Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science # **Muon Wrap Up** Brendan Casey and Doug Glenzinski Institutional Review 12 February 2015 #### **Muon Cross-Cut** #### **Muon cross-cut: Users** 50 institutions in 8 countries 4 US National Labs Over 300 users. ~50 users retained from the Tevatron program ## **Muon cross-cut: Theory** Strong participation from Fermilab theorists The lab enables the national lattice program Engagement of the university community The Muon (g-2) Theory Value: Present and Future Thomas Blum¹, Achim Denig², Ivan Logashenko³, Eduardo de Rafael⁴, B. Lee Roberts⁵, Thomas Teubner⁶, Graziano Venanzoni⁷ | Error | [20] | [21] | Future | |--|------|------|--------| | $\delta a_{\mu}^{ m SM}$ | 49 | 50 | 35 | | $\delta a_{\mu}^{ m HLO}$ | 42 | 43 | 26 | | $\delta a_{\mu}^{ m HLbL}$ | 26 | 26 | 25 | | $\delta(a_{\mu}^{ m EXP}-a_{\mu}^{ m SM})$ | 80 | 80 | 40 | Updates to g-2 theory #### **Muon cross-cut: Facilities** ~\$100M in savings by creating an integrated program Beautiful, world-class facilities to serve the community well into next decade and beyond ## **Muon cross-cut: Computing** Clear recognition by the lab that this is vital to our mission and a major concern of our users. Full engagement of collaborations and leveraging of available resources. #### Muon cross-cut: R&D Leading contributions to: EM calorimetry, photo-detectors, invacuo technology, GPU-based DAQ, high power targetry, beam monitoring, He³ magnetometry. Making use of facilities at Fermilab, Frascati, SLAC, PSI, and RAL # **Charge questions** - The quality and significance of the lab's recent scientific and technical accomplishments - The merit, feasibility, and projected impact of the future planned physics program - P5 alignment The quality and significance of the lab's recent scientific and technical accomplishments # Muon g-2 Technical Design Report July, 2014 Fermi National Accelerator Laboratory Batavia, IL 60510 www.fnal.gov Managed by Fermi Research Alliance, FRA For the United States Department of Energy under Contract No. DE-AC02-07-CH-11359 Contacts: C. Polly – Project Manager (polly@fnal.gov) K.W. Merritt – Deputy Project Manager (wyatt@fnal.gov) D. Hertzog – Co-Spokesperson (hertzog@uw.edu) B. L. Roberts – Co-Spokesperson (roberts@bu.edu) Office of Science #### Mu2e Technical Design Report October 2014 Fermi National Accelerator Laboratory Batavia, IL 60510 www.fnal.gov #### Managed by Fermi Research Alliance, FRA For the United States Department of Energy under Contract No. DE-AC02-07-CH-11359 CD2/3 reviews completed Muon campus 50% complete Mu2e ready for first solenoid purchases g-2 ring expected to be cold and powered before summer - The merit, feasibility, and projected impact of the future planed physics program - We will do the definitive muon g-2 experiment and the most sensitive charged lepton violation experiment - Large overlap with physics at the LHC and LBNF - Unique capabilities beyond LHC and LBNF P5 alignment # Recommendation 22: Complete the Mu2e and muon g-2 projects. | | | Scenarios | | | Science Drivers | | | | ier) | |------------------------------|--|---|-------------|-------|-----------------|-------------|--------------|-------------|----------------------| | Project/Activity | Scenario A | Scenario B | Scenario C | Higgs | Neutrinos | Dark Matter | Cosm. Accel. | The Unknown | Technique (Frontier) | | Large Projects | | | | | | | | | | | Muon program: Mu2e, Muon g-2 | Y, Mu2e small reprofile needed | Y | Y | | | | | | 1 | | HL-LHC | Υ | Y | Y | ~ | | ✓ | | ✓ | E | | LBNF + PIP-II | LBNF components Y delayed relative to Scenario B. | Υ | Y, enhanced | | ✓ | | | ✓ | I,C | | ILC | R&D only | R&D, possibly small hardware contributions. See text. | Υ | ~ | | ~ | | ~ | Ε | - The effectiveness and efficiency of facility operations and the planning for future facilities to support the research program - The appropriateness of proposed performance metrics in terms of being realistic and maximizing the scientific productivity of the facility. The effectiveness and efficiency of facility operations and the planning for future facilities to support the research program | Milestone Name | Responsibility | Impacts | Forecast | Needed by | Actual | |---|------------------------|-------------------------------|----------|---------------------|------------| | MC-1 Bldg Beneficial Occupancy for Cryo | MC-1 Building GPP | Cryo AIP | 1/8/14 | as soon as possible | 1/8/2014 | | MC-1 Bldg Beneficial Occupancy for g-2 Ring | MC-1 Building GPP | g-2 | 4/10/14 | as soon as possible | 4/10/2014 | | End of Circulating Beam Studies | g-2, Mu2e | g-2, Mu2e, Delivery Ring AIP | 4/25/14 | 6/30/14 | 4/25/2014 | | MC-1 Cryo Room Controls Available | MC-1 Building GPP | Cryo AIP | 9/22/14 | as soon as possible | 6/6/2014 | | Cryo Compressor Cooling Established | MC Infrastructure GPP | Cryo AIP | 9/30/14 | 10/31/14 | 8/15/2014 | | Cryo g-2 acceptance tests complete | Cryo AIP | lower-level milestone for g-2 | 10/24/14 | as soon as possible | 10/2/2014 | | Cryo Ready to Cool g-2 | Cryo AIP | g-2 | 3/15/15 | as soon as possible | 11/30/2014 | | D30 Straight Section Ready for New Installation | g-2 | Delivery Ring AIP | 2/5/15 | 5/17/16 | 1/31/2015 | | MI-52 Bldg Extension Beneficial Occupancy | MC Infrastructure GPP | Beam Transport AIP | 6/30/15 | 9/30/15 | | | Beamline Enclosure Beneficial Occupancy | Beamline Enclosure GPP | g-2 | 2/1/16 | 2/15/16 | | | Beam Transport Complete | Beam Transport AIP | g-2, Mu2e | 2/1/16 | 3/31/17 | | | Recycler RF Complete | Recycler RF AIP | g-2, Mu2e | 9/30/16 | 3/31/17 | | | Delivery Ring Complete | Delivery Ring AIP | g-2, Mu2e | 9/30/16 | 3/31/17 | | | Shield Wall Installation | g-2 | Mu2e | 1/5/17 | before g-2 running | | | Cryo: Mu2e Distribution Box Cold | Cryo AIP | Mu2e | 7/15/17 | 9/15/17 | | Muon campus milestones The appropriateness of proposed performance metrics in terms of being realistic and maximizing the scientific productivity of the facility. | Storage Ring | Storage ring yoke pieces, pole pieces, and superconducting coils have been installed and are ready to be cooled and powered. | Storage ring yoke pieces, pole pieces, and superconducting coils have been cooled and powered to full 1.5T field. | |----------------------------|---|--| | Storage Ring
Subsystems | Storage ring subsystems, including the electrostatic quadrupoles, pulsed electromagnetic kickers, and inflector, are ready to install. | Storage ring subsystems, including the electrostatic quadrupoles, pulsed electromagnetic kickers, and inflector, are installed and ready for commissioning with beam at nominal voltages and currents. | | NMR
Systems | Nuclear magnetic resonance (NMR) systems for monitoring magnetic field, including fixed probes, plunging probes, and NMR trolley, are ready to install. | Nuclear magnetic resonance (NMR) systems for monitoring magnetic field, including fixed probes, plunging probes, and NMR trolley, are installed and ready for commissioning with beam at nominal values. | Main stakeholders are DOE, Collaboration, and Lab. Everyone involved in making the KPPs and everyone has the same goal of getting to physics results ASAP - The effectiveness of the lab management in - Strategic planning - Core competencies - Implementing prioritized and optimized plan - Promoting and implementing a safe work environment - The effectiveness of the lab management in - Strategic planning - Core competencies - Implementing prioritized and optimized plan Cirigliano, et al PRD 80, 013002 (2009) Pb Vector(Z) Vector(γ) Scalar 80 **Dipole** Clear upgrade strategy worked out for Mu2e including physics case, planned accelerator upgrades and well defined branch points Z 2/12/15 20 nts Promoting and implementing a safe work environment # Absolute Highest Priority #### **Example from training provided to work managers** - If you are planning on visiting or doing work in MC-1, contact Aria to make sure you have appropriate hazard training - Working regularly? Need to be on daily hazard e-mail distribution - Check whiteboard posting in MC-1 where daily hazards are posted # Fermilab Polly I Muon g-2 Project 23/11 - The effectiveness of the development and oversight of projects - Integration of universities and other national labs in projects The effectiveness of the development and oversight of projects Office of the CPO Mike Lindgren Chief Project Officer Office of Project Support Services Marc Kaducak Working hard to improve tools for project development and optimizing resource allocation across the lab Both muon projects should be baselined by summer Muon campus, projects on schedule and on budget ## Integration of universities and other national labs in projects #### Muon g-2: 58% of project management positions held by non-Fermilab collaborators. Almost all detector construction occurring at universities Major beamline components being constructed at other labs Cornell: Kicker BNL: electrostatic quads ANL: trolley, MRI test facility #### Mu2e: Most project management positions associated with the detectors held by non-Fermilab collaborators Almost all detector construction occurring at universities Major design and software development efforts at other labs LBNL: Track reconstruction BNL: CSC CRV test stand ANL: Tracker assembly fixtures, B field mapping units The leadership, creativity, and productivity of the lab's scientific and technical staff **Technical** Demonstrating that detectors can be built using the lowest mass straws in vacuum Cable development for Mu2e and shield development for g-2 Highly constrained beamline design 8ns res in data 9ns in GARFIELD after applying effective threshold from beam Corresponds to 270 µm resolution #### Scientific # Mu2e full background simulation and systematic evaluation | Effect | Uncertainty in DIO background yield | Uncertainty in CE single-
event-sensitivity (×10 ⁻¹⁷) | |-------------------------------|-------------------------------------|--| | MC Statistics | ±0.02 | ±0.07 | | Theoretical Uncertainty | ±0.04 | - | | Tracker Acceptance | ±0.002 | ±0.03 | | Reconstruction Efficiency | ±0.01 | ±0.15 | | Momentum Scale | +0.09, -0.06 | ±0.07 | | μ-bunch Intensity Variation | ±0.007 | ±0.1 | | Beam Flash Uncertainty | ±0.011 | ±0.17 | | μ-capture Proton Uncertainty | ±0.01 | ±0.016 | | μ-capture Neutron Uncertainty | ±0.006 | ±0.093 | | μ-capture Photon Uncertainty | ±0.002 | ±0.028 | | Out-Of-Target µ Stops | ±0.004 | ±0.055 | | Degraded Tracker | -0.013 | +0.191 | | Total (in quadrature) | +0.10, -0.08 | +0.35, -0.29 | Tracking code for g-2 Leading authors of over a dozen Tevatron legacy publications in the last 3 years The quality and appropriateness of the lab's interactions with, and nurturing of its scientific community - The quality and appropriateness of the lab's interactions with, and nurturing of its scientific community - Snowmass leadership and participation - Enabling analysis, grid, ART, workshops, schools - IF/URA Fellowships - Improving the way we communicate changes in proton planning - Office space: Frank discussions - Trying to move forward together with our university partners in a mutually beneficial way in a time of constrained budgets and changing norms. The Muon (g-2) Theory Value: Present and Future Thomas Blum¹, Achim Denig², Ivan Logashenko³, Eduardo de Rafael⁴, B. Lee Roberts⁵. Thomas Teubner⁶. Graziano Venanzoni⁷ More comfortable room for short term visitors More open and optimized space for long term visitors More administrator help Still leaves us a factor of 2 below our current needs but we are working on that too. ## **Summary** The Muon program... brings together all parts of the lab and collaborators from institutions world-wide to make a program more than the sum of its parts to do precision physics that may lead to vital discoveries beyond the Standard Model