Extrapolation Techniques for Asymmetry Measurements

Katrina Colletti

Z. Hong, D. Toback, J.S. Wilson
Texas A\&M University
New Perspectives Meeting, Fermilab
kcolletti1@tamu.edu

$$
\text { June 8, } 2015
$$

Overview

(1) Background, Motivation, and Goals
(2) Study 1: Monte Carlo Simulation
(3) Study 2: Closed Form Statistical Solution
(4) Study 3: Closed Form Numerical Solution
(5) Conclusions

Background, Motivation, and Goals

Gaussian Distribution, Mean $=0$ Events $=1000000$

- Common in particle physics to measure asymmetries - in particular in collider experiments
- Often data can only be measured for a finite portion of the detector, must extrapolate to the total asymmetry

$$
\begin{aligned}
A^{\text {total }} & =\frac{(C+D)-(A+B)}{A+B+C+D} \\
A^{\text {finite }} & =\frac{C-B}{B+C}
\end{aligned}
$$

- Can we use a simple constant multiplicative factor $A^{\text {total }}=R \cdot A^{\text {finite }}$?
- If so, how much statistics needed to get reliable results, especially in the limit of small asymmetries?

Classic Example: forward-backward asymmetry ($A_{F B}$) measured in collider detectors:

Background, Motivation, and Goals

- We start with a single Gaussian with a mean of μ as a good working model to build a foundation and give good insights into more complicated distribution models
- Examples from collider physics have shown that this approximation sometimes works
- It is not obvious if a linear extrapolation technique should work
- Since we typically use MC methods to estimate such values, we need to understand whether we can confidently use a constant R to linearly extrapolate, and understand the amount of statistics needed to get a reasonable measurement of it

Study 1: Monte Carlo Simulation

- In our simple Gaussian model, A is linearly proportional to μ (the mean of the distribution)
- Example: $\mu=0.1$ corresponds to $A^{\text {total }} \approx 8 \%$ which is what we typically see in forward-backward asymmetry top quark measurements at the Tevatron
- Run many MC pseudo-experiments each with a large number of events, get distributions for $A^{\text {total }}, A^{\text {finite }}$, and R :

Finite Asymmetry, Mean $=0.1$ Events $=1 \mathrm{e}+06$

Ratio (finite/total), Mean $=0.1$ Events $=1 \mathrm{e}+06$

Study 1: Monte Carlo Simulation

Ratio (finite/total), Mean $=0.1$ Events $=100000$

Ratio (finite/total), Mean $=0.1$ Events $=10000$

Ratio (finite/total), Mean $=0.1$ Events $=1000$

- With enough statistics (i.e. large N), measurements of R are very accurate
- As N decreases, measurement of R becomes unreliable, and can no longer correctly reproduce $A^{\text {total }}$ from $A^{\text {finite }}$
- This is observed for all values of μ

Study 1: Monte Carlo Simulation

- With this understanding, we now aim to quantify this behavior to properly understand how many MC events in the original distribution, N, are needed to give reliable measurements of R
- We define f as the fraction of pseudo-experiments with $R<0.5$ (very far from expected value)

Fraction PE w/ ratio $<.5$ (total PE $=100000$), Mean $=0.1$

Fraction PE w/ ratio <. 5 (total PE= 100000), Mean $=0.01$

Fraction PE w/ ratio <. 5 (total PE= 100000), Mean $=0.001$

Study 1: Monte Carlo Simulation

- Want $f \approx 0$, define a threshold value and observe the relationship between the number of events needed for reliable measurements and μ
- N falls as $\frac{1}{\mu^{2}}$
- Measurements of R for all values of μ with enough statistics give the same value
- Conclusion is that R is indeed constant for all μ for this simple Gaussian model, and a huge amount of MC statistics are needed to accurately measure the actual value for small μ (or equivalently small A)

Study 2: Closed Form Statistical Solution

- Let's take a closer look at why the MC methods break down

Scatterplot of AFB_total VS AFB_reduced for $M \mathrm{M}=2 \mathrm{E}-02$, Events $=1 \mathrm{E} 4$

- Require $A^{\text {total }}$ (denominator of R) to be greater than at least 1σ away from 0 - to avoid the potential divide by 0 problem (math jargon: this is where the distribution transitions to a Cauchy regime)

Study 2: Closed Form Statistical Solution

- The statistical question becomes: how many events, N, are required for the mean of $A_{F B}{ }^{\text {total }}$ to be some number $(k \cdot \sigma)$ away from 0 , thus giving reliable measurements

$$
\sigma_{A_{F B}} \text { total }=\frac{A^{\text {total }}}{k}
$$

- Using statistics (see backup slides), we are able to find N as a function of μ for our single Gaussian model:

$$
N=2 k^{2} \cdot \frac{\left(1+\operatorname{erf}\left(\frac{\mu}{\sqrt{2}}\right)\right)}{\operatorname{erf}\left(\frac{\mu}{\sqrt{2}}\right)^{2}}
$$

- Some limiting cases:
- As $\mu \rightarrow 0, N \rightarrow \infty$
- Using the approximation $\operatorname{erf}\left(\frac{\mu}{\sqrt{2}}\right) \approx \sqrt{\frac{2}{\pi}} \mu$ for small μ, we find that $N \propto \frac{1}{\mu^{2}}$ which is precisely what we just saw from our MC study

Study 2: Closed Form Statistical Solution

\# Events Needed for Proper Statistics Plotted Against Mean

- Closed form solution: blue (for $k=2$)
- MC data: red
- Excellent agreement!

Study 3: Closed Form Numerical Solution

- We calculate R as a function of μ using Mathematica
- Set $\sigma=1.0$
- Plot R in the limit $\mu \rightarrow 0$
- For large values of μ, R only rises by 0.04% relative to
 $\mu=0$

$$
\begin{aligned}
A^{\text {total }} & =\frac{(C+D)-(A+B)}{A+B+C+D} \\
A^{\text {finite }} & =\frac{C-B}{B+C} \\
R & =\frac{A^{\text {finite }}}{A^{\text {total }}}
\end{aligned}
$$

Conclusions

- We have used three methods to study the linear extrapolation of $A^{\text {finite }}$ to an inclusive $A^{\text {total }}$
- While we have only studied the simple Gaussian model, we observed that a linear extrapolation can be used, and while MC methods work reliably (even for small A) they can require much more significant statistics than expected
- Our results have the potential to be applied for many different asymmetry measurements in collider experiments, and have already been useful at the Tevatron for the $t \bar{t}$ forward-backward asymmetry

Thank You For Listening! Any Questions?

Backup Slides: The Statistical Solution Calculation

We need enough statistics such that $A_{F B}^{\text {total }}$, the denominator of R, is more than 1 sigma away from 0 (we will set it to be k, where k will be determined later). In other words, we want to know how many events it takes in a pseudo-experiment to ensure the mean of the full asymmetry will be k standard-deviations away from zero.
To do this we start with the equation

$$
\begin{equation*}
\sigma_{A_{F B}^{\text {total }}}=\frac{A_{F B}^{\text {total }}}{k} \tag{1}
\end{equation*}
$$

where $\sigma_{A F B}^{\text {total }}$ is the variation (or uncertainty) of the measured value of $A_{F B}^{\text {total }}$. We will find both $\sigma_{A_{F B}^{\text {total }}}$ and $A_{F B}^{\text {total }}$ as functions of N and μ and substitute them into Eq. 1 to get the functional relation between N and μ for "good statistics".

Backup Slides: The Statistical Solution Calculation

We begin with our definition of asymmetry,

$$
\begin{equation*}
A_{F B}^{\text {total }}=\frac{N_{+}-N_{-}}{N_{+}+N_{-}} \tag{2}
\end{equation*}
$$

where $N_{+}=C+D$ and $N_{-}=A+B$ as on Slide 2. Next we define $N=N_{+}+N_{-}$as the total number of events in the original Gaussian distribution, and rewrite this as:

$$
\begin{equation*}
A_{F B}^{\text {total }}=\frac{2 N_{+}-N}{N} \tag{3}
\end{equation*}
$$

We note that since our distributions are Gaussian, we can write N_{+}in terms of N and μ, with the relation given by

$$
\begin{align*}
N_{+} & =\frac{N}{\sqrt{2 \pi}} \int_{0}^{\infty} \mathrm{dx} e^{-(x-\mu)^{2} / 2} \\
& =\frac{N}{2}\left(\operatorname{erf}\left(\frac{\mu}{\sqrt{2}}\right)+1\right) \tag{4}
\end{align*}
$$

Backup Slides: The Statistical Solution Calculation

Plugging this in to Eq. 3 and reducing, we get

$$
\begin{align*}
& A_{F B}^{\text {total }}=\frac{\not \subset \stackrel{\otimes}{\not ㇒}\left(\operatorname{erf}\left(\frac{\mu}{\sqrt{2}}\right)+\not \subset\right)-\not \subset}{\not X} \\
& =\operatorname{erf}\left(\frac{\mu}{\sqrt{2}}\right) \tag{5}
\end{align*}
$$

We next find $\sigma_{A_{F B}^{t o t a}}$ by beginning with the definition given in Bevington (92) applied to our problem,

$$
\begin{equation*}
\sigma_{A_{F B}^{\text {total }}}=\left(\frac{\partial A_{F B}^{\text {total }}}{\partial N_{+}}\right) \sigma_{N_{+}}+\left(\frac{\partial A_{F B}^{\text {total }}}{\partial N}\right) \sigma_{N} . \tag{6}
\end{equation*}
$$

Taking a simple derivative of $A_{F B}^{\text {total }}$ from Eq. 3 gives us

$$
\begin{equation*}
\left(\frac{\partial A_{F B}^{\text {total }}}{\partial N_{+}}\right)=\frac{2}{N} \tag{7}
\end{equation*}
$$

Backup Slides: The Statistical Solution Calculation

To be consistent with the previous study, we fix N and allow N_{+}to vary. This means that $\sigma_{N}=0$, and from simple statistics

$$
\begin{equation*}
\sigma_{N_{+}}=\sqrt{N_{+}} \tag{8}
\end{equation*}
$$

Plugging Eqs. 7 and 8 into Eq. 6, we get

$$
\begin{equation*}
\sigma_{A_{F B}^{\text {total }}}=\frac{2}{N} \cdot \sqrt{N_{+}} . \tag{9}
\end{equation*}
$$

Plugging Eq. 4 into this, we get

$$
\begin{align*}
\sigma_{A_{F B}^{\text {total }}} & =\frac{2}{N} \cdot \sqrt{\frac{N}{2}\left(\operatorname{erf}\left(\frac{\mu}{\sqrt{2}}\right)+1\right)} \\
& =\sqrt{\frac{2}{N}} \cdot \sqrt{\left(1+\operatorname{erf}\left(\frac{\mu}{\sqrt{2}}\right)\right)} \tag{10}
\end{align*}
$$

Backup Slides: The Statistical Solution Calculation

Finally, plugging Eqs. 5 and 10 back into Eq. 1 gives us

$$
\begin{equation*}
\sqrt{\frac{2}{N}} \cdot \sqrt{\left(1+\operatorname{erf}\left(\frac{\mu}{\sqrt{2}}\right)\right)}=\frac{\operatorname{erf}\left(\frac{\mu}{\sqrt{2}}\right)}{k} \tag{11}
\end{equation*}
$$

and solving for N, we get

$$
\begin{equation*}
N=\frac{2 k^{2}\left(1+\operatorname{erf}\left(\frac{\mu}{\sqrt{2}}\right)\right)}{\operatorname{erf}\left(\frac{\mu}{\sqrt{2}}\right)^{2}} \tag{12}
\end{equation*}
$$

This is, as we set out to solve for, the number of events it takes per pseudo-experiment to ensure the mean of the full asymmetry will be k standard-deviations away from zero, and thus give good statistics.
Discussion of the implication of this result is included in the main slides.

Study 3: Closed Form Numerical Solution

$$
\begin{aligned}
A_{F B}^{\text {total }} & =\frac{\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} \mathrm{dx}\left[\exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)-\exp \left(-\frac{(-x-\mu)^{2}}{2 \sigma^{2}}\right)\right]}{\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} \mathrm{dx}\left[\exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)+\exp \left(-\frac{(-x-\mu)^{2}}{2 \sigma^{2}}\right)\right]} \\
A_{F B}^{\text {finite }}= & \frac{\frac{1}{\sqrt{2 \pi \sigma}} \int_{0}^{1.5} \mathrm{dx}\left[\exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)-\exp \left(-\frac{(-x-\mu)^{2}}{2 \sigma^{2}}\right)\right]}{\frac{1}{\sqrt{2 \pi}} \int_{0}^{1.5} \mathrm{~d} \times\left[\exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)+\exp \left(-\frac{(-x-\mu)^{2}}{2 \sigma^{2}}\right)\right]} \\
R & =\frac{A_{F B}^{\text {finte }}}{A_{F B}^{\text {total }}}
\end{aligned}
$$

