HL-LHC impedance and stability studies

N.Biancacci, K.Li, E.Métral, B.Salvant

> HiLumi Workshop FNAL, 12 May 2015

Acknowledgements: R.Bruce, R.Calaga, R.De Maria, N.Mounet and the WP 2.4, Collimation colleagues and the crab cavity designers!

Outline

The HL-LHC collimator upgrade scenarios

- IP3+IP7 upgrade with Mo MoC jaws
 - Impedance of the machine
 - Impedance margins
 - Stability margins
- Only IP7 upgrade with Mo MoC jaws
- IP3 retraction and IP7 upgrade with Mo MoC jaws

New coating materials

Stability curves with Q'=+3

Crab Cavities studies

- HOM studies
- Single bunch growth rates Vs Q'

IP3+IP7 upgrade with Mo - MoC jaws Impedance margins Stability margins Impedance margins Stability margins

HL-LHC collimator upgrade scenarios.

• Old baseline of the HL-LHC impedance model with different CFC collimators.

 \rightarrow CFC collimators represent the highest contributors to the HL-LHC impedance over a wide range of frequencies.

 \rightarrow New jaws materials for the secondaries (TCSGs) were therefore explored.

IP3+IP7 upgrade with Mo - MoC jaws Impedance margins Stability margins Impedance margins Stability margins

• Impedance gain with MoC and Mo collimators in both the TCSGs in IP3 and IP7.

- \rightarrow With MoC collimators the impedance is reduced to 60% (range 10 MHz 1 GHz).
- \rightarrow With Mo collimators the impedance is reduced to 40% (range 10 MHz 1 GHz).

IP3+IP7 upgrade with Mo - MoC jaws Impedance margins Stability margins Impedance margins Stability margins

• Impedance gain with MoC and Mo collimators in both the TCSGs in IP3 and IP7.

- \rightarrow With MoC collimators the impedance is reduced to 60% (range 10 MHz 1 GHz).
- \rightarrow With Mo collimators the impedance is reduced to 40% (range 10 MHz 1 GHz).

NB: A similar reduction can be achieved coating the MoC with 5 μm of Mo!

IP3+IP7 upgrade with Mo - MoC jaws Impedance margins Stability margins Impedance margins Stability margins

- The effect of coating was studied \rightarrow we can increase the stability region.
- The same stability threshold studies presented in <u>HiLumi 2014</u> were performed for Q' = 15 units (based on 2012 scaling).

- \rightarrow Beneficial effect of Mo already visible confirmed also for a coating of 5 μm .
- \rightarrow All beams stable for Mo or Mo coating with negative octupole polarity.

IP3+IP7 upgrade with Mo - MoC jaws Impedance margins Stability margins Impedance margins Stability margins

• Impedance gain with 5 μ m Mo coated collimators in the TCSGs in IP7 only.

- \rightarrow Coating only the TCSGs in IP7 we reduce the gain to a maximum of $\simeq 15\%$.
- \rightarrow We go from 40% of the baseline CFC impedance, to 55% maximum.

IP3+IP7 upgrade with Mo - MoC jaws Impedance margins Stability margins Impedance margins Stability margins

• Stability area when coating only the TCSGs in IP7 and leaving those in IP3 in CFC.

 \rightarrow For negative octupole polarity, all beams are stable but less margin than before.

IP3+IP7 upgrade with Mo - MoC jaws Impedance margins Stability margins Impedance margins Stability margins

• The TCSG in IP3 can be retracted to reach more stability

 \rightarrow Opening the TCSG in IP3 we recover up to a 5% reduction of the precedent margin.

IP3+IP7 upgrade with Mo - MoC jaws Impedance margins Stability margins Impedance margins Stability margins

• Stability area when coating only the TCSGs in IP7 and leaving those in IP3 in CFC.

 \rightarrow All beams are now stable.

Impedance margins Stability margins Stability curves with Q'=+3

New materials other than the Mo ($\sigma_c = 18.7 \text{ MS/m}$) for coating on MoC have been recently proposed:

- TiN: ($\sigma_c = 2.5 \text{ MS/m}$)
- TiB2 ($\sigma_c = 11.1 \text{ MS/m}$)

 \rightarrow 5 µm of TiN coating 30% less effective than Mo coating \rightarrow 5 µm of TiB2 coating 10% less effective than Mo coating

Impedance margins Stability margins Stability curves with Q'=+3

- Stability area when coating only the TCSGs in IP7 and leaving those in IP3 in CFC.
- Setting $Q' = 15 \pm 1$.

 \rightarrow At the edge of instability only with 5 μm of TiB2 coating with negative octupole polarity.

 \rightarrow All beams unstable with TiN.

N.Biancacci

Impedance margins Stability margins Stability curves with Q'=+3

- Stability area when coating only the TCSGs in IP7 and leaving those in IP3 in CFC.
- Setting $Q' = 3 \pm 1$.

 \rightarrow If we can grant the precision on Q', in principle we can achieve higher stability areas.

Why is this not the default option?

Impedance margins Stability margins Stability curves with Q'=+3

Example from the studies of **LHC** stability at β^* 80 cm:

- Study of the most unstable modes rise-times with damper of 50 turns, varying Q'.
- Minimum instability growth rate at Q'=3 but need good Q' control (±1 unit).

PS: $-\text{Im}(\Delta Q) = 10^{-4} \rightarrow \text{Instability growth rate} = 7s^{-1} \rightarrow 1500 \text{ turns (140 ms);}$ PPS: No scaling is assumed here: rise times from the impedance model as-it-is.

Impedance margins Stability margins Stability curves with Q'=+3

- Stability area when coating only the TCSGs in IP7 and leaving those in IP3 in CFC.
- Setting $Q' = 3 \pm 1$ and coating at 1μ m.

- \rightarrow We could achieve stability also with 1 μ m coating!
- \rightarrow LHC run II will give us the possibility of confirming this observations.
- \rightarrow New (many) other coating and bulk materials are being tested.

HL-LHC crab cavities studies:

- Crab cavities can help in improving the HL-LHC luminosity recovering the head on beams overlap at the IPs.
- The high transverse voltage needed reflects on the strength of the HOMs
- The number of crab cavities and the location at high $\beta = 3600$ m exceptionally amplify both single and coupled bunch effects.

HOM studies Simulation procedure Single bunch growth rates Vs Q

- The HOMs can vary in frequency uniformly between ±3 MHz.
- The HOMs will be sampled differently depending on single bunch or coupled bunch regime.

HOM studies Simulation procedure Single bunch growth rates Vs Q

- The HOMs can vary in frequency uniformly between ±3 MHz.
- The HOMs will be sampled differently depending on single bunch or coupled bunch regime.

In order to introduce the general approach we choose an example mode (EM) with:

Single bunch growth rate of the EM: HOM simulation procedure.

1) Sum the HOM of each of the cavity within a uniform distribution: $f'_r \in (f_r - 3 \text{ MHz}, f_r + 3 \text{ MHz}).$

→ The R_s can be reduced up to a factor ≈ 8 or less depending on the Q. → In this case R_s is reduced by a factor ≈ 4 .

Single bunch growth rate of the EM: HOM simulation procedure.

- 1) Sum the HOM of each of the cavity within a uniform distribution: $f'_r \in (f_r - 3 \text{ MHz}, f_r + 3 \text{ MHz}).$
- 2) Calculate the growth rate of the instability as a function of Q' and 50 turns damper.
- 3) Derive the probability function related to the growth rate distribution.

Single bunch growth rate of the EM: HOM simulation procedure.

- 1) Sum the HOM of each of the cavity within a uniform distribution: $f'_r \in (f_r - 3 \text{ MHz}, f_r + 3 \text{ MHz}).$
- 2) Calculate the growth rate of the instability as a function of Q' and 50 turns damper.
- 3) Derive the probability function related to the growth rate distribution.
- 4) Compare it with the HL-LHC baseline scenario ($5\mu m Mo + MoC$).

N.Biancacci

- Single bunch growth rates from all the crab cavities HOMs.
- Only one statistical process realization is shown (full statistics studies on going...)

 \rightarrow Additional 50% growth rate contribution to the HL-LHC machine for Q' > 0.

Single bunch observations:

- The crab cavities bring an additional 50% growth rate contribution to the HL-LHC machine for Q' > 0.
- 8 crab cavities introduce $(R_s/Q)_{tot}^{max} \simeq 30 \text{ k}\Omega/\text{m}$ in one plane not accounting for the β function.
- To be in the shadow (1% of the baseline) we would need $30/50=600\Omega/m$.

Cures and considerations:

- A the last HiLumi workshop we recommended (R_s/Q)^{max}_{tot} ≃1kΩ/m that can be kept as a strict limit (E.Métral talk in Hilumi 2014, KEK)
- Machine operation optimization: working with Mo collimators operating at Q' = 3, the stabilty limits are pushed further and beams have margin of stability. \rightarrow we can take a factor 2 margin from there: $(R_s/Q)_{tot}^{max} \simeq 2 \text{ k}\Omega/\text{m}.$
- Factor 1.5 gain when increasing to 100 mm the beam pipe aperture (see yesterday talks from B. Xiao and S. De Silva): $(R_s/Q)_{tot}^{max} \simeq 3 \text{ k}\Omega/\text{m}$ if gain similar for all the HOMs (relaxed limit).

• ...

HOM studies Simulation procedure Single bunch growth rates Vs Q'

BNL crab cavity design single bunch limits

 \rightarrow We need to decrease by at least a factor of 2 the total cumulated R_s/Q .

HOM studies Simulation procedure Single bunch growth rates Vs Q'

SLAC crab cavity design single bunch limits

 \rightarrow We need to decrease by at least a factor of 2 the total cumulated R_s/Q .

- Coupled bunch growth rates for the EM.
- Only one statistical process realization is shown (full statistics studies on going...)

 \rightarrow Significant effect on the rise time: is this the case also for the crab cavities?

Single bunch growth rates Vs Q'

- Coupled bunch growth rates for a crab cavity HOM close to the EM $(f_r = 680 \text{ MHz}, R_s \simeq 1G\Omega/m, Q \simeq 1000).$
- Only one statistical process realization is shown (full statistics studies on going...)

HOM distribution for 8 BNL crab cavities on y plane

- Coupled bunch growth rates for the a crab cavity HOM close to the EM ($f_r = 680 \text{ MHz}, R_s \simeq 1G\Omega/m, Q \simeq 1000$).
- Only one statistical process realization is shown (full statistics studies on going...)

 \rightarrow Up to factor $\simeq 10$ growth rates higher than baseline for Q' > 0.

Coupled bunch observations:

- A single crab cavity mode introduces up to a **factor 10** in growth rate higher than the contribution of the HL-LHC machine for Q' > 0.
- The chosen mode has $R_s \simeq 1$ GQ/m accounting for the β function and for N=8 cavities.
- Dividing by $\beta_y/\beta_y^{av} = 50$ and accounting for a **factor 4** of impedance reduction due to the spread, each cavity introduces 5 MΩ/m (it would be 2.5 MΩ/m if the mode is well separated).
- To be in the shadow (1% of the baseline) we would need $5M/10/100=5k\Omega/m$.

Cures and considerations:

- At the last HiLumi workshop we recommended $R_{sHOM/CC}^{max} \simeq 10 20k\Omega/m$ that can be kept as a strict limit.
- Accounting for 8 well separated mode we have $R_{sHOM/CC}^{max} \simeq 160 \text{ k}\Omega/\text{m}$.
- Colliding at 45 cm to 15 cm (ultimate scenario) we gain a factor 3 from the β function decrease: R^{max}_{sHOM/CC} ≈ 0.5 MΩ/m.
- Machine operation optimization: working with Mo collimators operating at Q' = 3, the stabilty limits are pushed further and beams have margin of stability. \rightarrow we can take a **factor 2** margin from there: $R_{sHOVICC}^{max} \simeq 1 \text{ M}\Omega/\text{m}$ (relaxed limit).

Ο ...

HOM studies Simulation procedure Single bunch growth rates Vs Q'

Coupled bunch limits:

HOM distribution for 1 BNL crab cavities on y plane

 \rightarrow The 927 MHz, 1.86 GHz and 1.92 GHz modes should be reduced by a factor 3 (or 2 times more if the modes start to be well separated).

 \rightarrow The mode at 1.75 GHz should be reduced by more than two orders of magnitude.

N.Biancacci

HOM studies Simulation procedure Single bunch growth rates Vs Q'

Coupled bunch limits:

HOM distribution for 1 SLAC crab cavities on y plane

 \rightarrow The mode at 1.6 GHz should be decreased by a factor 2.

Conclusions I

The HLLHC beam stability can be improved reducing the collimator impedance. Different scenarios have been studied.

- The TCSGs collimators in IP3 and IP7 coated with 5 μm Mo over MoC.
 - \rightarrow The impedance is reduced up to 40 % of the baseline one (all TSGS in CFC).
 - \rightarrow Stability ensured for all type of beams.
- The TCSGs collimators only in IP7 coated with 5 μm Mo over MoC.
 - \rightarrow The impedance is reduced up to 55 % of the baseline one (all TSGS in CFC). .
 - \rightarrow Stability margins still available with negative polarity.
- The TCSGs collimators only in IP7 coated with 5 μm Mo over MoC and IP3 settings more open.
 - \rightarrow The impedance is reduced up to 45 % of the baseline one (all TSGS in CFC). .
 - \rightarrow Increased stability margin for both negative polarity.

Conclusions II

- The TCSGs collimators only in IP7 coated with 5 μm of TiB2 or TiN over MoC.
 - \rightarrow TiN coating is 30% less effective than Mo coating.
 - \rightarrow TiB2 coating is 10% less effective than Mo coating.
 - $\rightarrow\,$ Beams unstable except for TiB2 coating and negative octupole polarity (but at the edge of instability).
- Stability studies with Q'=+3 instead of +15:
 - \rightarrow The stability curves are generally improved: all beams stable. But...
 - \rightarrow Thiny region of stability predicted: requires good Q' control (within 1 unit).
 - \rightarrow The coating can be reduced to 1 μ m with small differences within Mo, TiB2 or TiN.
- Crab cavities observations:
 - \rightarrow In single bunch all the crab cavities increase the machine growth rate by a factor 1.5.
 - \rightarrow Both BNL and SLAC design should at least half the total cumulated R_s/Q .
- Crab cavities threshold:
 - $\rightarrow\,$ In the coupled bunch regime a chosen HOM (690 MHz) shows increase in the growth rate up to a factor 10.
 - → BNL design: 927 MHz, 1.86 GHz and 1.92 GHz modes to be reduced by a factor 3. Mode 1.75 GHz to be reduced by more than 2 orders of magnitude for relaxed limits.
 - \rightarrow SLAC design: the mode at 1.6 GHz should be decreased by a factor 2.

Thank you for your attention!