Fast Neutron Detection with MITPC at Fermilab

Marjon Moulai New Perspectives June 8, 2015

Booster Neutrino Beamline

Booster Neutrino Beamline

Booster Neutrino Beamline

Neutron measurements useful for:

- Tuning Monte Carlo-based prediction of neutron background
- MicroBooNE studies:
 - Neutral current elastic
 - Strange quark contribution to nuclear spin
 - Neutron ID
 - Supernova neutrinos
 - ³⁹Ar
 - Nuclear de-excitation gammas
- SBND and ANNIE

Expected neutron rate

- Neutrons through 1m x 1m area 1m upstream of MicroBooNE over 2.1-3.2 x 10¹⁹ POT
- MITPC would see 6-9 neutrons (on carbon) over 6.6 x 10²⁰ POT (2 years)

Expected neutron rate

Kendall Mahn's thesis

- Neutrino flux ~60 x higher in SciBooNE Hall
- MITPC would see 300-500 neutrons over 6.6 x 10²⁰ POT (2 years)

MITPC Energy Sensitivity

	Big MITPC at Double Chooz	Big MITPC at FNAL
Gas Composition	87.5% He <i>,</i> 12.5% CF4	87.5% Ne <i>,</i> 12.5% CF4
Nuclear Recoil Sensitivity	0.2-30 MeV	Over 100 MeV*

Range of particles in (12.5% CF_4 87.5 ⁴He, 600 torr) with SRIM software

Range of particles in (12.5% CF₄ 87.5 Ne, 600 torr) with SRIM software

Choosing gas for MITPC @ FNAL

Parameters:

Composition

– CF₄, He, Ne

- Pressure
- Optical system

Want:		Test?	Calculate?
•	Sufficient stopping power		\checkmark
•	Sufficient gain	\checkmark	
•	Low diffusion	\checkmark	\checkmark

Diffusion with Xe & CF4

80 torr Xe with xyz torr CF4

Hidefumi Tomita's Thesis

Electron diffusion in noble gases

Kinetic parameters of electrons in noble gases in an electric field of 75 V/cm.

	$V, 10^5 \text{ cm s}^{-1}$	eD_T/μ , eV
He	2.8	0.25
Ne	3.5	1
Ar	2.3	3.0
Kr	1.6	2.0
Xe	1.05	2.7

E. Aprile, et al., "Nobel Gas Detectors"

Alpha tracks in 87.5% He-4, 12.5% CF₄ (Am-241 source)

Alpha tracks in 87.5% Ne, 12.5% CF₄ (Am-241 source)

87.5% He-4, 12.5% CF₄

87.5% Ne, 12.5% CF₄

Track width as a measurement of diffusion

Another surprise – low spark rate

- Much lower spark rate!
 - Don't know why
 - Allows higher gain
 - More stable detector
 - Better signal-to-noise
- Neon may be interesting in directional dark matter searches
 - Tune the sensitive parameter space
 - Decrease spark rate

Simulated 5 MeV neutron-induced nuclear recoil (87.5% Ne, 12.5% CF₄)

Simulated 30 MeV neutron-induced nuclear recoil (87.5% Ne, 12.5% CF₄)

Simulated 75 MeV neutron-induced nuclear recoil (87.5% Ne, 12.5% CF₄)

Simulated 75 MeV neutron-induced nuclear recoil (87.5% Ne, 12.5% CF₄)

Takeaway

- Demonstrated use of Ne/CF4 in MITPC
 - Diffusion is not a problem!
 - Low spark rate!
- Simulations look good
- Installing Big MITPC in SciBooNE hall this summer
- Stay tuned for results