Mu2e Remote Handling Review
Comparisons: Costs, Risks & Maintainability

Ryan Schultz
Deputy L3 Manager Target Station
3/3/2015
Comparisons: Costs, Risks & Maintainability

• Costs
 – TPC comparison - M. Gardner, M. Campbell

• Risks
 – Impact of mechanical failure – M. Campbell, R. Schultz

• Maintainability
 – Configuration & functional flexibility

• Conclusions
TPC Comparison

<table>
<thead>
<tr>
<th></th>
<th>M Campbell</th>
<th>Machine Savings</th>
<th>Total w/ Contingency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Labor</td>
<td>Material</td>
<td></td>
</tr>
<tr>
<td>Old</td>
<td>$1,356,644</td>
<td>$891,620</td>
<td>$2,248,264</td>
</tr>
<tr>
<td>New</td>
<td>$1,308,829</td>
<td>$372,428</td>
<td>$1,681,258</td>
</tr>
<tr>
<td>New-Old</td>
<td>$(47,815)</td>
<td>$(519,192)</td>
<td>$(567,007)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rates have burden and no escalation inc. above</td>
<td></td>
</tr>
<tr>
<td>Overhead</td>
<td></td>
<td>$88,263</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>$(47,815)</td>
<td>$(607,455)</td>
<td>$(655,270)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contingency 40%</td>
<td>$(262,107.81)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$(917,377)</td>
</tr>
</tbody>
</table>

	FESS			
Old Building scope reduction	$200,000			
EDIA reduction	$42,000			
Indirects on EDIA reduction	$18,900			
Indirects on scope reduction	$(260,900)	$(78,270.00)	$(339,170)	
	New Building Costs	$1,594,000		
EDIA	$334,740			
Indirects on EDIA	$150,633			
Indirects on new building cost	$95,000	$2,174,373	$652,311.90	$2,826,685
	Net increase to project	$1.25M		
			$1,570,138	

Mu2e

Fermilab
Reliability?

- Reliability of single point failure systems is irrelevant in the context of highly radioactive Remote Handling Systems
 - Must assume failure is a possibility
 - What do you do when that happens???

- For Remote Handling Systems
 - Impact of failure is necessary, regardless of reliability…
Impact of Failure

- 24 possible failure conditions considered
 - Analysis done by M. Campbell, R. Schultz
 - First pass (not exhaustive)
 - Based on conceptual designs
 - System failure, not individual parts

- Rated 1-5
 - 1 = Low (Green) Easy to fix
 - 3 = Medium (Yellow) Difficult but possible
 - 5 = High (Red) Very difficult, unclear

- Side by side comparisons of both scheme’s
Impact of Failure

• Conclusions
 – Horizontal scheme will always have a higher Impact of Failure
 • Due to telescoping arm
 • Due to lack of flexibility that crane provides
 • Higher likelihood of operational downtime and expense
 • Recovery time from a 4/5 class failure could be months
 – Systems with fail safe (or redundancy) are strongly preferred
 • Probability of 2-point failures is very low, but it is still possible
 • Designs like this are not easy, nor always possible
Maintainability

• In engineering, Maintainability is the ease with which a product can be maintained in order to:
 – isolate/correct defects or their cause
 – repair/replace faulty or worn out components
 • without replacing still working parts
 – prevent unexpected breakdowns
 – maximize a product’s useful life
 – maximize efficiency, reliability and safety
 – make future maintenance easier
 – cope with a changed environment
Maintainability

• Remote handling systems need to be maintained:
 – General maintenance
 – Alterations, repairs
 – R&D
 – Trial and error
 – Operator practice time

• Experience at the C0 RHF hot cell:
 – Things take a LOT longer than expected in a radioactive environment: PPE, shielding, contamination controls, etc.
 – R&D, assembly, practicing, implementation, etc.
 – C0 is not constrained by beam operations
C0 RHF – Hot Cell

• Mu2e Target Hall RH will be similar to C0 hot cell - contaminated environment, radioactive material

• PPE & shielding required makes even the simplest task difficult

• Cameras lack depth of field
Maintainability

• Horizontal Scheme - Remote Handling Room
 – Is inaccessible during beam operations
 – Some equipment will be removed from the room
 • Electronics only?
 • Possibly entire robot
 – Assembly-disassembly of contaminated robot is time consuming
 – Any practice would have to be performed during shutdown
 • or on separate practice robot ($$$)
 – This setup will increase operational downtime
Maintainability

• Overhead Scheme - Remote Handling Area
 – Likely Accessible during beam operations

 – This *probably* allows for activities during operations
 • Assembly/disassembly
 • Repairs, alterations
 • Practice time!!!

 – Minimizes operational downtime
Operating Notes – vertical scheme service building access

Yellow box indicates remote handling equipment service area

Prompt dose rate 0.1-3 mrem/hr

Occupancy at the discretion of AD ES&H

Requires radiation work permit
Target Change-out Time

<table>
<thead>
<tr>
<th>Task</th>
<th>Horizontal</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cool down & shield block removal</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Install robot, controls, assembly, calibrate</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>Operator training, practice, adjustments</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Target change</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Dismantle robot, controls, electronics</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Reinstall blocks, hatch</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Days</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>Weeks</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

- Overhead scenario allows access to robot during operations
 - Assembly & disassembly not necessary
 - Plenty of time for calibration, practice, adjustments, etc.
Maintainability

• Conclusions
 – Remote Handling systems
 • take time to maintain
 • take time to use due to contamination controls
 • take practice to use effectively
 – Overhead scheme will minimize operational downtime
 • ~3 weeks for target change-out
 – Horizontal scheme operations will take longer
 • ~5 weeks for target change-out
Overhead Advantages

• Target removal arm is non-telescoping
 – Less complex, less likely to fail, easier to mitigate problems

• Does not rely on floor level-ness

• More easily allows for Convectively Cooled target
 – Horizontal robot is not designed for 10’ long target
 – Would be difficult to retrofit for CC target after area is contaminated

• Overhead crane gives future flexibility

• Likely allows building access during beam operations
 – Robot/module setup, testing, operator practice time

• PS magnetic field
 – Overhead RH area estimates 10-30 Gauss
 – Horizontal RH area estimates 50-250 Gauss
Horizontal Advantages

- Costs less by $1.25M
Comparisons: Costs, Risks & Maintainability

• Costs
 – Overhead scheme increases TPC by $1.25M

• Technical Risks
 – Horizontal scheme has higher Impact of Mechanical Failure

• Maintainability
 – Overhead scheme will reduce change-out time due to probable access during beam operations
Charge to Review Committee

- Horizontal Scheme
 - Is baseline (horizontal) technically sound?
 - Risks, contingencies, radiological hazards been addressed?
- Overhead Scheme
 - Is alternative (overhead) technically sound?
 - Risks, contingencies, radiological hazards been addressed?
 - Are there significant advantages to warrant increased cost?
- Complete assessment of both schemes
 - not necessarily a choice or preference

- Ask for committee to meet and submit questions by 5:00
 - Design team will respond to questions Wednesday morning