

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

High Performance Computing Activities at Fermilab

James Amundson Breakout Session 5C: Computing February 11, 2015

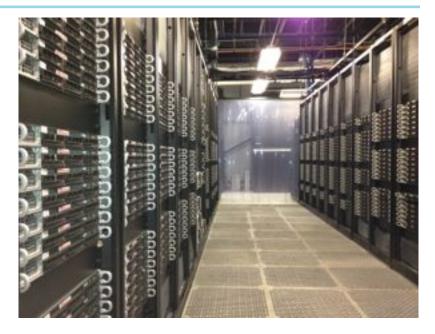
High Performance vs. High Throughput Computing

- Much of the computing in HEP relies on High Throughput Computing (HTC)
 - One task per processor on many processors
 - Trivial to perform in parallel
- This talk is about High Performance Computing (HPC)
 - One large task on many processors
 - Tightly-coupled communications
 - Advanced networking
 - Low latency and high bandwidth
 - Includes Linux clusters with specialized networking and supercomputers

Cooperative Work in High Performance Computing (HPC)

- Lab facilities
 - HPC clusters
 - Next-generation HPC testbeds
- Lab competencies
 - Scientific
 - Computational Physics on HPC
 - Technical
 - HPC programming and optimization
 - HPC cluster support
- Relevant lab science topics
 - Lattice QCD
 - Cosmology

3


Accelerator Simulation

Much of this work Funded by DOE HEP CompHEP through SciDAC

Shared HPC Facilities

- Lattice QCD
 - Three clusters
 - ~25,000 CPU cores total
 - Two clusters include GPUs
 - Infiniband interconnects
- Accelerator Simulation and Cosmology
 - Two clusters
 - ~2,500 CPU cores total
 - Infiniband interconnects
- Next-generation research
 - Two clusters
 - 72 traditional cores

- Phi cluster
 - 16 Intel Xeon Phi 5110P accelerators
- GPU clusters
 - 2 NVIDIA Tesla Kepler K20m
 GPUs and 2 K40m GPUs
- Infiniband interconnects

Sharing HPC Facilities

- Facilities are operated by Computing (CS); use is shared between Particle Physics (PPD), Center for Particle Astrophysics (FCPA) and CS.
- All three subjects also utilize leadership class supercomputing facilities, for example
 - ALCF at Argonne (Mira: BlueGene/Q)
 - Resources obtained through the INCITE program.
 - NERSC at LBL (Edison: Cray XC30)
 - Resources obtained through the SciDAC program.

Shared Competencies

- HPC cluster support
 - LQCD group has developed highly specialized expertise in acquisition, deployment and support of HPC Linux clusters.
 - Difficulty of each is easy to underestimate.
 - Exotic hardware and drivers.
 - Expertise is shared with Accelerator Simulation and Cosmology through the support of specialized clusters.
- Computational Physics on HPC
 - Many overlaps between LQCD, Accelerator Simulation and Cosmology
 - Numerical Algorithms
 - Particle-in-cell techniques, linear algebra and spectral methods
 - Parallelization Algorithms
 - Load balancing, data layout, communication avoidance, etc.

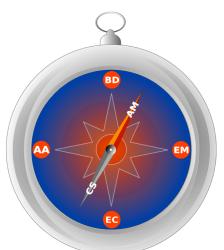
🛟 Fermilab

Shared Competencies, continued

- HPC programming and optimization
 - Similar technical issues are faced by all HPC efforts at the lab.
 - Groups meet in a regular series of technical seminars ("NEAT Topics").
 - LQCD and Accelerator Simulation submitted SciDAC crosscutting project.
 - Accelerator Simulation and Cosmology share technical personnel.

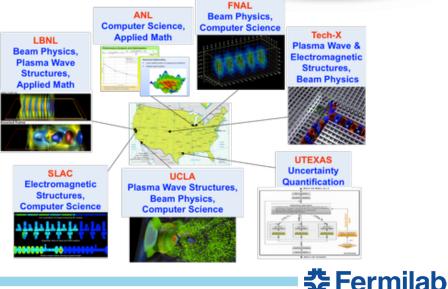
Lattice-QCD computing and USQCD

- Lattice-QCD applications cover all science cross-cuts, e.g. hadronic contributions to (g-2)μ, nucleon axial-vector form factor for CCQE X-section, quark masses & as for Higgs predictions
 - Calculations require supercomputers (provided by DOE's LCFs) and even more flops on medium-scale computing clusters (naturally provided by DOE laboratories)
- Fermilab deploys and operates large computing clusters for U.S. lattice gauge theory community (organized by USQCD Collaboration), which is mostly based at universities.
- USQCD effort over 100 strong
- Hardware funded by DOE HEP & NP offices
- Hosts largest share of USQCD's computing hardware
- Highest user satisfaction among three USQCD facilities
- Fermilab plays leading roles in U.S. lattice effort including:
 Paul Mackenzie USQCD
 - Paul Mackenzie USQCD spokesperson and project PI.
 - Bill Boroski (office of CIO) LQCD project manager.
- Computing and PPD interactions crucial for successful science!

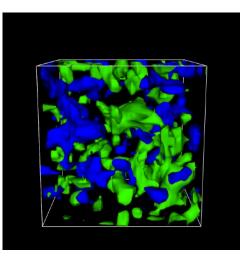


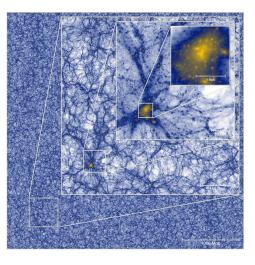
USQCD All-Hands Meeting Thomas Jefferson National Accelerator Facility • Newport News, VA April 18-19, 2014

Accelerator Simulation and ComPASS


- Community Project for Accelerator Science and Simulation (ComPASS) collaboration
 - Mission is to develop and deploy the state-ofthe-art accelerator modeling.
 - DOE CompHEP+ASCR funding through SciDAC

- Collaboration includes national labs, universities and one company
- Fermilab is the lead institution on ComPASS


9


 More discussion of accelerator simulation to follow...

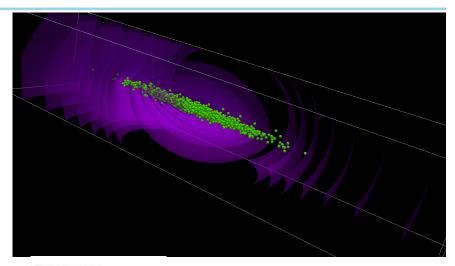
Science on HPC

- The point of these shared facilities and competencies is producing science.
 - Lattice QCD is covered in other cross-cutting sessions.
 - Cosmology is covered in other cross-cutting sessions.
- I will focus on Accelerator Simulation.
 - Accelerator simulation serves HEP by enabling accelerator technology.
 - Directions must be in sync with HEP priorities.
 - Work is done in collaboration with Fermilab's Accelerator Division and other accelerator facilities, especially CERN.

2015-02-11

😤 Fermilab

Accelerator Simulation Directions Set by Lab Goals

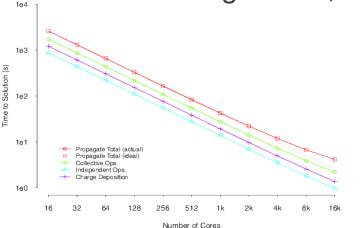

- We choose simulation topics based on Lab goals, which are ultimately driven by P5 goals.
 - Extend the scientific reach of existing accelerator facilities
 - Simulate existing Booster, Delivery Ring, Recycler and Main Injector.
 - Launch a test facility to enable "transformative" Accelerator Science
 - Simulate the Integrable Optics Test Accelerator (IOTA).
 - IOTA is an experimental machine to explore using intrinsically nonlinear dynamics to overcome intensity limitations inherent to ordinary linear machines.
 - Establish Fermilab as essential contributor to future large accelerators
 - Simulate LHC Injectors for HL-LHC.

Synergia

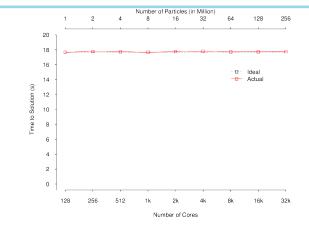
Beam Dynamics Framework

- Developed at Fermilab with support from SciDAC ComPASS Collaboration (CompHEP+ASCR)
 - Fermilab leads ComPASS
- Advanced capabilities
 - Collective effects
 - High precision through high statistics (many particles)
 - Single- and multi-bunch physics
 - Multi-bunch capability is unique to Synergia
- Runs on everything from laptops to supercomputers

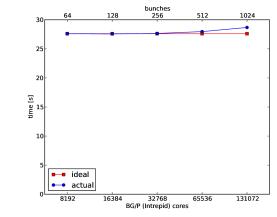
Synergia also used to teach students from around the world at the US Particle Accelerator School



(e.g., two weeks ago)

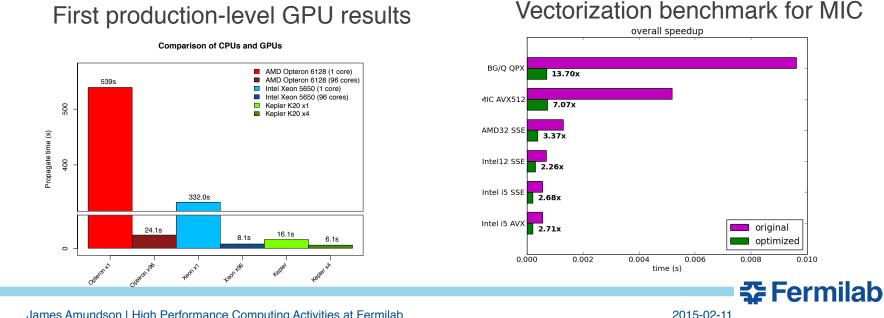


Synergia and Current-Generation HPC


- Synergia was constructed for HPC
 - Core model is MPI + (optional)
 OpenMP
 - Strong scaling over 1000x
 - Weak scaling to 100,000+ cores

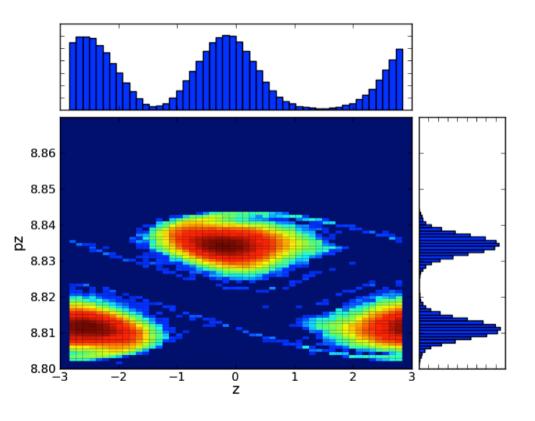
Single-bunch strong scaling from 16 to 16,384 cores 32x32x1024 grid, 105M particles

Weak scaling from 1M to 256M *particles* 128 to 32,768 cores



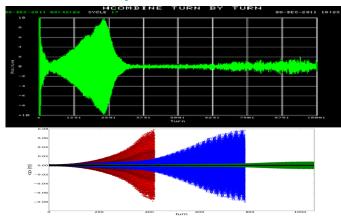
Weak scaling from 64 to 1024 *bunches* 8192 to 131,072 cores Up to over 10¹⁰ particles

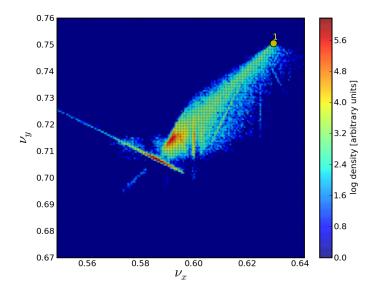
😤 Fermilab


Synergia and Next-Generation HPC

- Dramatic changes in near future HPC architectures
 - Supercomputers and clusters alike
 - OLCE's Summit: GPU + PowerPC
 - NERSC's Cori: Intel MIC
- Synergia GPU and MIC ports in progress
 - Using shared expertise and facilities

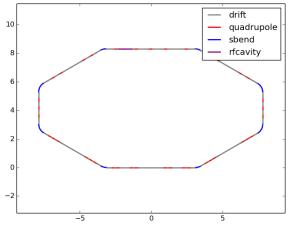
Synergia Applications


- Lab Goal: Extend the scientific reach of existing accelerator facilities
 - Simulate the Main Injector and Recycler under high intensities
 - Work done with Accelerator Division Main Injector personnel
 - Multi-bunch capabilities in Synergia used to simulate slip stacking
 - Slip stacking uses RF to combine multiple bunches to increase intensity

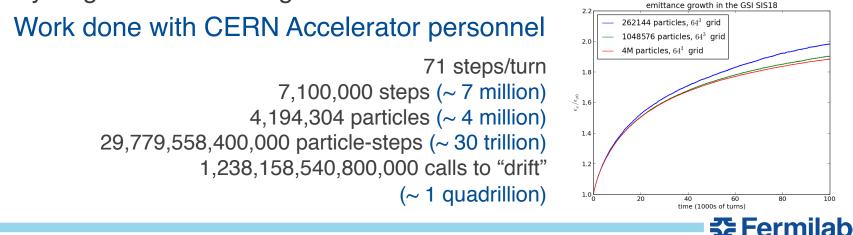


Synergia Applications, continued

- Resonant extraction in the Delivery Ring for Mu2e
 - Work done with Accelerator Division Muon personnel
 - Important collective effects
- Multi-bunch instability in the Booster
 - Work done with AD Proton Source personnel


Requires multi-bunch physics with collective effects

2015-02-11


😤 Fermilab

Other Synergia Applications

- Lab Goal: Enable "transformative" Accelerator Science
 - Synergia extended to handle nonlinear lens for IOTA
 - Work done with Accelerator Physics Center personnel

- Lab Goal: Establish Fermilab as essential contributor to future large accelerators
 - Synergia benchmarking exercise and simulations for HL-LHC

Conclusions

- Three scientific areas at the lab use significant HPC resources
 - Lattice QCD, Cosmology, Accelerator Simulation
- Share facilities
 - Acquired, deployed and operated by Computing
 - Used by all
- Share Competencies
 - Computational Physics
 - HPC programming and optimization
- Produce science aligned with lab priorities
 - Accelerator simulation in support of P5/Lab goals

