First Measurement of the Beam

Normal Single Spin Asymmetry in Δ Resonance Production by Q-weak

Nuruzzaman

(https://userweb.jlab.org/~nur)
for the Q-weak Collaboration

New Perspectives 2015 June 8-9 at Fermilab in conjunction with the $48^{\text {th }}$ Fermilab Users Meeting

Jefferson Lab $\frac{\text { HAMPTON }}{\text { HAT }}$

黄Fermilab

Beam Normal Single Spin Asymmetry

- Beam Normal Single Spin Asymmetries $\left(B_{\mathrm{n}}\right)$ are generated when transversely polarized electrons scatter from unpolarized targets
- B_{n} is parity conserving and is time-reversal invariant
B_{n} is also known as transverse asymmetry

$$
\begin{gathered}
B_{\mathrm{n}}=\frac{\sigma \uparrow-\sigma \downarrow}{\sigma \uparrow+\sigma \downarrow} \\
\uparrow \text { spin UP } \\
\downarrow \text { spin DOWN }
\end{gathered}
$$

Beam Normal Single Spin Asymmetry

- Beam Normal Single Spin Asymmetries $\left(B_{\mathrm{n}}\right)$ are generated when transversely polarized electrons scatter from unpolarized targets
- B_{n} is parity conserving and is time-reversal invariant
B_{n} is also known as transverse asymmetry
$B_{\mathrm{n}}=\frac{\sigma \uparrow-\sigma \downarrow}{\sigma \uparrow+\sigma \downarrow}=\frac{2 T_{1 \gamma} \times \operatorname{lm} T_{2 \gamma}}{\left|T_{1 \gamma}\right|}$
\uparrow spin UP $\quad T_{1 \gamma}$ - amplitude for 1-photon exchange
\downarrow spin DOWN $\quad T_{2 \gamma}$ - amplitude for 2-photon exchange
B_{n} arises from the interference of 2-photon exchange with 1-photon exchange in e-N scattering
- B_{n} provides direct access to the imaginary part of the two-photon exchange amplitude

Beam Normal Single Spin Asymmetry

- Beam Normal Single Spin Asymmetries $\left(B_{\mathrm{n}}\right)$ are generated when transversely polarized electrons scatter from unpolarized targets
- B_{n} is parity conserving and is time-reversal invariant
B_{n} is also known as transverse asymmetry

\uparrow spin UP $\quad T_{1 \gamma}$ - amplitude for 1-photon exchange
\downarrow spin DOWN $\quad T_{2 \gamma}$ - amplitude for 2-photon exchange
B_{n} arises from the interference of 2-photon exchange with 1-photon exchange in e-N scattering
- B_{n} provides direct access to the imaginary part of the two-photon exchange amplitude

B_{n} in the Production of the Δ Resonance

Measuring B_{n} in $\mathrm{e}+\mathrm{p} \rightarrow \mathrm{e}+\Delta$

B_{n} in the Production of the Δ Resonance

$$
\text { Measuring } B_{\mathrm{n}} \text { in } \mathrm{e}+\mathrm{p} \rightarrow \mathrm{e}+\Delta
$$

Physics Motivation:
For p and Δ intermediate hadrons, vertices are known

- except for $\gamma^{*} \Delta \Delta$ electromagnetic (EM) vertex

- Proton EM FF well known. $\mathrm{N} \rightarrow \Delta \mathrm{EM}$ transition FF fairly well known
- Unique tool to study $\gamma^{*} \Delta \Delta$ form factors
- Potential to constrain charge radius and magnetic moment of Δ !

Asymmetry Measurement

Can be measured with a transversely polarized beam to determine the magnitude

Measured asymmetry

$$
\epsilon_{M}(\phi)=\frac{N \uparrow-N \downarrow}{N \uparrow+N \downarrow}
$$

Asymmetry Measurement

Can be measured with a transversely polarized beam to determine the magnitude

$$
\epsilon_{\mathrm{M}}(\phi)=\frac{N \uparrow-N \downarrow}{N \uparrow+N \downarrow}=-B_{\mathrm{n}} \overrightarrow{\mathrm{~S}} \cdot \hat{n}=B_{\mathrm{n}} \mathrm{~S} \sin \left(\phi-\phi_{0}\right)=B_{\mathrm{n}}\left[\mathrm{P}^{\mathrm{V}} \cos (\phi)-\mathrm{PH}^{H} \sin (\phi)\right]
$$

Measured asymmetry has a small azimuthal dependence

- Horizontal : $\mathrm{PH}^{\mathrm{H}}=\mathrm{S} \cos \left(\phi_{0}\right)$
- Vertical : $\mathrm{P}^{\vee}=\mathrm{S} \sin \left(\phi_{0}\right)$

Asymmetry Measurement

Can be measured with a transversely polarized beam to determine the magnitude

$$
\epsilon_{M}(\phi)=\frac{N \uparrow-N \downarrow}{N \uparrow+N \downarrow}=-B_{n} \vec{S} \cdot \hat{n}=B_{n} S \sin \left(\phi-\phi_{0}\right)=B_{n}\left[P^{\vee} \cos (\phi)-P^{H} \sin (\phi)\right]
$$

Data taken on targets

- Hydrogen
- Aluminum
- Carbon

Transverse polarization:

- Horizontal
- Vertical

Measured asymmetry has a small azimuthal dependence

- Horizontal : $\mathrm{PH}^{\mathrm{H}}=\mathrm{S} \cos \left(\phi_{0}\right)$
- Vertical : $P^{\vee}=S \sin \left(\phi_{0}\right)$

Asymmetry Measurement

Can be measured with a transversely polarized beam to determine the magnitude

$$
\epsilon_{M}(\phi)=\frac{N \uparrow-N \downarrow}{N \uparrow+N \downarrow}=-B_{n} \vec{S} \cdot \hat{n}=B_{n} S \sin \left(\phi-\phi_{0}\right)=B_{n}\left[P^{\vee} \cos (\phi)-P^{H} \sin (\phi)\right]
$$

Data taken on targets

- Hydrogen
- Aluminum
- Carbon

Transverse polarization:

- Horizontal
- Vertical

Measured asymmetry has a small azimuthal dependence

- Horizontal : $\mathrm{PH}^{\mathrm{H}}=\mathrm{S} \cos \left(\phi_{0}\right)$
- Vertical : $P^{\vee}=S \sin \left(\phi_{0}\right)$

Jefferson Lab and Q-weak Setup

Q-weak experiment ran in Hall-C at the Thomas Jefferson National Laboratory in Newport News, Virginia from Jan 2010 - May 2012

Q-weak setup inside Hall-C (during construction)

Transverse measurements were taken from 16-20 February, 2012

Q-weak Apparatus

Kinematics

- $\mathrm{E}_{\text {beam }}=1.16 \mathrm{GeV}$
- $<\theta>\sim 8.3^{\circ}$
- $\mathrm{Q}^{2}=0.021(\mathrm{GeV} / \mathrm{c})^{2}$
- ϕ coverage $\sim 49 \%$ of 2π
- Current = $180 \mu \mathrm{~A}$
- Polarization = 88\%

Q-weak Apparatus

Kinematics

- $\mathrm{E}_{\text {beam }}=1.16 \mathrm{GeV}$
- $<\theta>\sim 8.3^{\circ}$
- $\mathrm{Q}^{2}=0.021(\mathrm{GeV} / \mathrm{c})^{2}$
- ϕ coverage $\sim 49 \%$ of 2π
- Current = $180 \mu \mathrm{~A}$
- Polarization = 88\%

$\phi \rightarrow$ (octant \# - 1) $\times 45^{\circ}$

Q-weak Apparatus

Kinematics

- $\mathrm{E}_{\text {beam }}=1.16 \mathrm{GeV}$
- $<\theta>\sim 8.3^{\circ}$
- $\mathrm{Q}^{2}=0.021(\mathrm{GeV} / \mathrm{c})^{2}$
- ϕ coverage $\sim 49 \%$ of 2π
- Current = $180 \mu \mathrm{~A}$
- Polarization = 88\%

$\phi \rightarrow$ (octant \# - 1) $\times 45^{\circ}$

Asymmetries from Cerenkov Detector Signals

Not corrected for

- False beam asymmetries
- Polarization
- Backgrounds

Regressed Transverse Asymmetries

- Regressed asymmetries
- Not corrected for polarization and backgrounds

Regressed Transverse Asymmetries

- Regressed asymmetries
- Not corrected for polarization and backgrounds

Summary of Uncertainties on $\epsilon_{\text {rea }}$

Measured asymmetry
$\epsilon_{\text {reg }}=5.1 \pm 0.4$ (stat) ± 0.1 (sys) ppm

- Error weighted (H and V) regressed asym.
- Corrected for detector acceptance
- Not corrected for polarization and backgrounds

Extraction of Physics Asymmetry

Beam Normal Single Spin Asymmetry

$$
B_{\mathrm{n}}=M_{\mathrm{kin}}\left[\frac{\frac{\epsilon_{\mathrm{reg}}}{P}-B_{\mathrm{Al}} f_{\mathrm{Al}}-B_{\mathrm{BB}} f_{\mathrm{BB}}-B_{\mathrm{QTor}} f_{\mathrm{QTor}}-B_{\mathrm{el}} f_{\mathrm{el}}}{1-f_{\mathrm{Al}}-f_{\mathrm{BB}}-f_{\mathrm{QTor}}-f_{\mathrm{el}}}\right]
$$

Extraction of Physics Asymmetry

Beam Normal Single
Spin Asymmetry

Extracting B_{n} from the experimental measured asymmetry by

- removing false asymmetries
- $\epsilon_{\text {reg }}=\epsilon_{\text {raw }}-\sum_{i} \frac{\partial \epsilon_{\text {raw }}}{\partial T_{i}} \Delta T_{\mathrm{i}}$, cor. for det. acpt.

Extraction of Physics Asymmetry

Beam Normal Single		$B_{\mathrm{BB}} f_{\mathrm{BB}}-B_{\mathrm{QTor}} f_{\mathrm{QTor}}-B_{\mathrm{el}} f_{\mathrm{el}}$
Spin Asymmetry	$B_{\mathrm{n}}=M_{\text {kin }}$	$1-f_{\mathrm{Al}}-f_{\mathrm{BB}}-f_{\mathrm{QTor}}-f_{\mathrm{el}}$

Extracting B_{n} from the experimental measured asymmetry by

- removing false asymmetries
- $\epsilon_{\text {reg }}=\epsilon_{\text {raw }}-\sum_{i} \frac{\partial \epsilon_{\text {raw }}}{\partial T_{i}} \Delta T_{i}$, cor. for det. acpt.
- correcting for the beam polarization

Extraction of Physics Asymmetry

Beam Normal Single
Spin Asymmetry

Extracting B_{n} from the experimental measured asymmetry by

- removing false asymmetries
- correcting for the beam polarization
- removing background asymmetries
- $\epsilon_{\text {reg }}=\epsilon_{\text {raw }}-\sum_{i} \frac{\partial \epsilon_{\text {raw }}}{\partial T_{i}} \Delta T_{i}$, cor. for det. acpt.
$B_{b i}=$ Background asymmetries
$\mathrm{f}_{\mathrm{bi}}=$ dilution factors
- Al : aluminum window backgrounds
- BB : scattering from the beamline
- QTor: neutral particles in the magnet acpt.
- el : elastic radiative tail

Extraction of Physics Asymmetry

Beam Normal Single Spin Asymmetry
 $$
B_{\mathrm{n}}=M_{\mathrm{kin}}\left[\frac{\frac{\epsilon_{\mathrm{reg}}}{P}-B_{\mathrm{Al}} f_{\mathrm{Al}}-B_{\mathrm{BB}} f_{\mathrm{BB}}-B_{\mathrm{QTor}} f_{\mathrm{QTor}}-B_{\mathrm{el} .} f_{\mathrm{el}}}{1-f_{\mathrm{Al}}-f_{\mathrm{BB}}-f_{\mathrm{QTor}}-f_{\mathrm{el}}}\right]
$$

Extracting B_{n} from the experimental measured asymmetry by

- removing false asymmetries
- correcting for the beam polarization
- removing background asymmetries
- correcting for radiative tails and other kinematic correction
- $\epsilon_{\text {reg }}=\epsilon_{\text {raw }}-\sum_{i} \frac{\partial \epsilon_{\text {raw }}}{\partial T_{i}} \Delta T_{i}$, cor. for det. acpt.
$\mathrm{B}_{\mathrm{bi}}=$ Background asymmetries
$\mathrm{f}_{\mathrm{bi}}=$ dilution factors
- Al : aluminum window backgrounds
- BB : scattering from the beamline
- QTor: neutral particles in the magnet acpt.
- el : elastic radiative tail
- $\mathrm{M}_{\text {kin }}=$ kinematic correction

Summary of Uncertainties

Beam Normal Single Spin Asymmetry

$$
B_{\mathrm{n}}=M_{\mathrm{kin}}\left[\frac{\frac{\epsilon_{\mathrm{reg}}}{P}-B_{\mathrm{Al}} f_{\mathrm{Al}}-B_{\mathrm{BB}} f_{\mathrm{BB}}-B_{\mathrm{QTor}} f_{\mathrm{QTor}}-B_{\mathrm{el}} f_{\mathrm{el}}}{1-f_{\mathrm{Al}}-f_{\mathrm{BB}}-f_{\mathrm{QTor}}-f_{\mathrm{el}}}\right]
$$

$B_{\mathrm{n}}=43 \pm 16 \mathrm{ppm}$

> at kinematics

$$
\begin{array}{ll}
\cdot & <E>=1.16 \mathrm{GeV} \\
\cdot & <\mathrm{W}>=1.2 \mathrm{GeV} \\
\cdot & <\theta>=8.3^{\circ} \\
\cdot & <Q^{2}>=0.021 \mathrm{GeV}^{2}
\end{array}
$$

$\sim 38 \%$ measurement of beam normal single asymmetry in Δ resonance production

Summary of Uncertainties

Beam Normal Single Spin Asymmetry

$$
B_{\mathrm{n}}=M_{\mathrm{kin}}\left[\frac{\frac{\epsilon_{\mathrm{reg}}}{P}-B_{\mathrm{Al}} f_{\mathrm{Al}}-B_{\mathrm{BB}} f_{\mathrm{BB}}-B_{\mathrm{QTor}} f_{\mathrm{QTor}}-B_{\mathrm{el}} f_{\mathrm{el}}}{1-f_{\mathrm{Al}}-f_{\mathrm{BB}}-f_{\mathrm{QTor}}-f_{\mathrm{el}}}\right]
$$

$B_{\mathrm{n}}=43 \pm 16 \mathrm{ppm}$

Summary of Uncertainties

Beam Normal Single Spin Asymmetry

$$
B_{\mathrm{n}}=M_{\mathrm{kin}}\left[\frac{\frac{\epsilon_{\mathrm{reg}}}{P}-B_{\mathrm{Al}} f_{\mathrm{Al}}-B_{\mathrm{BB}} f_{\mathrm{BB}}-B_{\mathrm{QTor}} f_{\mathrm{QTor}}-B_{\mathrm{el}} f_{\mathrm{el}}}{1-f_{\mathrm{Al}}-f_{\mathrm{BB}}-f_{\mathrm{QTor}}-f_{\mathrm{el}}}\right]
$$

$B_{\mathrm{n}}=43 \pm 16 \mathrm{ppm}$

Summary of Uncertainties

Beam Normal Single Spin Asymmetry

$$
B_{\mathrm{n}}=M_{\mathrm{kin}}\left[\frac{\frac{\epsilon_{\mathrm{reg}}}{P}-B_{\mathrm{Al}} f_{\mathrm{Al}}-B_{\mathrm{BB}} f_{\mathrm{BB}}-B_{\mathrm{QTor}} f_{\mathrm{QTor}}-B_{\mathrm{el}} f_{\mathrm{el}}}{1-f_{\mathrm{Al}}-f_{\mathrm{BB}}-f_{\mathrm{QTor}}-f_{\mathrm{el}}}\right]
$$

$B_{\mathrm{n}}=43 \pm 16 \mathrm{ppm}$

Comparison of B_{n} to Theory Calculation

- sensitive to $\gamma^{*} \Delta \Delta$ form factors

Comparison of B_{n} to Theory Calculation

- sensitive to $\gamma^{*} \Delta \Delta$ form factors
- Q-weak transverse dataset along with world data has potential to constrain models and study charge radius and magnetic moment of Δ

Summary

Q-weak has measured B_{n} in the N-to- Δ transition on H_{2}

$$
43 \pm 16 \mathrm{ppm}
$$

$<E>=1.16 \mathrm{GeV},\langle\mathrm{W}\rangle=1.2 \mathrm{GeV},\langle\theta\rangle=8.3^{\circ},\left\langle\mathrm{Q}^{2}\right\rangle=0.021 \mathrm{GeV}^{2}$

- preliminary result shows agreement with a theoretical calculation
- physics implications of the model needs investigation
- sensitive to $\gamma^{*} \Delta \Delta$ form factors
- working towards the improvement in systematic uncertainty

Data for B_{n} at low Q^{2} in elastic and inelastic scattering with a $\Delta(1232)$ final state from several targets and energy are available.

- looking for model predictions !
- Q-weak transverse dataset along with world data has potential to constrain models and study charge radius and magnetic moment of Δ

Q-weak Collaboration

D.S. Armstrong, A. Asaturyan, T. Averett, J. Balewski, J. Beaufait, R.S. Beminiwattha, J. Benesch, F. Benmokhtar, J. Birchall, R.D. Carlini¹, J.C. Cornejo, S. Covrig, M.M. Dalton, C.A. Davis, W. Deconinck, J. Diefenbach, K. Dow, J.F. Dowd, J.A. Dunne, D. Dutta, W.S. Duvall, M. Elaasar, W.R. Falk, J.M. Finn¹, T. Forest, D. Gaskell, M.T.W. Gericke, J. Grames, V.M. Gray, K. Grimm, F. Guo, J.R. Hoskins, K. Johnston, D. Jones, M. Jones, R. Jones, M. Kargiantoulakis, P.M. King, E. Korkmaz, S. Kowalski¹, J. Leacock, J. Leckey, A.R. Lee, J.H. Lee, L. Lee, S. MacEwan, D. Mack, J.A. Magee, R. Mahurin, J. Mammei, J. Martin, M.J. McHugh, J. Mei, R. Michaels, A. Micherdzinska, K.E. Myers, A. Mkrtchyan, H. Mkrtchyan, A. Narayan, L.Z. Ndukum, V. Nelyubin, Nuruzzaman, W.T.H van Oers, A.K. Opper, S.A. Page¹, J. Pan, K. Paschke, S.K. Phillips, M.L. Pitt, M. Poelker, J.F. Rajotte, W.D. Ramsay, J. Roche, B. Sawatzky,T. Seva, M.H. Shabestari, R. Silwal, N. Simicevic, G.R. Smith², P. Solvignon, D.T. Spayde, A. Subedi, R. Subedi, R. Suleiman, V. Tadevosyan, W.A. Tobias, V. Tvaskis, B. Waidyawansa, P. Wang, S.P. Wells, S.A. Wood, S. Yang, R.D. Young, S. Zhamkochyan

[^0]
Backup Slides

Transverse Dataset

Data on 3 types of targets

- Hydrogen
- Aluminum
- Carbon

Transverse polarization:

- Horizontal
- Vertical

This talk: Inelastic e-p
scattering with a $\Delta(1232)$ final state at $\mathrm{E}=1.16 \mathrm{GeV}$

Data on both side of the inelastic peak were taken to I study the elastic dilution

Other datasets:

- in the $N \rightarrow \Delta$ region (Al, C)
- in the $N \rightarrow \Delta$ region $\left(\mathrm{H}_{2}, 0.877 \mathrm{GeV}\right)$
- elastic scattering $\left(\mathrm{H}_{2}, \mathrm{Al}, \mathrm{C}\right)$
- elastic Møller scattering $\left(\mathrm{H}_{2}\right)$
- in the DIS region (3.3 GeV)
- in pion photoproduction

Elastic Radiative Tail

Beam Normal Single Spin Asymmetry

$$
B_{\mathrm{n}}=M_{\mathrm{kin}}\left[\frac{\frac{\epsilon_{\mathrm{reg}}}{P}-B_{\mathrm{Al}} f_{\mathrm{Al}}-B_{\mathrm{BB}} f_{\mathrm{BB}}-B_{\mathrm{QTor}} f_{\mathrm{QTor}}-B_{\mathrm{el}} f_{\mathrm{el}}}{1-f_{\mathrm{Al}}-f_{\mathrm{BB}}-f_{\mathrm{QTor}}-f_{\mathrm{el}}}\right]
$$

Background Corrections

Elastic radiative tail
Dilution

$$
\mathrm{B}_{\mathrm{el}}=-5.1 \pm 0.5 \mathrm{ppm}
$$

$$
f_{e l}=0.70 \pm 0.07
$$

Δ Elastic Form Factors

There are 4 elastic form factors (spin 3/2)
$Q^{2}=0$ define dimensionless multipole moments

J. Segovia et. al. arXiv:1308.5225 (2013)

- $G_{E 0}(0)=e_{\Delta} \quad$ charge
- $G_{M 1}(0) \propto \mu_{\Delta} \quad$ magnetic moment
- $G_{E 2}(0) \propto D_{\Delta}$ dipole moment
- $G_{\text {м3 }}(0) \propto O_{\Delta}$ octopole moment

Asymmetry is Diluted by Elastic Radiative Tail

$\underset{\text { (* for illustrative purposes) }}{\text { Simplifying }}$ the extraction equation $\quad \frac{\left(1-f_{\text {total }}\right)}{M_{\text {kin }}} B_{n}=\frac{\epsilon_{\text {reg }}}{P}-B_{\text {el }} f_{e l}$ - others
$0.214 \times 43 \mathrm{ppm}=9.2 \mathrm{ppm} \approx(5.1 / 0.875)-0.70 \times(-5.1)-0.3=5.8-(-3.6)-0.3 \mathrm{ppm}$

- The extraction of B_{n} depends strongly on the elastic dilution
- Careful study is ongoing to reduce uncertainty in $f_{\text {el }}$

Summary of Measurements

Higher beam energies allow more intermediate states

Why $B_{n}=0$ at $\theta=0$?

$$
\begin{aligned}
& \mathrm{B}_{\mathrm{n}}=\frac{\sigma \uparrow-\sigma \downarrow}{\sigma \uparrow+\sigma \downarrow}=\frac{2 \mathrm{~T}_{1 \gamma} \times \operatorname{lm} \mathrm{T}_{2 \gamma}}{\left|\mathrm{~T}_{1 \gamma}\right|} \quad \varepsilon^{-1}=1+2\left[1+\frac{\mathrm{v}^{2}}{\mathrm{Q}^{2}}\right] \tan ^{2} \frac{\theta_{\mathrm{e}}}{2} \\
& \sigma \uparrow-\sigma \downarrow \propto \frac{2 m_{e}}{Q}(1-\varepsilon)\left[\frac{\varepsilon_{L}}{\varepsilon}\right]^{1 / 2}=\frac{2 m_{e}}{Q}(1-\varepsilon) \frac{Q}{v}=\frac{2 m_{e}}{v}(1-\varepsilon) \\
& (1-\varepsilon)=\varepsilon(1 / \varepsilon-1) \\
& =2 \varepsilon\left[1+\frac{\mathrm{v}^{2}}{\mathrm{Q}^{2}}\right] \tan ^{2} \frac{\theta_{\mathrm{e}}}{2} \\
& \underbrace{\sim}_{\frac{\mathrm{Q}}{\mathrm{~V}}}=\frac{4 \mathrm{~m}_{\mathrm{e}} \varepsilon}{\mathrm{v}}\left[1+\frac{\mathrm{v}^{2}}{\mathrm{Q}^{2}}\right] \tan ^{2} \frac{\theta_{\mathrm{e}}}{2} \\
& v=K \cdot P \\
& K \text { is the average incoming four-momenta of the electron } \\
& P \text { is the average outgoing four-momenta of the proton } \\
& v_{\text {el }}=0.013 \\
& v_{\text {in }}=0.348 \\
& \mathrm{v}_{\text {min }}=300 \mathrm{MeV}+\mathrm{K} \text {. } \mathrm{E} \text {. } \\
& \text { Private communication with } \\
& \text { Carl Carlson }
\end{aligned}
$$

[^0]: ${ }^{1}$ Spokespersons ${ }^{2}$ Project Manager Grad Students

