

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Overview of Fermilab Cosmic Program

Craig Hogan Fermilab Institutional Review 10 February 2015

Particle Astrophysics at Fermilab

Fermilab (and HEP) mission: study the fundamental nature of matter, energy, space and time

Cosmic studies uniquely probe deep mysteries: dark matter, cosmic acceleration, neutrino mass, gravity

Challenging experiments benefit greatly from unique capabilities of national laboratories: technologies, development, engineering, scale, management

DOE labs and University community share many cosmic experiments

Fermilab's plan is based on the scientific drivers in the HEPAP P5 report, as shaped by community needs, agency funding opportunities, and unique laboratory capabilities

Fermilab Astrophysics Strategic Plan: alignment with P5

P5 Driver	Experiments
Dark Matter	G1: SuperCDMS Soudan, COUPP/PICO, Darkside, DAMIC G2: SuperCDMS SNOLAB, LZ, ADMX G3: R&D towards advanced WIMP and Axion experiments
Dark Energy/ acceleration	DES, DESI, LSST
CMB/acceleration	SPT-3G, CMB-S4
Exploring the Unknown	Holometer, Pierre Auger
Detector R&D	R&D on new techniques for particle astrophysics experiments
Astrophysics Theory	Strong coupling with particle astrophysics experiments

Dark Matter

Astrophysical evidence suggests that most of our Galaxy is made of a new form of matter

Theory suggests that it may be detectable in this decade Weakly Interacting Massive Particles (WIMPs) Axions (solution to CP problem of strong interactions)

P5 recommends a diverse program for direct detection of WIMPs and axions We only know about these particles from their gravity

Generation 1 technologies allow broad exploration and followup DAMIC, PICO, Darkside, SuperCDMS Soudan Low mass, spin-dependent interactions, etc Many world leading results (bounds) already published

Generation 2 experiments will extend parameter reach SuperCDMS SNOLAB, LZ (WIMPs) ADMX (axions)

G3 experiments will extend down to the neutrino solar and cosmic neutrino "floor" Fermilab pursues R&D towards these larger experiments of the 2020's

Fermilab Dark Matter Experiments

Experiment	Location	Status	Technique	Physics Focus
G1 experiments (2	012-2017)			
SuperCDMS	Soudan	Operating	Cryogenic Solid- State	Background-free WIMP search
COUPP/PICO	SNOLAB	Operating	Bubble Chamber	Spin-dependent dark matter
Darkside 50	LNGS	Operating	Liquid Argon TPC	WIMPS > 1 TeV/c ²
DAMIC	SNOLAB	Operating	CCDs	WIMPS < 1 GeV/ c^2
G2 experiments (2	018-2023)			
SuperCDMS	SNOLAB	Design	Cryogenic Ge/Si target	Low-mass WIMPs to neutrino floor
LZ	SURF	Design	Liquid Xenon TPC	High-mass WIMPs
ADMX	U. Wash	Fabrication	Cryogenic resonant cavity	Axion dark matter

Fermilab Roles in G2 Dark Matter Experiments

Fermilab has been lead lab in CDMS since 1997, now shares with SLAC

Management, operations, design, engineering, science

Fermilab participation in LZ and ADMX after G2 selection was invited by collaboration leaders because of unique Fermilab technical capabilities and young scientist talent

ADMX: RF cavity design, magnets, axion science LZ: noble liquid TPCs, process control, underground ops Effort will migrate from other experiments

Fermilab Roles in Dark Matter Experiments (highlighting Wilson Fellows, Early Career awardees)

Experiment	Fermilab roles	Fermilab scientist/ postdocs FTEs (Leader)
SuperCDMS	Project/Operations management, Cryogenics/shielding/electronics, Data analysis/Science	3/1 (Bauer)
COUPP/ PICO	Project/Operations management, Fabrication Data Analysis/Science	3/1 (Sonnenschein)
Darkside 50	LAr expertise, data acquisition	1/1 (Pordes)
DAMIC	CCDs, management,	1/1 (Estrada)
LZ	TPC, process control, science	1/1 (<i>Lippincott,</i> <i>Dahl</i>)
ADMX	Project management, R&D	1/0 (Chou)

Dark Energy

Astrophysical evidence suggests that the expansion of the universe is accelerating

Signals a new deep form of energy and/or space-time

P5 recommends precision studies of cosmic structure and evolution Order of magnitude improvement is possible with new experiments

Wide, deep imaging probes evolution of expansion and structure via supernovae, galaxy distribution and photometry (DES, LSST)

Wide, deep spectroscopic surveys increase precision of redshift measurements, particularly BAO, AGN, RSD (DESI + ??)

Fermilab effort migrates from DES to new surveys, and to CMB FNAL collaboration members: 20 in DES, 8 in DESI, 4 in LSST-DESC

🛟 Fermilab

Dark Energy Experiments

Experiment	Location	Status	Operations	Physics Focus
Dark Energy Survey (DES)	CTIO, Chile	Operating	2013-2018	Deep imaging survey (supernova, BAO, Weak Lensing, Clusters)
DESI	Kitt Peak	Design	2019-2023	Deep spectroscopic survey (BAO to redshift ~3)
LSST	Chile	Fabrication	2021-2030	Very deep, all- sky imaging survey (Broad science program)

Fermilab roles in Dark Energy experiments

Experiment	Fermilab roles	Fermilab scientists/ postdoc FTEs (Leaders)		
DES	Project, operations, management, DECAM, Calibration, Science, collaboration leadership Computing, data management	13/2 (Frieman, Flaugher, Diehl)		
DESI	CCD packaging, optics, science	2/0 (Flaugher)		
LSST	Dark Energy Science, survey operations	1/0 (Dodelson)		
Fermilab leadership started with SDSS in 1990				

Now leading DES (fabrication, operations, collaboration)

New experiments will benefit from deep scientific and technical expertise

DESI: CCD packaging, corrector engineering, survey design and operations

LSST: Framework for combined analysis (COSMOSIS), operations

Cosmic Microwave Background

Anisotropy of CMB temperature and polarization depends on new physics: dark energy, neutrino mass, dark radiation, cosmic inflation

New opportunity: map of polarization at high angular resolution over most of the sky will measure sum of neutrino masses

P5 recommends Stage 4 CMB experiment, supported by NSF, DOE and national labs, in the next decade

Experiment	Location	Status	Operations	Physics Focus
SPT-3G	South Pole	Fabrication	2016-2020	CMB polarization
CMB-S4	South Pole + Chile + ??	Design	2020-2025	Wide-area CMB polarization, neutrino masses

Fermilab is currently a partner in Stage 3 experiment at the South Pole Telescope (SPT-3G)

DES was strategically planned with SPT

Collaboration with ANL and U Chicago

Camera being built and tested at Fermilab; deploys this year

Fermilab helping to shape S4 design, collaboration, consortium Order of magnitude more detectors than 3G

Fermilab Roles in CMB experiments

Experiment	Fermilab roles	Fermilab scientists/ postdocs (Leader)
SPT 3G	Cryostat and focal plane design and fabrication, integration, detector testing	2/1 (Benson)
CMB S4	R&D, design, collaboration development	2/1 (Benson)

Builds on Fermilab technical experience with CMS, QUIET, DECam

Scientific ties with DES, U Chicago, ANL

SiDet capabilities are now being extended to sub-Kelvin cryogenics

Many applications of advanced superconducting detectors tie different experiments together (CMB, Dark Matter, MKIDs)

Experiment	Location	Status	Operations	Physics Focus
Pierre Auger	Argentina	Operating	2008-2015 (Fermilab particpation)	Very high energy cosmic ray flux, composition

Fermilab co-founded and operated Pierre Auger Observatory Recently transferred leadership to Karlsruhe Institute of Technology

- Fermilab Auger group led recently published study of cosmic ray composition at the highest energies
- Effort at Fermilab is winding down

Experiment	Location	Status	Operations	Physics Focus
Holometer	Meson Lab	Operating	2014-2016	Structure of spacetime

Unique experiment to study Planck scale quantum geometry

Pair of correlated Michelson interferometers explores quantum coherence of space-time position with Planck precision for the first time

Now operating with design sensitivity Science results will appear in 2015 and 2016 First PhD (of 4) passed last week

Funded by Early Career grant to A. Chou Effort will migrate to ADMX

Fermilab Experimental Leadership

(highlighting Wilson Fellows, Early Career awardees)

Experiment	Fermilab roles	FNAL FTEs scientists/ postdocs (Leader)
SuperCDMS	Project/Operations management, Cryogenics/ shielding/electronics, Data analysis/Science	3/1 (Bauer)
COUPP/PICO	Project/Operations management, Fabrication Data Analysis/Science	3/1 (Sonnenschein)
Darkside 50	LAr expertise, data acquisition	1/1 (Pordes)
DAMIC	CCDs, management,	1/1 (<i>Estrada</i>)
LZ	TPC, process control, science	1/1 (<i>Lippincott, Dahl</i>)
ADMX	Project management, R&D	1/0 (Chou)
DES	Project/operations management, DECAM, Calibration/Science	13/2 (Frieman, Flaugher, Diehl)
DESI	CCD packaging, optics, science	2/0 (Flaugher)
LSST	Dark Energy Science	1/0 (Dodelson)
SPT/CMB	Cryostat assembly, testing, design for S4	2/1 (<i>Benson</i>)
Holometer	Project/operations management, science	2/0 (Chou)

Cross cut: Cosmic Detector R&D

Fermilab can uniquely empower new directions in research

Generic Detector R&D leads to new experiments

Early Career awards and Wilson Fellowships have propelled development of new technologies (building on old ones) DAMIC (DES), Holometer (GammeV), PICO (COUPP), DarkSide (LAr)

New synergies, capabilities

Sub-Kelvin cryogenics: CDMS, CMB, MKIDs, ADMX

Important collaboration with U Chicago, ANL

RF cavities: ADMX and accelerators

P5 recommends sustained commitment to technical innovation

Cross Cut: Theory

Fermilab's Theoretical Astrophysics Group Ties many threads together Connects to particle theory (and Particle Theory Department) Works to extract fundamental physics from cosmic data Brings versatility in modeling, phenomenology, statistics Simulation, model building, projection, analysis, tool development Gravity, particle phenomenology, complex astrophysical systems

Shapes and leads the experimental program Leadership in Fermilab and national program for >30 years Many experiments conceived in the theory group (eg, B modes) Hands-on involvement includes important leadership positions in experimental collaborations

High praise for Fermilab group in 2014 3-year program review Clear endorsement for strong support

Cross cut: Collaboration with Universities and Other Labs

HEP labs share effort on almost all cosmic projects

- Leverage science, funding and technical resources from whole complex
- Effort is typically widely distributed according to capabilities and capacities of various labs
- Fermilab supports experimental collaborations with technical resources
 - Operations, workshops, visitors, collaboration meetings Examples: CDMS, DES (see breakout)
- Special relationships with U. Chicago, KICP, ANL

Joint appointments, collaborative seed grants, students, shuttle Local universities: Northwestern, UIUC, NIU

Joint appointments, students

Cross cut: Cosmic Computing

HEP experience translates to cosmic surveys and experiments Data management

DESDM: partnership with NCSA; code development, real-time processing, reprocessing

Dark Matter: ArtDAQ data acquisition platform used for Darkside Holometer: fast real-time reduction

Analysis

FermiGrid for data processing, storage and simulation

Professionalized analysis tools

COSMOSIS: framework for multiple cosmological probes with multiple, disparate datasets

DES now; will be used in CMB, DESI and LSST

Simulation

Versatile DOE system enables advanced code development

🛠 Fermilab

Summary of long term plan and vision

Long term commitment to dark matter direct detection Increase sensitivity by orders of magnitude Take WIMP search to the solar limit across large mass range Explore axion parameters across the QCD window Long term commitment to dark energy surveys Dominant effort on DES will migrate to DESI and LSST Beyond LSST: next generation spectroscopic survey? Long term theory, development, initiatives, exploration Sow seeds for future Growing effort on CMB

Effort will migrate from other areas

CMB S4 will become the largest effort in the next decade Program will adapt to discoveries and opportunities

