCb (IP8) ${ }^{5}$	-115 (H)	
	Half parallel angle at the IP for LHCb (IP8) [μ	0 (V) [3]	
	Half parallel separation at IP for LHCb (IP8)	± 2 (V) [3]	
	Transverse damper damping time [turns]	50 [1]	
	Chromaticity Q' (dQ/(dp/p))	+3 [6,8]	
Elia	Landau octupole Current (LOF) [A]	-570 [1,4,8]	

	Parameters during pre-squeeze (ultimate)	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]	7	
	Particles per bunch, $N\left[10^{11}\right]$	2.30	
	Maximum number of bunches per beam	2748	2604
	Filling pattern	standard ${ }^{2}$	BCMS ${ }^{3}$
	$\varepsilon_{n}[\mu \mathrm{~m}]$	2.0	1.6
	Total RF voltage [MV]		
	$\varepsilon L[\mathrm{eVs}]$		
	r.m.s. energy spread (Gaussian fit) [10-4]		
	r.m.s. bunch length (Gaussian fit) [cm]		
	$\beta^{*}[\mathrm{~m}]$ in IP1/2/5/8	6/10/6/1	/0.46/3
	Optics	HL-LHCV1. end of ram	1.1 pre-squeeze (0.46
	Tunes (H/V)		
	Transition gamma (average B1/B2)		
	Half crossing angle at the IP for ATLAS (IP1) [
	Half parallel separation at the IP for ATLAS (
	Half external crossing angle at IP for ALICE		
	Half crossing angle at the IP for ALICE (IP2)		
	Half parallel separation at the IP for ALICE (
	Half crossing angle at the IP for CMS (IP5)		
	Half parallel separation at the IP for CMS (IP		
	Half external crossing angle at the IP for LH [$\mu \mathrm{rad}$]		
	Half crossing angle at the IP for LHCb (IP8) ${ }^{5}$		
	Half parallel angle at the IP for LHCb (IP8) [μ		
	Half parallel separation at IP for LHCb (IP8)		
	Transverse damper damping time [turns]		
	Chromaticity Q' (dQ/(dp/p))		
Elia	Landau octupole Current (LOF) [A]		

Elias Métral, Join	Parameters for the collision process (ultimate)	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]		
	Particles per bunch, N [$\left.10^{11}\right]$		
	Maximum number of bunches per beam	2748	2604
	Number of colliding pairs in IP1/2/5/8 (at the end of the collision process) ${ }^{10}$	2736/2452/2736/2524	2592/2288/2592/2396
	Filling pattern	standard ${ }^{2}$	BCMS ${ }^{3}$
	Levelled pile-up in IP1/5/8	210	/4.5
	Levelled luminosity [$10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$] in IP1/2/5/8 ${ }^{11}$	7.6/0.001/7.6/0.17	7.2/0.001/7.2/0.16
	$\varepsilon_{n}[\mu \mathrm{~m}]$		
	Total RF voltage [MV]		
	$\varepsilon_{L}[\mathrm{eVs}]$		
	r.m.s. energy spread (Gaussian fit) [10-4]		
	r.m.s. bunch length (Gaussian fit) [cm]		
	$\beta^{*}[\mathrm{~m}]$ in IP1/2/5/8	0.46	.46/3
	Optics	HL-LHCV1.1 p	ueeze (0.46 m)
	Tunes (H/V)		. 32
	Transition gamma (average B1/B2)		
	Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]		
	Half parallel separation at the IP for ATLAS (IP1) [mm]		
	Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]		
	Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]		
	Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0 to	$8^{19}(\mathrm{H})$
	Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]		
	Half parallel separation at the IP for CMS (IP5) [mm]		
	Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$		
	Half crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]		
	Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]		
	Half parallel separation at IP for LHCb (IP8) [mm]	± 2 to \pm	$3^{20}(\mathrm{~V})$
	Delay in the start of the collision process in IP1/2/5/8	Synchronised IP1 and IP5 then	head-on collision first, and Id IP8
	Time to go in collision in IP1/5 (from 2σ full separation to 0σ) [s]. No time constraint for IP2/8		
	Transverse damper damping time [turns]		
	Chromaticity Q' (dQ/(dp/p))		
	Landau octupole Current (LOF) [A]		

Elias Métral, Joint	Parameters for the collision process (ultimate)	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]	7	
	Particles per bunch, N [$\left.10^{11}\right]$	2.2	
	Maximum number of bunches per beam	2748	2604
	Number of colliding pairs in IP1/2/5/8 (at the end of the collision process) ${ }^{10}$	2736/2452/2736/2524	2592/2288/2592/2396
	Filling pattern	standard 2	BCMS ${ }^{3}$
	Levelled pile-up in IP1/5/8	210/210/4.5	
	Levelled luminosity [$10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$] in IP1/2/5/8 ${ }^{11}$	7.6/0.001/7.6/0.17	7.2/0.001/7.2/0.16
	$\varepsilon_{n}[\mu \mathrm{~m}]$	2.5	
	Total RF voltage [MV]	16	
	$\varepsilon_{L}[\mathrm{eVs}]$	2.5	
	r.m.s. energy spread (Gaussian fit) [10-4]	1.08	
	r.m.s. bunch length (Gaussian fit) [cm]	8.1	
	$\beta^{*}[\mathrm{~m}]$ in IP1/2/5/8	0.46/10/0.46/3	
	Optics	HL-LHCV1.1 pre-squeeze (0.46 m)	
	Tunes (H/V)	62.31/60.32	
	Transition gamma (average B1/B2)	53.78	
	Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]	± 295 (V)	
	Half parallel separation at the IP for ATLAS (IP1) [mm]	± 2 to 0 (H)	
	Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]	± 170 (V)	
	Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]	± 240 (V)	
	Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0 to $\pm 0.138{ }^{19}(\mathrm{H})$	
	Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]	+295 (H)	
	Half parallel separation at the IP for CMS (IP5) [mm]	± 2 to 0 (V)	
	Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$	-250(H)	
	Half crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]	-115 (H)	
	Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]	0 (V) (1)	
	Half parallel separation at IP for LHCb (IP8) [mm]	± 2 to $\pm 0.043^{20}(\mathrm{~V})$	
	Delay in the start of the collision process in IP1/2/5/8	Synchronised IP1 and IP5 to full head-on collision first, and then IP2 and IP8	
	Time to go in collision in IP1/5 (from 2σ full separation to $0 \mathrm{\sigma})$ [s]. No time constraint for IP2/8	<1	
	Transverse damper damping time [turns]	50 [1]	
	Chromaticity Q' (dQ/(dp/p))	+3 [6,8]	
	Landau octupole Current (LOF) [A]	-570 [1,4,8]	

Elias Métral, Joint	Parameters for the collision process (ultimate)	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]	7	
	Particles per bunch, $N\left[10^{11}\right]$	2.2	
	Maximum number of bunches per beam	2748	2604
	Number of colliding pairs in IP1/2/5/8 (at the end of the collision process) ${ }^{10}$	2736/2452/2736/2524	2592/2288/2592/2396
	Filling pattern	standard ${ }^{2}$	BCMS^{3}
	Levelled pile-up in IP1/5/8	210/210/4.5	
	Levelled luminosity [$10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$] in IP1/2/5/8 ${ }^{11}$	7.6/0.001/7.6/0.17	7.2/0.001/7.2/0.16
	$\varepsilon_{n}[\mu \mathrm{~m}]$	2.5	
	Total RF voltage [MV]	16	
	$\varepsilon_{L}[\mathrm{eVs}]$	2.5	
	r.m.s. energy spread (Gaussian fit) [10-4]	1.08	
	r.m.s. bunch length (Gaussian fit) [cm]	8.1	
	$\beta^{*}[\mathrm{~m}]$ in IP1/2/5/8	0.46/10/0.46/3	
	Optics	HL-LHCV1.1 pre-squeeze (0.46 m)	
	Tunes (H/V)	62.31/60.32	
	Transition gamma (average B1/B2)	53.78	
	Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}]$	± 295 (V)	
	Half parallel separation at the IP for ATLAS (IP1) [mm]	± 2 to 0 (H)	
	Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]	± 170 (V)	
	Half crossing angle at the IP for ALICE (IP2) ${ }^{5}[\mu \mathrm{rad}]$	± 240 (V)	
	Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0 to $\pm 0.138{ }^{19}(\mathrm{H})$	
	Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]	+295 (H)	
	Half parallel separation at the IP for CMS (IP5) [mm]	± 2 to 0 (V)	
	Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]	-250(H)	
	Half crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]	-115 (H)	
	Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]	0 (V) (1)	
	Half parallel separation at IP for LHCb (IP8) [mm]	± 2 to $\pm 0.043{ }^{20}(\mathrm{~V})$	
	Delay in the start of the collision process in IP1/2/5/8	Synchronised IP1 and IP5 to full head-on collision first, and then IP2 and IP8	
	Time to go in collision in IP1/5 (from 2σ full separation to $0 \mathrm{\sigma})$ [s]. No time constraint for IP2/8	<1	
	Transverse damper damping time [turns]	50 [1]	
	Chromaticity Q' (dQ/(dp/p))	+3 [6,8]	
	Landau octupole Current (LOF) [A]	-570 [1,4,8]	

Elias Métral, Joint	Parameters for the collision process (ultimate)	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]	7	
	Particles per bunch, $N\left[10^{11}\right]$	2.2	
	Maximum number of bunches per beam	2748	2604
	Number of colliding pairs in IP1/2/5/8 (at the end of the collision process) ${ }^{10}$	2736/2452/2736/2524	2592/2288/2592/2396
	Filling pattern	standard ${ }^{2}$	BCMS^{3}
	Levelled pile-up in IP1/5/8	210/210/4.5	
	Levelled luminosity [$10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$] in IP1/2/5/8 ${ }^{11}$	7.6/0.001/7.6/0.17	7.2/0.001/7.2/0.16
	$\varepsilon_{n}[\mu \mathrm{~m}]$	2.5	
	Total RF voltage [MV]	16	
	$\varepsilon_{L}[\mathrm{eVs}]$	2.5	
	r.m.s. energy spread (Gaussian fit) [10-4]	1.08	
	r.m.s. bunch length (Gaussian fit) [cm]	8.1	
	$\beta^{*}[\mathrm{~m}]$ in IP1/2/5/8	0.46/10/0.46/3	
	Optics	HL-LHCV1.1 pre-squeeze (0.46 m)	
	Tunes (H/V)	62.31/60.32	
	Transition gamma (average B1/B2)	53.78	
	Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]	± 295 (V)	
	Half parallel separation at the IP for ATLAS (IP1) [mm]	± 2 to 0 (H)	
	Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]	± 170 (V)	
	Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]	± 240 (V)	
	Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0 to $\pm 0.138{ }^{19}(\mathrm{H})$	
	Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]	+295 (H)	
	Half parallel separation at the IP for CMS (IP5) [mm]	± 2 to 0 (V)	
	Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$	-250(H)	
	Half crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]	-115 (H)	
	Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]	0 (V) (1)	
	Half parallel separation at IP for LHCb (IP8) [mm]	± 2 to $\pm 0.043{ }^{20}(\mathrm{~V})$	
	Delay in the start of the collision process in IP1/2/5/8	Synchronised IP1 and IP5 to full head-on collision first, and then IP2 and IP8	
	Time to go in collision in IP1/5 (from 2σ full separation to 0σ) [s]. No time constraint for IP2/8	<1	
	Transverse damper damping time [turns]	50 [1]	
	Chromaticity Q' (dQ/(dp/p))	+3 [6,8]	
	Landau octupole Current (LOF) [A]	-570 [1,4,8]	

Elias Métral, Joint	Parameters for the collision process (ultimate)	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]	7	
	Particles per bunch, $N\left[10^{11}\right]$	2.2	
	Maximum number of bunches per beam	2748	2604
	Number of colliding pairs in IP1/2/5/8 (at the end of the collision process) ${ }^{10}$	$2736 / 2452 / 2736 / 2524$	2592/2288/2592/2396
	Filling pattern	standard 2	BCMS 3
	Levelled pile-up in IP1/5/8	210/210/4.5	
	Levelled luminosity [$10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$] in IP1/2/5/8 ${ }^{11}$	7.6/0.001/7.6/0.17	7.2/0.001/7.2/0.16
	$\varepsilon_{n}[\mu \mathrm{~m}]$	2.5	
	Total RF voltage [MV]	16	
	$\varepsilon_{L}[\mathrm{eVs}]$	2.5	
	r.m.s. energy spread (Gaussian fit) [10-4]	1.08	
	r.m.s. bunch length (Gaussian fit) [cm]	8.1	
	$\beta^{*}[\mathrm{~m}]$ in IP1/2/5/8	0.46/10/0.46/3	
	Optics	HL-LHCV1.1 pre-squeeze (0.46 m)	
	Tunes (H/V)	62.31/60.32	
	Transition gamma (average B1/B2)	53.78	
	Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}]$	± 295 (V)	
	Half parallel separation at the IP for ATLAS (IP1) [mm]	± 2 to 0 (H)	
	Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]	± 170 (V)	
	Half crossing angle at the IP for ALICE (IP2) ${ }^{5}[\mu \mathrm{rad}]$	± 240 (V)	
	Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0 to $\pm 0.138{ }^{19}(\mathrm{H})$	
	Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]	+295 (H)	
	Half parallel separation at the IP for CMS (IP5) [mm]	± 2 to 0 (V)	
	Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]	-250(H)	
	Half crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]	-115 (H)	
	Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]	0 (V) (1)	
	Half parallel separation at IP for LHCb (IP8) [mm]	± 2 to $\pm 0.043{ }^{20}(\mathrm{~V})$	
	Delay in the start of the collision process in IP1/2/5/8	Synchronised IP1 and IP5 to full head-on collision first, and then IP2 and IP8	
	Time to go in collision in IP1/5 (from 2σ full separation to 0σ) [s]. No time constraint for IP2/8	<1	
	Transverse damper damping time [turns]	50 [1]	
	Chromaticity Q' (dQ/(dp/p))	+3 [6,8]	
	Landau octupole Current (LOF) [A]	-570 [1,4,8]	

Elias Métral, Joint	Parameters for the collision process (ultimate)	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]	7	
	Particles per bunch, $N\left[10^{11}\right]$	2.2	
	Maximum number of bunches per beam	2748	2604
	Number of colliding pairs in IP1/2/5/8 (at the end of the collision process) ${ }^{10}$	2736/2452/2736/2524	2592/2288/2592/2396
	Filling pattern	standard 2	BCMS^{3}
	Levelled pile-up in IP1/5/8	210/210/4.5	
	Levelled luminosity [$10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$] in IP1/2/5/8 ${ }^{11}$	7.6/0.001/7.6/0.17	7.2/0.001/7.2/0.16
	$\varepsilon_{n}[\mu \mathrm{~m}]$	2.5	
	Total RF voltage [MV]	16	
	$\varepsilon_{L}[\mathrm{eVs}]$	2.5	
	r.m.s. energy spread (Gaussian fit) [10-4]	1.08	
	r.m.s. bunch length (Gaussian fit) [cm]	8.1	
	$\beta^{*}[\mathrm{~m}]$ in IP1/2/5/8	0.46/10/0.46/3	
	Optics	HL-LHCV1.1 pre-squeeze (0.46 m)	
	Tunes (H/V)	62.31/60.32	
	Transition gamma (average B1/B2)	53.78	
	Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}]$	± 295 (V)	
	Half parallel separation at the IP for ATLAS (IP1) [mm]	± 2 to 0 (H)	
	Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]	± 170 (V)	
	Half crossing angle at the IP for ALICE (IP2) ${ }^{5}[\mu \mathrm{rad}]$	± 240 (V)	
	Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0 to $\pm 0.138{ }^{19}(\mathrm{H})$	
	Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]	+295 (H)	
	Half parallel separation at the IP for CMS (IP5) [mm]	± 2 to 0 (V)	
	Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]	-250(H)	
	Half crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]	-115 (H)	
	Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]	0 (V) (1)	
	Half parallel separation at IP for LHCb (IP8) [mm]	± 2 to $\pm 0.043{ }^{20}(\mathrm{~V})$	
	Delay in the start of the collision process in IP1/2/5/8	Synchronised IP1 and IP5 to full head-on collision first, and then IP2 and IP8	
	Time to go in collision in IP1/5 (from 2σ full separation to 0σ) [s]. No time constraint for IP2/8	<1	
	Transverse damper damping time [turns]	50 [1]	
	Chromaticity Q' (dQ/(dp/p))	+3 [6,8]	
	Landau octupole Current (LOF) [A]	-570 [1,4,8]	

Elias Métral, Joint	Parameters for the collision process (ultimate)	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]	7	
	Particles per bunch, $N\left[10^{11}\right]$	2.2	
	Maximum number of bunches per beam	2748	2604
	Number of colliding pairs in IP1/2/5/8 (at the end of the collision process) ${ }^{10}$	2736/2452/2736/2524	2592/2288/2592/2396
	Filling pattern	standard 2	BCMS^{3}
	Levelled pile-up in IP1/5/8	210/210/4.5	
	Levelled luminosity [$10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$] in IP1/2/5/8 ${ }^{11}$	7.6/0.001/7.6/0.17	7.2/0.001/7.2/0.16
	$\varepsilon_{n}[\mu \mathrm{~m}]$	2.5	
	Total RF voltage [MV]	16	
	$\varepsilon_{L}[\mathrm{eVs}]$	2.5	
	r.m.s. energy spread (Gaussian fit) [10-4]	1.08	
	r.m.s. bunch length (Gaussian fit) [cm]	8.1	
	$\beta^{*}[\mathrm{~m}]$ in IP1/2/5/8	0.46/10/0.46/3	
	Optics	HL-LHCV1.1 pre-squeeze (0.46 m)	
	Tunes (H/V)	62.31/60.32	
	Transition gamma (average B1/B2)	53.78	
	Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]	± 295 (V)	
	Half parallel separation at the IP for ATLAS (IP1) [mm]	± 2 to 0 (H)	
	Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]	± 170 (V)	
	Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]	± 240 (V)	
	Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0 to $\pm 0.138{ }^{19}(\mathrm{H})$	
	Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]	+295 (H)	
	Half parallel separation at the IP for CMS (IP5) [mm]	± 2 to 0 (V)	
	Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$	-250(H)	
	Half crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]	-115 (H)	
	Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]	0 (V) (1)	
	Half parallel separation at IP for LHCb (IP8) [mm]	± 2 to $\pm 0.043{ }^{20}(\mathrm{~V})$	
	Delay in the start of the collision process in IP1/2/5/8	Synchronised IP1 and IP5 to full head-on collision first, and then IP2 and IP8	
	Time to go in collision in IP1/5 (from 2σ full separation to 0σ) [s]. No time constraint for IP2/8	<1	
	Transverse damper damping time [turns]	50 [1]	
	Chromaticity Q' (dQ/(dp/p))	+3 [6,8]	
	Landau octupole Current (LOF) [A]	-570 [1,4,8]	

	Parameters for the collision process (ultimate)	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]		
	Particles per bunch, $N\left[10^{11}\right]$		
	Maximum number of bunches per beam	2748	2604
	Number of colliding pairs in IP1/2/5/8 (at the end of the collision process) ${ }^{10}$	2736/2452/2736/252	2592/2288/2592/2396
	Filling pattern	standard ${ }^{2}$	BCMS^{3}
	Levelled pile-up in IP1/5/8		/4.5
	Levelled luminosity [$10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$] in IP1/2/5/8 ${ }^{11}$	7.6/0.001/7.6/0.17	7.2/0.001/7.2/0.16
	$\varepsilon_{n}[\mu \mathrm{~m}]$		
	Total RF voltage [MV]		
	$\varepsilon_{L}[\mathrm{eVs}]$		
	r.m.s. energy spread (Gaussian fit) [10-4]		
	r.m.s. bunch length (Gaussian fit) [cm]		
	$\beta^{*}[\mathrm{~m}]$ in IP1/2/5/8		46/3
	Optics	HL-LHCV1.1	ueeze (0.46 m)
	Tunes (H/V)		0.32
	Transition gamma (average B1/B2)		
	Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]		
	Half parallel separation at the IP for ATLAS (IP1) [mm]		
	Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]		
	Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]		
	Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0 t	(${ }^{19}$ (H)
	Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]		
	Half parallel separation at the IP for CMS (IP5) [mm]		
	Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$		
	Half crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]		
	Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]		
	Half parallel separation at IP for LHCb (IP8) [mm]	± 2 to	$3^{20}(\mathrm{~V})$
	Delay in the start of the collision process in IP1/2/5/8	Synchronised IP1 and IP the	head-on collision first, and nd IP8
	Time to go in collision in IP1/5 (from 2σ full separation to $0 \mathrm{\sigma})$ [s]. No time constraint for IP2/8		
	Transverse damper damping time [turns]		
	Chromaticity Q' (dQ/(dp/p))		
Elias Métral, Joint	Landau octupole Current (LOF) [A]		4,8]

	Parameters for the collision process (ultimate)	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]		
	Particles per bunch, $N\left[10^{11}\right]$		
	Maximum number of bunches per beam	2748	2604
	Number of colliding pairs in IP1/2/5/8 (at the end of the collision process) ${ }^{10}$	2736/2452/2736/252	2592/2288/2592/2396
	Filling pattern	standard ${ }^{2}$	BCMS ${ }^{3}$
	Levelled pile-up in IP1/5/8		/4.5
	Levelled luminosity [$10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$] in IP1/2/5/8 ${ }^{11}$	7.6/0.001/7.6/0.17	7.2/0.001/7.2/0.16
	$\varepsilon_{n}[\mu \mathrm{~m}]$		
	Total RF voltage [MV]		
	$\varepsilon_{L}[\mathrm{eVs}]$		
	r.m.s. energy spread (Gaussian fit) [10-4]		
	r.m.s. bunch length (Gaussian fit) [cm]		
	$\beta^{*}[\mathrm{~m}]$ in IP1/2/5/8		0.46/3
	Optics	HL-LHCV1.1	queeze (0.46 m)
	Tunes (H/V)		0.32
	Transition gamma (average B1/B2)		
	Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]		
	Half parallel separation at the IP for ATLAS (IP1) [mm]		(H)
	Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]		
	Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]		
	Half parallel separation at the IP for ALICE (IP2) [mm]	± 2.0 t	$38^{19}(\mathrm{H})$
	Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]		
	Half parallel separation at the IP for CMS (IP5) [mm]		(V)
	Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}[\mu \mathrm{rad}]$		
	Half crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]		
	Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]		
	Half parallel separation at IP for LHCb (IP8) [mm]	± 2 to	(13)
	Delay in the start of the collision process in IP1/2/5/8	Synchronised IP1 and IP the	head-on collision first, and nd IP8
	Time to go in collision in IP1/5 (from 2σ full separation to 0 б) [s]. No time constraint for IP2/8		
	Transverse damper damping time [turns]		
	Chromaticity Q' (dQ/(dp/p))		
Elias Métral, Joint	Landau octupole Current (LOF) [A]		4,8]

	Parameters in stable beams (ultimate)	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]		
	Particles per bunch, N [10 $\left.{ }^{11}\right]$	2.2 (f fill)
	$\varepsilon_{n}[\mu \mathrm{~m}]$	2.5 (f fill)
	Maximum number of bunches per beam	2748	2604
	Number of colliding pairs in IP1/2/5/8 ${ }^{10}$	2736/2452/2736/2524	2592/2288/2592/2396
	Filling pattern	standard ${ }^{2}$	BCMS ${ }^{3}$
	Levelled pile-up in IP1/5/8	210	/4.5
	Levelled luminosity [$\left.10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right]$ in IP1/2/5/8 ${ }^{11}$	7.6/0.001/7.6/0.17	7.2/0.001/7.2/0.16
	Levelling method in IP1/2/5/8	$\beta \% /$ separati	/separation
	Total RF voltage [MV]		
	$\varepsilon_{L}[\mathrm{eVs}]$	2.5	f fill)
	r.m.s. energy spread (Gaussian fit) [10-4]	1.08	of fill)
	r.m.s. bunch length (Gaussian fit) [cm]	8.1	of fill)
	$\beta^{*}[\mathrm{~m}]$ in IP1/2/5/8	0.46 to 0.15	. 46 to 0.15/3
	Optics	HL-LHCV1.1 pre-squeez squeeze $(0.44 \mathrm{~m})^{14}$ to $\mathrm{HL}-\mathrm{L}$	6 m) to $\mathrm{HL}-\mathrm{LHCV} 1.1$ pre- 1 collision round $(0.15 \mathrm{~m})^{15}$
	Tunes (H/V)		0.32
	Transition gamma (average B1/B2)	53.7	3.73
	Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]		
	Half parallel separation at the IP for ATLAS (IP1) [mm]		
	Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]		
	Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]		[7]
	Half parallel separation at the IP for ALICE (IP2) [mm]	± 0.13	0 (H)
	Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]		[7]
	Half parallel separation at the IP for CMS (IP5) [mm]		
	Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]		
	Half crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [mrad$]$		
	Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]		
	Half parallel separation at IP for LHCb (IP8) [mm]	± 0.04	0 (V)
	Transverse damper damping time [turns]		
	Chromaticity Q' (dQ/(dp/p))		
Elias Métra	Landau octupole Current (LOF) [A]		4,8]

	Parameters in stable beams (ultimate)	HL-LHC (standard)	HL-LHC (BCMS)
	Beam total energy [TeV]		
	Particles per bunch, N [10 $\left.{ }^{11}\right]$		of fill)
	$\varepsilon_{n}[\mu \mathrm{~m}]$	2.5	of fill)
	Maximum number of bunches per beam	2748	2604
	Number of colliding pairs in IP1/2/5/8 ${ }^{10}$	2736/2452/2736/2524	2592/2288/2592/2396
	Filling pattern	standard ${ }^{2}$	BCMS ${ }^{3}$
	Levelled pile-up in IP1/5/8		/4.5
	Levelled luminosity [$\left.10^{34} \mathrm{~cm}^{-2} \mathrm{~S}^{-1}\right]$ in IP1/2/5/8 ${ }^{11}$	7.6/0.001/7.6/0.17	7.2/0.001/7.2/0.16
	Levelling method in IP1/2/5/8	$\beta^{*} /$ separati	\%/separation
	Total RF voltage [MV]		
	$\varepsilon L[\mathrm{eVs}]$	2.5	of fill)
	r.m.s. energy spread (Gaussian fit) [10-4]	1.08	of fill)
	r.m.s. bunch length (Gaussian fit) [cm]	8.11	of fill)
	$\beta^{*}[\mathrm{~m}]$ in IP1/2/5/8	0.46 to 0.15	0.46 to 0.15/3
	Optics	HL-LHCV1.1 pre-squeez squeeze $(0.44 \mathrm{~m})^{14}$ to $\mathrm{HL}-\mathrm{L}$	$46 \mathrm{~m})$ to $\mathrm{HL}-\mathrm{LHCV} 1.1$ pre- 1.1 collision round $(0.15 \mathrm{~m})^{15}$
	Tunes (H/V)		0.32
	Transition gamma (average B1/B2)	53.7	53.73
	Half crossing angle at the IP for ATLAS (IP1) [$\mu \mathrm{rad}$]		[7]
	Half parallel separation at the IP for ATLAS (IP1) [mm]		
	Half external crossing angle at IP for ALICE (IP2) [$\mu \mathrm{rad}$]		
	Half crossing angle at the IP for ALICE (IP2) ${ }^{5}$ [$\mu \mathrm{rad}$]		[7]
	Half parallel separation at the IP for ALICE (IP2) [mm]	± 0.13	0 (H)
	Half crossing angle at the IP for CMS (IP5) [$\mu \mathrm{rad}$]		[7]
	Half parallel separation at the IP for CMS (IP5) [mm]		
	Half external crossing angle at the IP for LHCb (IP8) ${ }^{5}$ [$\mu \mathrm{rad}$]		
	Half crossing angle at the IP for LHCb (IP8) ${ }^{\text {[}}$ [rad]		[7]
	Half parallel angle at the IP for LHCb (IP8) [$\mu \mathrm{rad}$]		
	Half parallel separation at IP for LHCb (IP8) [mm]	± 0.04	0 (V)
	Transverse damper damping time [turns]		
	Chromaticity Q' (dQ/(dp/p))		
Elias Métra	Landau octupole Current (LOF) [A]		1,4,8]

CONCLUSION (1/3)

- Transverse instabilities are a concern based on the experience of the LHC Run I (with ~ 1.5E11 p/b within ~ 2.5 بm @ 50 ns and 4 TeV)

CONCLUSION (1/3)

- Transverse instabilities are a concern based on the experience of the LHC Run I (with ~ 1.5E11 p/b within ~ $2.5 \mu \mathrm{~m}$ @ 50 ns and 4 TeV)

Nominal cycon 2011

CONCLUSION (2/3)

- The limit came from the end of squeeze => Particular attention should be paid to the

CONCLUSION (2/3)

- The limit came from the end of squeeze => Particular attention should be paid to the
- Reduction of the impedance of the Crab Cavities (whose effect will be maximum at the end of squeeze) to the required level

CONCLUSION (2/3)

- The limit came from the end of squeeze => Particular attention should be paid to the
- Reduction of the impedance of the Crab Cavities (whose effect will be maximum at the end of squeeze) to the required level
- Good control of the impedance of new equipment, in particular at large β values

CONCLUSION (2/3)

- The limit came from the end of squeeze => Particular attention should be paid to the
- Reduction of the impedance of the Crab Cavities (whose effect will be maximum at the end of squeeze) to the required level
- Good control of the impedance of new equipment, in particular at large β values
- The negative sign of the Landau octupoles has been chosen

CONCLUSION (2/3)

- The limit came from the end of squeeze => Particular attention should be paid to the
- Reduction of the impedance of the Crab Cavities (whose effect will be maximum at the end of squeeze) to the required level
- Good control of the impedance of new equipment, in particular at large β values
- The negative sign of the Landau octupoles has been chosen
- Better for 1-beam stability

CONCLUSION (2/3)

- The limit came from the end of squeeze => Particular attention should be paid to the
- Reduction of the impedance of the Crab Cavities (whose effect will be maximum at the end of squeeze) to the required level
- Good control of the impedance of new equipment, in particular at large β values
- The negative sign of the Landau octupoles has been chosen
- Better for 1-beam stability
- OK for 2-beam stability diagram during the squeeze (with BBLR) due to ATS optics

CONCLUSION (2/3)

- The limit came from the end of squeeze => Particular attention should be paid to the
- Reduction of the impedance of the Crab Cavities (whose effect will be maximum at the end of squeeze) to the required level
- Good control of the impedance of new equipment, in particular at large β values
- The negative sign of the Landau octupoles has been chosen
- Better for 1-beam stability
- OK for 2-beam stability diagram during the squeeze (with BBLR) due to ATS optics
- Better for the DA with beam-beam

CONCLUSION (2/3)

- The limit came from the end of squeeze => Particular attention should be paid to the
- Reduction of the impedance of the Crab Cavities (whose effect will be maximum at the end of squeeze) to the required level
- Good control of the impedance of new equipment, in particular at large β values
- The negative sign of the Landau octupoles has been chosen
- Better for 1-beam stability
- OK for 2-beam stability diagram during the squeeze (with BBLR) due to ATS optics
- Better for the DA with beam-beam
- A good control of the tunes and chromaticities (to be studied in detail during Run II) will be needed to push the performance

CONCLUSION (3/3)

- What will be the lessons from LHC Run II?

CONCLUSION (3/3)

- What will be the lessons from LHC Run II?
- 6.5 TeV

CONCLUSION (3/3)

- What will be the lessons from LHC Run II?
- 6.5 TeV
- 25 ns

CONCLUSION (3/3)

- What will be the lessons from LHC Run II?
- 6.5 TeV
- 25 ns
- e-cloud

CONCLUSION (3/3)

- What will be the lessons from LHC Run II?
- 6.5 TeV
- 25 ns
- e-cloud
- Interplay between the different mechanisms

CONCLUSION (3/3)

- What will be the lessons from LHC Run II?
- 6.5 TeV
- 25 ns
- e-cloud
- Interplay between the different mechanisms
- UFOs

CONCLUSION (3/3)

- What will be the lessons from LHC Run II?
- 6.5 TeV
- 25 ns
- e-cloud
- Interplay between the different mechanisms
- UFOs
- Others...

APPENDIX

Footnotes for the PLC parameters

${ }^{1}$ Assuming one less batch from the PS for machine protection (pilot injection, TL steering with 12 nominal bunches) and non-colliding bunches for experiments
(background studies...). Note that due to RF beam loading the abort gap length must not exceed the $3 \mu \mathrm{~s}$ design value.
${ }^{2}$ An intensity loss of 5\% distributed along the cycle is assumed from SPS extraction to collisions in the LHC.
${ }^{3}$ A transvere emittance blow-up of 10 to 15% on the average H / V emittance in addition to the 15% to 20% expected from intra-beam scattering (IBS) is assumed (to reach the $2.5 \mu \mathrm{~m} / 3.0 \mu \mathrm{~m}$ of emmitance in collision for $25 \mathrm{~ns} / 50 \mathrm{~ns}$ operation)
${ }^{4}$ As of 2012 ALICE collided main bunches against low intensity. satellite bunches (few per-mill of main bunch) produced during the generation of the 50 ns beam in the injectors rather than two main bunches, hence the number of collisions is given as zero.
5^{5} For the design of the HL-LHC systems (collimators, triplet magnets,...), a design margin of 50% on the stated peak luminosity was agreed upon.
${ }^{6}$ For the BCMS scheme emittances down to $1.4 \mu \mathrm{~m}$ have already been achieved at LHC injection which might be used to mitigate excessive emittance blowup in the LHC during injection and ramp.
7 The lower number of collissions in IR2/8 wrt to the general purpose detectors is a result of the agreed filling scheme, aiming as much as possible at a democratic sharing of collisions between the experiments.
${ }^{8}$ The total number of events/crossing is calculated with an inelastic cross-section of 85 mb (also for nominal), while 100 mb is still assumed for calculating the proton burn off and the resulting levelling time
${ }^{9}$ BCMS parameters are only considered for injection and as a backup parameter set in case one encounters larger than expected emittance growth in the HL-LHC during injection, ramp and squeeze

