

Status of MQXF Conductor LARP Update

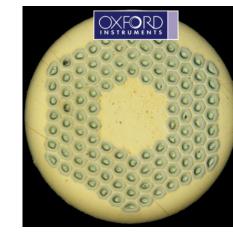
Arup. K. Ghosh

Dan Dietderich, Lance Cooley, Ian Pong

LARP/HiLumi Collaboration Meeting CM-24

FNAL May 11-13, 2015

1


Outline

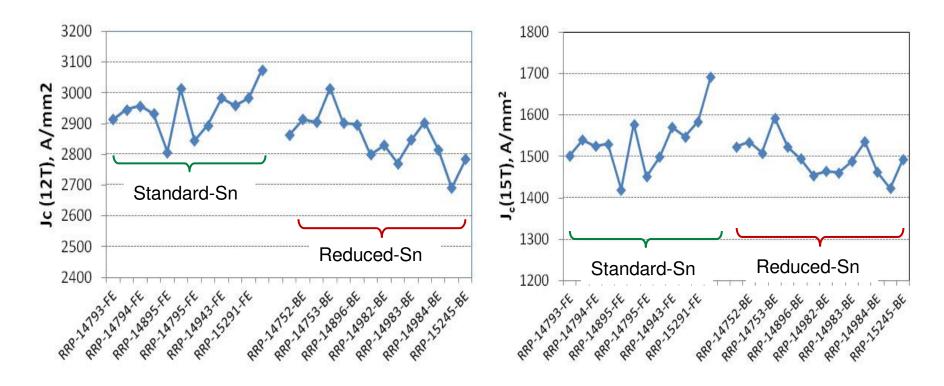
- Introduction
- RRP[®] 108/127 Strand
 - OST strand production
- RRR Control
- Recent MQXF strand RRP[®] 132/169 and 144/169
- Strand Procurement Plan
- Cable
- Insulation
- Summary

Introduction

- The 150 mm aperture MQXF magnet program in LARP is presently using the RRP 108/127 Ti-Ternary strand.
- Strand specification Strand Diameter, mm 0.85 • $J_c(12 \text{ T})$ at 4.2 K, A/mm² > 2650 • I_c, A > 684 > 1400 • $J_c(15 \text{ T})$ at 4.2 K, A/mm² • I_c, A > 361 • d_s, µm (nominal) < 60 • Cu-fraction, % > 53 Cu/non-Cu > 1.13 > 150 • RRR

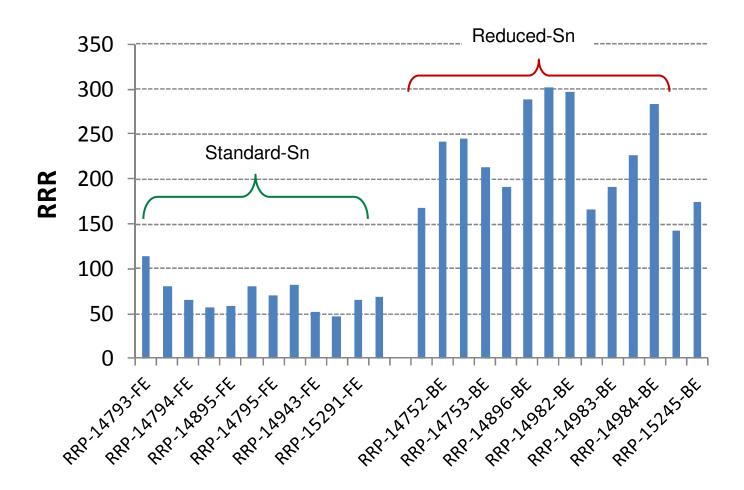
> 750 m

Ti-Ternary RRP® 108/127 Wire

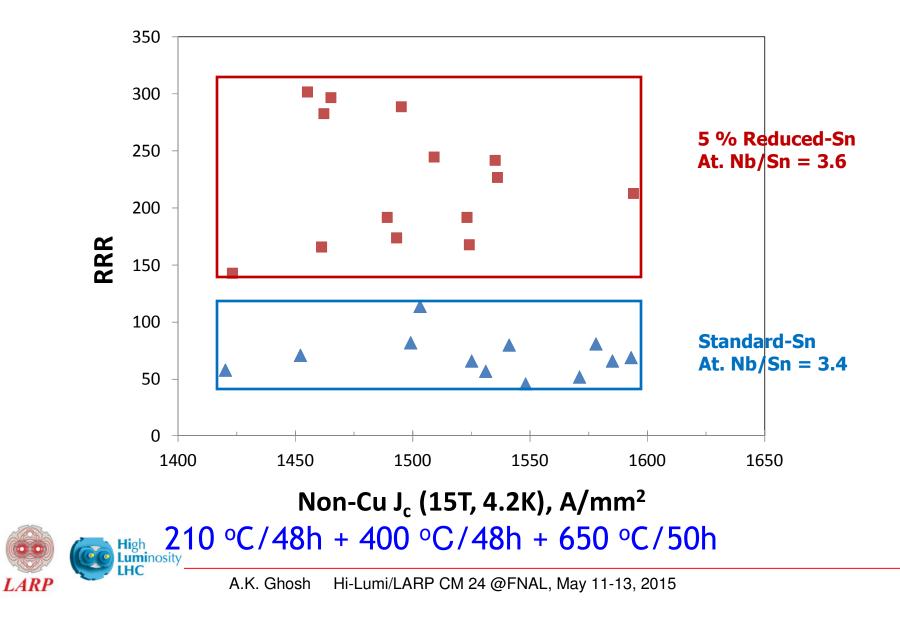

- Oxford Superconducting Technology delivered 400 kg of wire ~ 13 billets (2012-2013)
 - Vendor Data provided at 0.778 mm
 - Wire initially held at 1.04 mm
 - Final wire delivered at 0.85 mm
 - Two types of billets
 - Standard Sn content : Nb/Sn=3.4, 6 billets
 - 5% lower Sn content : Nb/Sn=3.6, 7 billets

Wire Reaction schedule

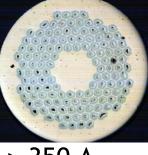
210 °C/48h + 400 °C/48h + 650 °C/50h

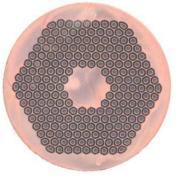

J_c of 108/127 wire - 13 billets

J_c of "reduced-Sn" billets are somewhat lower than the standard-Sn billets

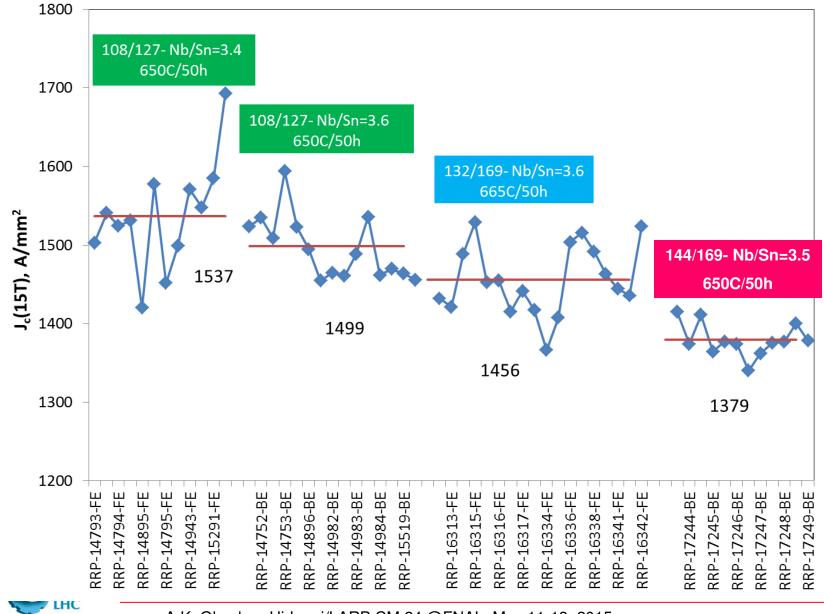

RRR of 108/127 wire

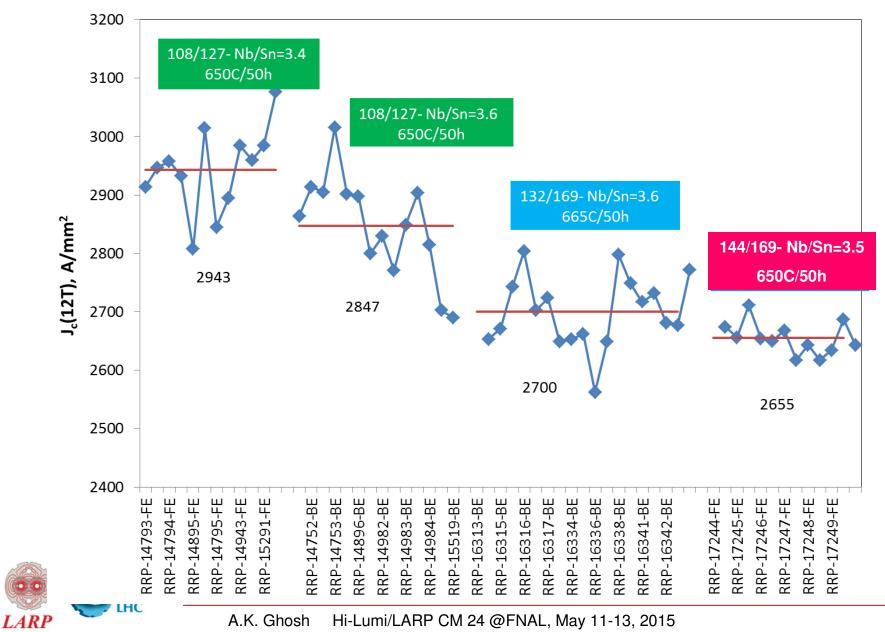
Reduced-Sn billets show marked increase in RRR

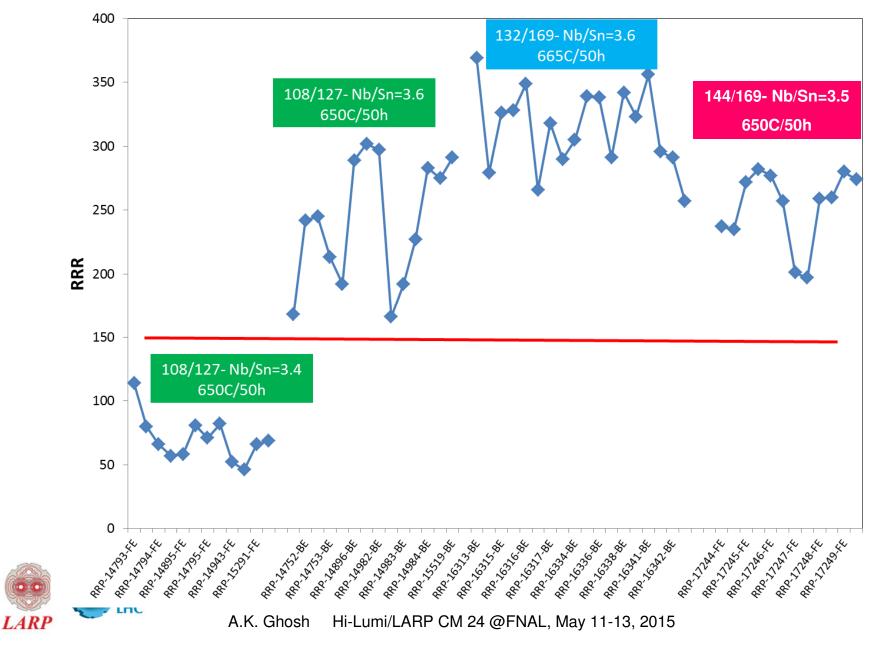

OST Data for 0. 778 mm wire Jc (4.2 K, 15T) vs. RRR



Ti-Ternary RRP® Wire


- More recently, Oxford Superconducting Technology has also delivered
- 55 Km (380 Kg) of 0.85 mm wire ⇒ 9 billets
 - Design 132/169
 - "5% Reduced-Sn": Nb/Sn=3.6
 - Exception taken to Ic(15 T) specification > Ic (15 T) > 350 A
- 38 Km (185 Kg) of 0.85 mm wire ⇒ 6 billets
 - 20 Km (LARP), 18 Km (CDP: Conductor Development Program)
 - Design 144/169
 - "2.5% Reduced-Sn": Nb/Sn=3.5
 - Exception taken to Cu/Non-Cu ratio
 - set to 1.05 ± 0.10
 - All wire qualified using the wire reaction schedule
 - 210 °C/48h + 400 °C/48h + 650 °C/50h


Jc (15 T) - A comparison


LARP 🔽

A.K. Ghosh Hi-Lumi/LARP CM 24 @FNAL, May 11-13, 2015

Jc (12 T) - A comparison

RRR- A comparison

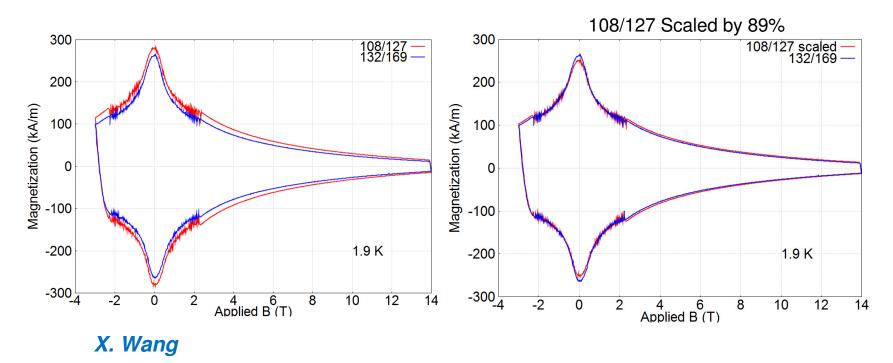
Statistics for 108/127, 132/169 and 144/169

					Non_Cu		Cu/Non_	
7 Billets	lc(12T)	lc(15T)	Jc(12T)	Jc(15T)	%	RRR	Cu	Cu%
AVG	743	390	2853	1497	0.459	224	1.179	0.541
σ	20	10	80	44	0.006	54	0.027	0.006
MIN	707	374	2691	1423	0.447	143	1.141	0.533
MAX	775	409	3015	1594	0.467	302	1.237	0.553
AVG-3σ	682	358	2615	1366	0.442	62	1.098	0.524
					Non Cu		Cu/Non	

					Non_Cu		Cu/Non_	
9 Billets	lc(12T)	lc(15T)	Jc(12T)	Jc(15T)	%	RRR	Cu	Cu%
AVG	691	372	2692	1452	0.452	312	1.214	0.548
σ	19	13	65	49	0.007	29	0.033	0.007
MIN	664	354	2562	1366	0.444	257	1.151	0.535
MAX	730	388	2798	1524	0.465	356	1.252	0.556
AVG-3σ	634	334	2497	1306	0.431	226	1.114	0.528

						Non_Cu		Cu/Non_	
7	Billets	lc(12T)	lc(15T)	Jc(12T)	Jc(15T)	%	RRR	Cu	Cu%
	AVG	724	376	2655	1379	0.481	253	1.078	0.519
	σ	10	7	28	21	0.004	29	0.017	0.004
	MIN	711	364	2617	1340	0.475	197	1.045	0.511
	MAX	738	390	2711	1415	0.489	282	1.105	0.525
н	igAVG-3σ	693	354	2572	1316	0.470	165	1.029	0.507

A.K. Ghosh Hi-Lumi/LARP CM 24 @FNAL, May 11-13, 2015


I_c Statistics for 108/127, 132/169 and 144/169

7 Billets	lc(12T)	lc(15T)		
AVG	743	390		
σ	20	10	Productio	n should be within \pm 3 σ
9 Billets AVG	lc(12T) 691	Ic(15T)	108/127	Min Ic (15 T) = 358 A Min Ic (15 T) = 334 A
σ	19	13	144/169	Min Ic $(15 T) = 354 A$ Min Ic $(15 T) = 354 A$

7 Billets	lc(12T)	lc(15T)
AVG	724	376
σ	10	7

Magnetization of 0.85 mm, 108/127 and 132/169 at 1.9 K Strands have same Jc and Cu/Sc ratio

Measurements performed at OSU By M. Sumption and X. Xu

Magnetization scales with filament diameter

RRP strand for MQXF coils

- Present inventory of wire at LARP is the following:
 - 38 Km of 144/169
 - 43 Km of 132/169
 - 11 Km of 108/127
- This wire will be used to fabricate cables for 3 short coils and 3 long coils.
- Unit length of a short coil is 170 m and that for the long coil is 450 m.

Strand Specification for the HiLumi Project

- Very recently within a Conductor Working Group with members from CERN and LARP we agreed on a set of requirements for the strand and cable
- Within LARP the strand Specification is being released under the following document:
 - "U.S. HiLumi Project
 - SPECIFICATION FOR QUADRUPOLE MAGNET CONDUCTOR
 - US-HiLumi-doc.40 Rev. No. Original Release
 - Date: 05-May-2015"

Specification for MQXF Strand

Parameter or characteristic	Value	Unit
Superconductor composition	Ti-alloyed Nb ₃ Sn	
Strand Diameter	0.850 ± 0.003	mm
Critical current at 4.2 K and 12 T	> 632	A
Critical current at 4.2 K and 15 T	> 331	A
<i>n</i> -value at 15 T	> 30	
Count of sub-elements	≥ 108	
(Equivalent sub-element diameter)	(≤ 55)	(µm)
Cu : Non-Cu volume Ratio	≥ 1.2	
Variation around mean	± 0.1	
Residual Resistance Ratio RRR	≥ 150	
for reacted final-size strand		
Magnatization* at 2 T 4 2 K	< 256	kA m⁻¹
Magnetization* at 3 T, 4.2 K	(< 320)	(mT)
Twist Pitch	19.0 ± 3.0	mm
Twist Direction	Right-hand screw	
Strand Spring Back	< 720	arc degrees
Minimum piece length	550	m
High temperature HT duration	\geq 40	Hours
Total heat treatment duration from start of ramp to power off and furnace cool	≤ 240	Hours
Heat treatment heating ramp rate	\leq 50	°C per hour
Rolled strand (0.765 mm thk.) critical current at 4.2 K and 12 T	> 600	A
Rolled strand critical current at 4.2 K and 15 T	> 314	A
Rolled strand <i>RRR</i> after reaction	> 100	

0.85 mm Ti-Ternary

I_c (12 T)>632 A, $J_c(12 T)$ > 2450 A/mm² I_c (15 T)>331 A, $J_c(15 T)$ > 1250 A/mm²

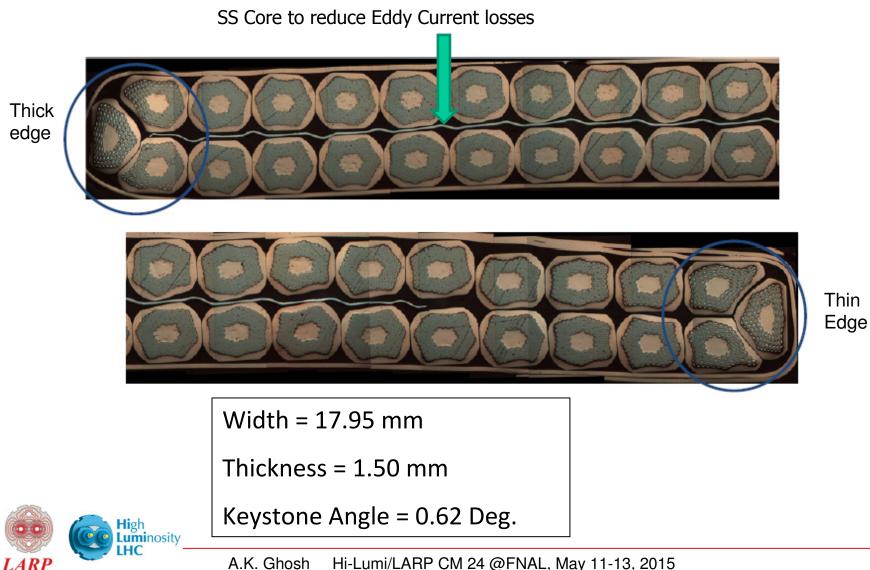
108/127

Cu % > 53 %

RRR >150 Nb/Sn > 3.5

Procurement Plan for MQXF magnets

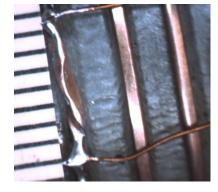
MQXFS and MQXFL


- Require ~ 300 Km of wire to complete the short model program (4 additional coils) and fabricate 12 long coils for the long prototype program.
- Place an order for 70 km in FY'15 and 130 Km in FY'16
- 100 Km will be made available from CERN in CY16 to help the MQXFL magnet schedule of the LARP program.

MQXF Production for Q1/Q3

- Require 90 coils with each coil using ~ 20 Km of wire.
- Total procurement is for ~ 1,800 Km (9 tonnes)
- The procurement plan is incorporated in US-HiLumi doc-37 V.5
 - "Advanced Acquisition Plan for Quadrupole Magnet conductor"
 - by Lance Cooley

18 mm wide 40 strand QXF cable - An example of a developmental cable



Example of sub-element shearing and barrier rupture

These damage lead to mostly RRR degradation of the copper stabilizer at the edges of the cable. Low RRR can lead to conductor instability due to "magnetization" and "self-field" effects. <u>Target is</u> to maintain RRR > 100 at the "kinks" – cable edges.

V-tap configuration to measure RRR at edges

Wire ID	RRR	
B1042Z-11-ES-3-Minor	68	
B1042Z-11-ES-3-Major	91	
B1042Z-11-ES-3-Minor	80	
B1042Z-11-ES-3-Major	92	
B1042Z-11-ES-3-Minor	62	
B1042Z-11-ES-3-SS	166	

Cabling Trade-offs

- Minimize the amount of strand damage
 - Less compaction
 - Can lead to mechanically unstable cable for coil winding
- Increase mechanical stability of cable
 - More compaction and deformation of strands
 - More strand damage Reduced critical current and RRR (Sub-element shear leading to barrier thinning and barrier breakage causing Sn leak into copper and reducing RRR)
 - To reduce cabling damage, the keystone angle has been reduced from 0.55 to 0.4 degrees

Specification for MQXF Cable 2nd Generation

- Number of strands
- Mid-thickness
- Width
- K.S. angle
- Pitch Length
- Core Material
- Core Width
- Core thickness

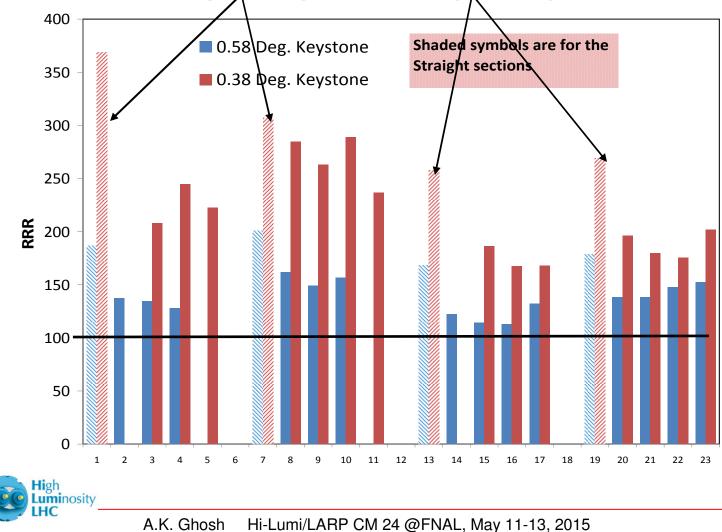
40

1.525 mm +/- 0.010 mm 18.15 mm +/- 0.050 mm 0.40 deg. +/- 0.10 deg. 109 mm +/- 3 mm Annealed 316L SS 12 mm (biased to major edge) 0.025 mm

The only change made from the 1st generation cable design is to reduce the Keystone angle from 0.55 to 0.40 deg.

1st and 2nd Gen cable using the same Cable Map

Cable	1056-A	1056-7
	1 st Gen.	2 nd Gen.
Avg. THICKNESS mm	1.524	1.522
Avg. WIDTH mm	18.14	18.19
Avg. ANGLE deg.	0.58	0.38

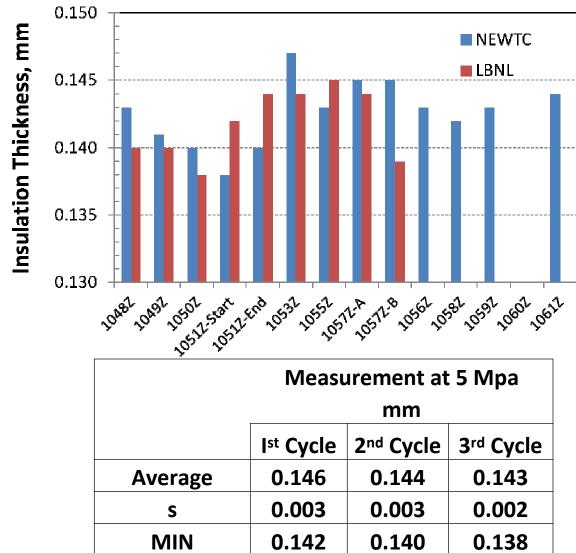

Extracted Strand Tests from a trial run of 2nd Gen

Cable	lc (12 T)	lc (15 T)	RRR
Description	Degradation	Degradation	Extr.
1st Gen. Cable	2.6%	3.4%	250
2nd Gen Cable	2.2%	2.7%	234

RRR at the edges of the cable $V_{tap} \sim 10 \text{ mm}$ Comparison of 0.38 and 0.58 Deg. Keystone

Wires are from two billets 15950 and 15953 with round wire RRR of 307 (15950) and 205 (15953)

LARH


Cable Insulation

- Insulation is braided directly on cable
 - New England Wire Technology (NEWT)
- Using S-2® glass (from AGY) with 933 Silane sizing
 - 2 ply yarn
- Several lengths of QXF cable has been insulated
 - Using braiding parameters to yield target specification of 0.145 \pm 0.005 mm thickness
 - 10-stack measurements at 5 MPa are used to determine insulation thickness
 - Thickness can be readily adjusted to meet any change to present specification.

Cable Insulation

0.154

High Lumin LHC MAX

0.149

0.147

Summary

- The "reduced-Sn" design change increases RRR control with minimal loss of J_c.
 - Implemented for all billets in process and future procurements.
- RRP® 108/127 is going to used for all future procurements
 - <u>There is sufficient manufacturing margin in I_c in the specification</u>.
 RRR margin is ensured by proper control of Nb/Sn content of the sub-element. However, production uniformity has to be emphasized in the control of "raw" materials, and in ensuring proper QA/QC procedures in wire fabrication and in the testing at the vendor.
- Strand procurement has been planned to meet cable manufacture and coil winding schedule.
- We have a 2nd iteration of the cable parameters which reduces the keystone angle and thereby the possibility of subelement shear in the wire at the cable edges
- Specification and Production QA plan is being finalized this fiscal year for strand, cable and insulation

End of Presentation

