

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Theoretical physics and theoretical astrophysics

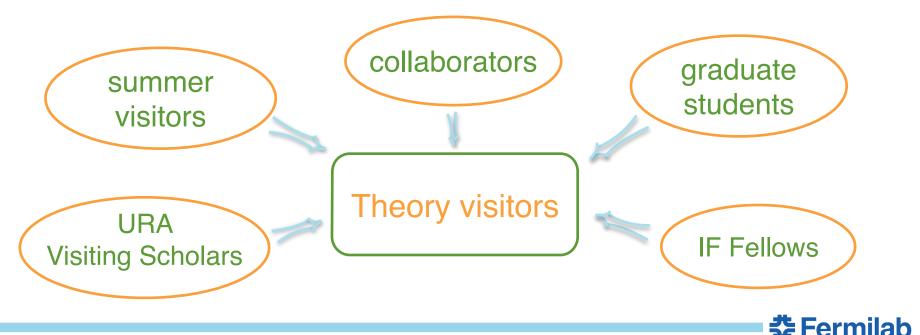
John Campbell 2015 Institutional Review 10 February 2015

- Conduct world-leading theoretical particle physics and theoretical astrophysics research.
- Focus effort and core strength in key research areas directly related to the U.S. and worldwide experimental program.
- Influence and motivate the design of experiments, data analyses, and their interpretation.
- Train next generation of theorists in data-rich environment and educate young experimentalists.
- Provide a national resource for university physicists.
- Foster an intellectually vibrant atmosphere.

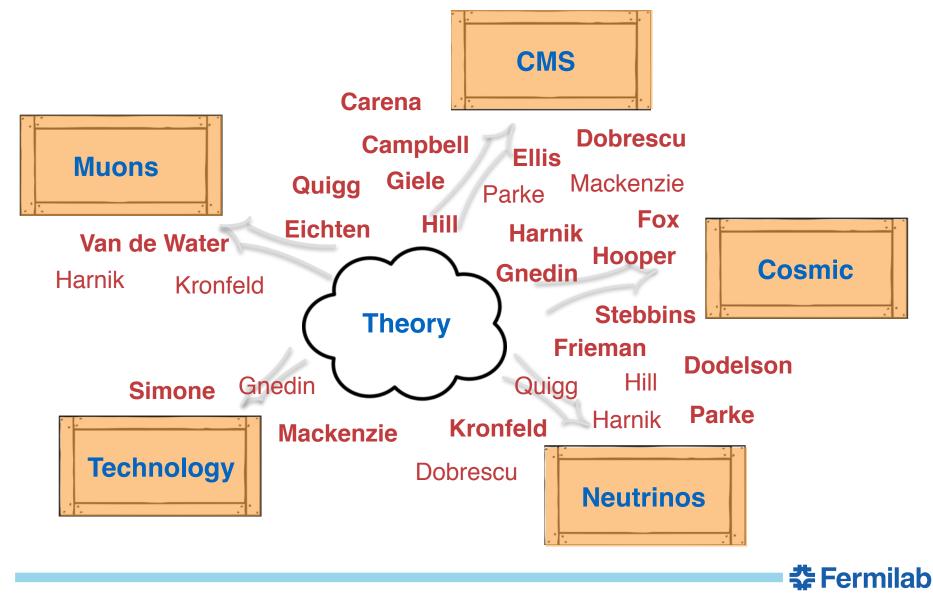
Theoretical Physics

- Focus on aiding the experimental program in direct and indirect searches for New Physics.
- Primarily supports LHC, neutrino, muon programs.
- Key research areas: perturbative QCD, collider phenomenology, BSM model building, lattice QCD, neutrinos, applied formal physics.
- FY15: 13.5 scientists, 1 assoc. scientist, 8 RAs, 2 emeritus.

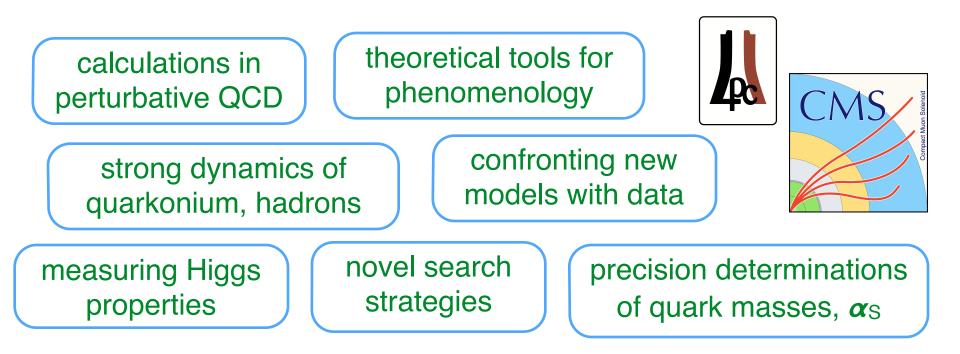
Theoretical Astrophysics


- Focus on using astrophysical phenomena as a tool for understanding fundamental physics.
- Primarily supports cosmic frontier program.
- Key research areas: dark matter, dark energy, inflation, CMB, neutrinos, large scale structure.
- FY15: 5 scientists, 2 RAs.

Frequent interaction and collaboration between the two groups

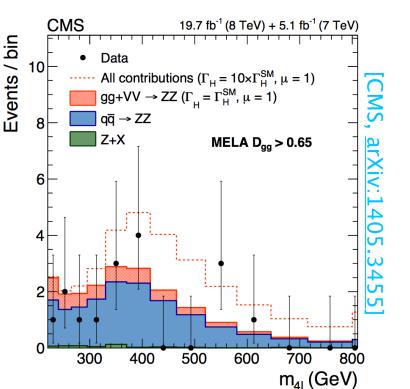


Theory visitors


- Visitor programs and workshops create a bridge for increasing the frequency and value of interactions between university theorists and Fermilab scientists.
 - increase involvement between university theorists and Fermilab experimental programs.
 - visitors collaborate with and complement expertise of groups.

Research overview

Synergies with CMS program: overview

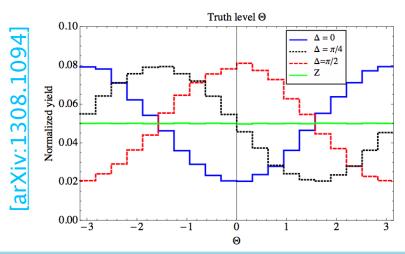


- Convenors of Snowmass QCD WG, quarkonium WG, authored LHC Higgs, Les Houches reports, PDG reviews.
- LPC ties: jointly-organized seminars, workshops.
- Organization of international conferences and schools, often explicit theory-experiment cross-talk (SUSY2011, HCPSS, TASI, ...).

🚰 Fermilab

Tools for the LHC

- Development of NLO parton level code MCFM.
 - SM background cross-sections.
 - matrix elements used by CMS to implement MELA algorithm for isolating Higgs boson events.
 - used by ATLAS and CMS to directly bound width of the Higgs boson, improving limits by two orders of magnitude.
- Systematic improvement of parton showers, VINCIA and POWHEG-BOX.
- Top quark phenomenology: measurement of couplings and spin correlations from LHC data.


🚰 Fermilab

02/10/15

7

Higgs discovery and properties

- Significant contributions to Higgs boson search, discovery and characterization.
 - ground-breaking work, with LPC colleagues, to extract Higgs coupling to gauge bosons
 - \rightarrow CMS co-author, APS thesis award (2014).
 - global fit of coupling strengths, width.
 - demonstrated complementarity of LHC and EDM for Higgs CPV.

- Exploration of signals in extended Higgs sectors.
 - proposed first LHC search for CPV in Higgs coupling to τ 's.

р

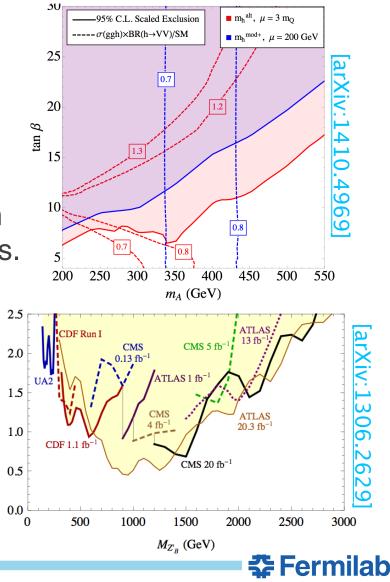
e+

 $\theta_2 e^-$

- CMS follow-up study.

 μ^+

 θ_1

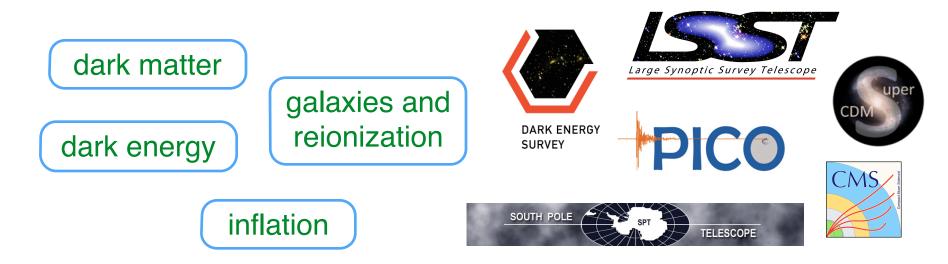

₹z'

 Φ_1

8

New physics searches at the LHC

- Development of BSM benchmarks and analysis techniques.
 - interpretations of searches for additional Higgs bosons now the standard in CMS & ATLAS.
 - showed complementarity of precision Higgs measurements, direct searches.
 - with CMS/LPC, developed LHC razor for SUSY multijet+MET, extended to sleptons, stops, DM.
 - Novel signatures for exotic particles: color-octet scalars, vector-like fermions, heavy gauge bosons, leptoquarks, ...

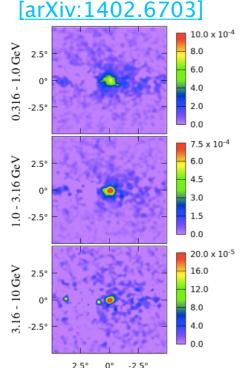


02/10/15

8 B

9

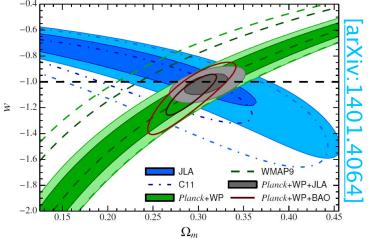
Synergies with cosmic program: overview



- Focus on astrophysical probes of New Physics.
- Theorists initiated many experiments: SDSS, Auger, DES, B-modes.
- Leadership roles in DES (director), LSST, South Pole Telescope, Tianlai 21cm redshift survey, Cosmological Computing Initiative.
- Close interaction with SuperCDMS, PICO, Holometer, DESI.
- Service on P5, astrophysics advisory committees, convenors of Snowmass dark matter, dark energy and CMB.

Dark matter

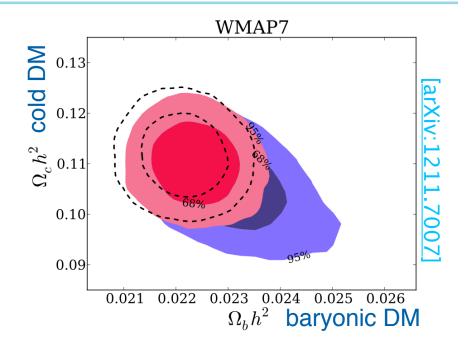
- Significant contributions to traditional direct and indirect searches for WIMP dark matter.
 - extraction of limits from AMS, COGENT, LUX, gamma-ray observation of galactic center, ...
 - improved analysis techniques being adopted by experiments.
- Identification of galactic center excess and subsequent DM model-building and pheno.
- Fermilab one of the pioneers of searches for
 DM at colliders through mono-jet and mono-photon signatures.
- Using Higgs-mediated DM interaction, interpreted invisible Higgs limits as direct detection limit → used by CMS & ATLAS.
- Frequent collaboration between theory groups.


11 John Campbell I Theoretical physics and theoretical astrophysics

02/10/15

🛟 Fermilab

Dark energy


- Dark energy, beyond the cosmological constant, has its roots here, long before SNe-Ia bombshell.
 - including some of the first physics models of DE.
- Best constraints on DE/DM/modified gravity from combining complementary cosmic probes.
- e.g. growth of structure complements supernovae distances, the main idea behind Dark Energy Survey.
- Showed how combining data from DES, LSST, DESI, eBOSS improves cosmological constraints.
- impacting design of cosmic surveys
 → will be extended to CMB program.
- tightening constraints on dark energy models, improving control of systematic errors.

Cosmological simulations

- Detailed numerical simulation essential to interpreting cosmological data.
- Explored bias in extraction of cosmological constants from assumed cosmic reionization history.

- Produced simulation sets designed to explore baryonic effects on weak lensing and CMB modeling.
 - sets publicly available, maintained and will be extended.
- Cosmic Frontier Computational Collaboration is a multi-lab national initiative, partnering FNAL with ANL,SLAC,LBL,BNL.

Synergies with neutrino program: overview

strategies for studying standard v paradigm

and non-SM interactions

impact of light sterile v's proposals for

future experiments

sensitivities of current,

proposed experiments

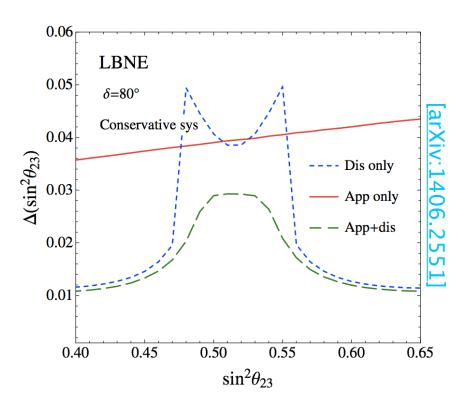
BOOSTER NEUTRINO EXPERIMENT

µBooN

B¹

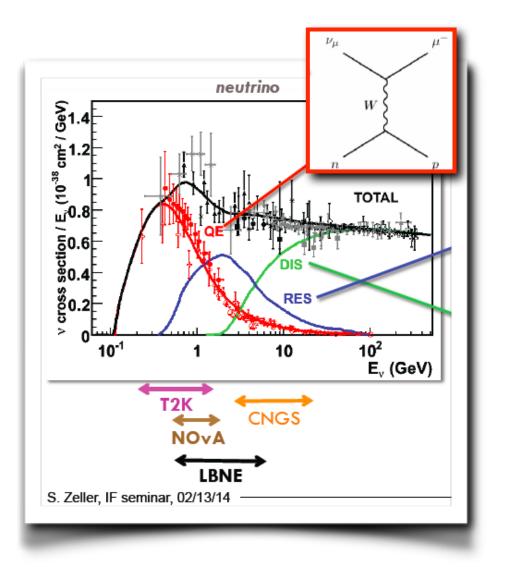
MINOS

improved determination of nuclear effects


cosmic neutrinos

- Chair of International Neutrino Commission, members on FNAL Short-Baseline Neutrino Focus Group, member of SURF PAC, convenor of Snowmass v anomalies WG, Project X physics study.

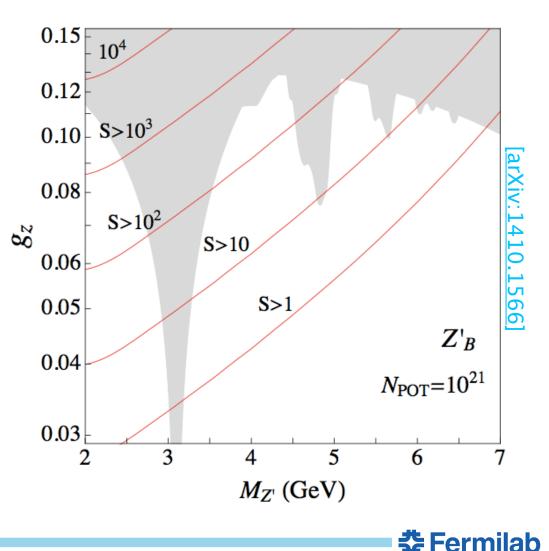
Neutrino program planning


- History of support of the Long Baseline Neutrino program: MINOS, NOvA, LBNF.
- Co-authored report on LBNE configuration (pre-P5).
- Demonstrated improved sensitivity of LBNE when considering both appearance and disappearance channels.
 - better precision for θ_{23} and $\delta_{CP.}$

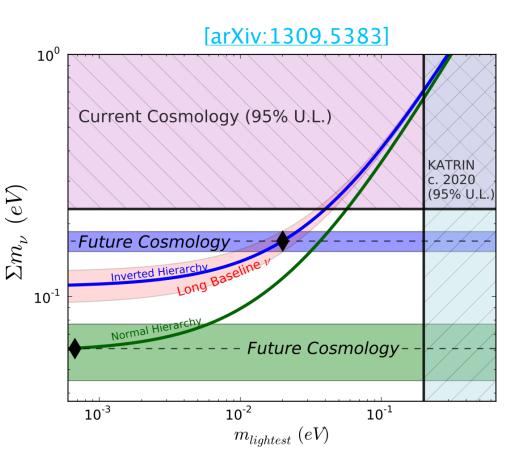
 Multiple studies associated with short baseline neutrino program (MiniBooNE, MicroBooNE, LAr X).

🎝 Fermilab

Neutrino cross sections

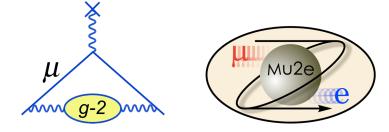


- NOvA and ELBNF signal dominated by CCQE cross-section.
- Nucleon axial-vector form factor an important input in CCQE determination.
 - can be computed from first principles using analyticity and lattice QCD.
- Worked with UoC student, experimentalists to include QCD input in GENIE MC.
- Lattice calculation ongoing.


Neutrinos and dark matter

- Leading efforts to use Fermilab neutrino expts. to search for DM.
 - NOvA near detector is sensitive to GeV DM.
- Also vice-versa: DM detectors as probes of neutrino properties.
 - showed that sterile neutrinos or v dipole moments could be discovered this way.

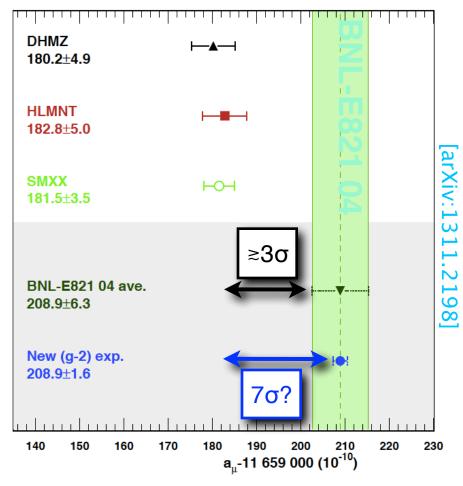
Neutrino constraints from the cosmos


- Large-scale structure constrains sum of neutrino masses.
 - explored future constraints from DESI and CMB-S4.
- Explored synergy of cosmological constraints and neutrino-less ββ decay experiments.

Synergies with muon program: overview

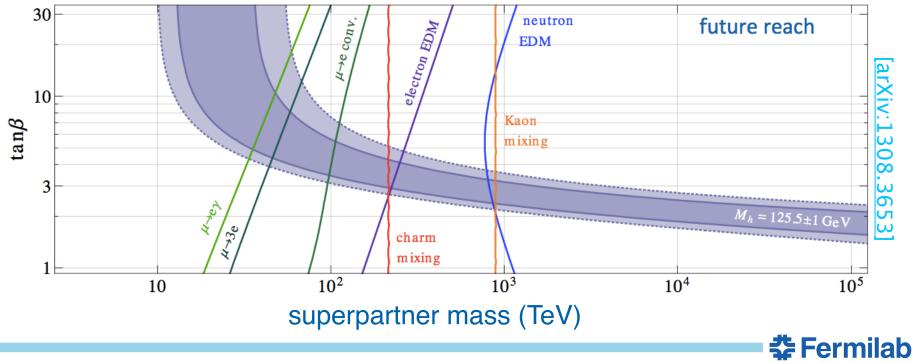
hadronic vacuum polarization contributions to $(g-2)_{\mu}$

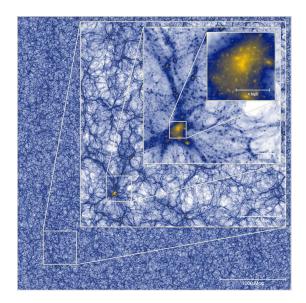
hadronic light-by-light contributions to $(g-2)_{\mu}$


connections between Higgs boson and flavor violation

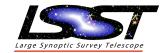
- Contributions to Snowmass Charged Lepton WG, talk at (g-2)_μ collaboration meeting, extensive contributions to Project X physics study (editor, convenors, speaker).
- Organized academic lectures on $(g-2)_{\mu}$ and LFV, "Lattice meets Experiment" workshop on roles in $(g-2)_{\mu}$ and Mu2e experiments.

Lattice-QCD calculations for $(g-2)_{\mu}$


- Exploit reduced exp. error on (g-2)_μ by reducing SM theory uncertainty on hadronic vacuum polarization (HVP), light-by-light (HLbL) contributions.
- Fermilab lattice theorists undertaking first complete fourflavor calculations of both.
 - New method for HVP will enable significant improvement in precision.
 - Devising and testing methods for HLbL.
 - Significant human effort and computing resources required.


Muons and Higgs flavor violation

- Fermilab Mu2e experiment will be strongest probe of Higgs flavor violating coupling to μ -e, sensitive to BR(h \rightarrow μ e)~10⁻¹⁰.
- Showed that simplest SUSY models that accommodate known Higgs mass predict 100 TeV-scale flavor violation that can be probed by Mu2e.


Synergy with technology R&D: HPC for astrophysics

- Developing framework that runs on standard HPC clusters and will run on future exa-scale machines (e.g. ALCF at ANL)
 - to study the effect of baryons on matter clustering.

 Worked with Scientific Computing Division to design and develop software frameworks to enable DES and LSST data analysis at HPC centers.

Synergy with technology R&D: LQCD

- Develop and deploy large computing clusters and software frameworks for use by U.S. lattice-QCD community (USQCD).
- Leading U.S. lattice effort: chair of USQCD exec. committee and PI of LQCD (hardware) and SciDAC (software) grants.
- Hardware synergy with other projects.
 - lab expertise in DAQ fed into LQCD.
 - early adoption of advanced networking by LQCD basis for subsequent DAQs for upcoming neutrino and muon expts.

- first GPU cluster deployed at Fermilab for LQCD, similar cluster used for accelerator modeling and broad range of other projects.
- Software collaboration between LQCD and Accelerator Simulation, shared development and SciDAC plans.

Summary

- Theoretical physics and astrophysics groups are essential for vibrant programs in all cross-cut areas.
 - aligned with OHEP future plans according to P5 priorities.
 - significant past and current projects have grown out of, or been shaped by, the theory program.
- Proximity to experiment cross-fertilizes both theoretical and experimental research at Fermilab.
 - engaged with LPC and planned Neutrino Physics Center.
 - broader community benefits: visitors, seminars, conferences.
 - enlivens intellectual atmosphere.
- Strong service to lab, university, international communities.
- High scientific productivity: research output, program planning, postdoc and student training, future leaders of the field.