

Search for Dark Photons in the SeaQuest E906 Experiment

Arun Tadepalli¹, Roy Holt², Ron Gilman¹

¹Rutgers University

²Argonne National Laboratory

Contents

- Dark Matter Introduction
- □ Dark matter and standard model coupling

- Summary and outlook

What's the matter?

03

Dark matter is:

one of the greatest unsolved mysteries of modern physics

a central element for cosmology and astronomy

Evidence for Dark matter

F. Zwicky, ApJ 86 (1937) 217, V. Rubin et al, ApJ 238 (1980) 471

- Rotation curves of galaxies
- Gravitational lensing
- Surveys of cosmic microwave background
- 2 Positron excess in the universe
- Gamma ray excess from the galactic center
- **O3** ...

○ Direct:

O3 ...

- Dark matter interpretations of astrophysical anomalies
- Indicates that dark matter couples to ordinary matter more than gravitationally

Dark sector and Standard model coupling

- Dark sector could interact with the standard model sector via a hidden gauge boson (A' or "dark photon" or "para photon" or "hidden photon")
- Dark photons can provide a portal into the dark sector
- Dark photons could couple to standard model matter with $\alpha' = \alpha \epsilon^2$

$$\mathcal{L} \supset -\frac{1}{4}F_{\mu\nu}^{\rm SM}F_{\rm SM}^{\mu\nu} - \frac{1}{4}F_{\mu\nu}^{\rm hidden}F_{\rm hidden}^{\mu\nu} + \frac{\epsilon}{2}F_{\mu\nu}^{\rm SM}F_{\rm hidden}^{\mu\nu} + m_{\gamma'}^2A_{\mu}^{\rm hidden}A_{\rm hidden}^{\mu}$$

A' produced via a loop mechanism

B. Holdom, PLB **166** (1986) 196J. D. Bjorken et al, PRD **80** (2009) 075018

Possible A' production mechanisms

03

Rroton Bremsstrahlung

 $\alpha \eta \dots decay$

The SeaQuest E906 Experiment

- Optimized for studying high rate di-muons to study the nucleon sea
- SeaQuest also takes advantage of a paired spectrometer to search for dark photons

SeaQuest Spectrometer

SeaQuest A' search strategy

- A' generated by η decay and/or protonBremsstrahlung in the Iron beam dump
- \bowtie A' could travel a distance l_0 without interacting
- Reconstructed di-lepton vertex is displaced, downstream of the target in the beam dump

A' sensitivity region for SeaQuest

$l_o \approx \frac{0.8 \, cm}{N_{eff}} \left(\frac{E_o}{10 \, GeV}\right) \left(\frac{10^{-4}}{\varepsilon}\right)^2 \left(\frac{100 \, MeV}{m_{A'}}\right)^2$

J. D. Bjorken et al, PRD **80** (2009) 075018

- E_0 = energy of the A'
- $\sim N_{eff}$ = no. of available decay products
- l_0 = distance that A' travels before decaying
- ε = coupling constant between standard model and dark sector
- $m_{A'} = \text{mass of A'}$

Timeline of SeaQuest

- SeaQuest has finished a successful RUN II
- SeaQuest is now taking more data in RUN III Analysis underway
- SeaQuest will take more data in RUN IV with new detector components

Summary and outlook

- Indirect evidence for dark matter is overwhelming. Direct detection is pending...
- Dark photons could provide a portal into the dark sector.
- SeaQuest takes advantage of the 17 decay, proton bremsstrahlung and Drell-Yan processes to search for dark photons.
- A preliminary estimate has been made of the range of dark photon ε and mass parameters to which SeaQuest is sensitive.
- SeaQuest is currently taking data with a trigger that has some acceptance to dark photon decays.
- Exciting time ahead!

