

Observation of $B^{\pm} \rightarrow \psi(2S)\Phi K^{\pm}$ at $\sqrt{s}=8$ TeV in CMS

<u>Reddy Pratap Gandrajula</u> (The University of Iowa) On behalf of CMS collaboration

New Perspectives at Fermilab, June, 8th, 2015

Outline

- Introduction: LHC & CMS detector
- Exotic structures introduction
- Search structures in $B^+ \rightarrow J/\psi \Phi K^+$
- triggers and Data set
- Monte Carlo
- Event selection
- $B^+ \rightarrow \psi(2S)\Phi K^+$ observation
- Branching fraction measurement (In approval stage)
- Summary and conclusion

Introduction: LHC & CMS detector

Compact Muon Solenoid (CMS) identifies and measures e, μ , γ , charged/neutral particles, Jets, MET etc.

Reddy, for New Perspectives 2015 meeting

Introduction: LHC & CMS detector

CMS collects data very efficiently.

- CMS yields large amounts of data at the world's highest energy
- --CMS/ATLAS just discovered the Higgs, confirms & completes the SM
- --Enormous opportunities to search for new phenomena

Introduction: Relevant sub-detectors

06/08/15

Reddy, for New Perspectives 2015 meeting

CMS detector performance

Excellent muon/silicon detectors for quarkonium:

- Muon system
- High purity muon identification
- Good dimuon mass resolution($\Delta m/m \sim 0.6\%$ for J/ ψ)
- Silicon Tracking detector
- excellent track momentum resolution($\Delta pT/pT \sim 1\%$)
- excellent vertex reconstruction
- Observation of $Bs(\mu^+\mu^-)(>4\sigma)$ shows an excellent combined performance of the all-silicon tracker and muon detector
- identifying and measuring muons with high resolution
- strong background rejection capabilities.

LHC luminosity and CMS trigger:

- Collect data at increasing instantaneous luminosity.
- Triggers are essential ingredients
- Special trigger for different analysis
 For this analysis: displaced dimuon vertex & minimum (di)muon transverse momentum

06/08/15

Reddy, for New Perspectives 2015 meeting

10² dimuon mass [GeV]

Search for exotic structures

- With the availability of large CMS dataset, there are enormous opportunities to search for new phenomena.
- 1964: Gell-Mann & Zweig postulated Constituent Quark Model (CQM)
 ⇒Quarks form two types of bound states:Mesons and Baryons. Only colorless combinations are allowed.
- What about other combinations in bound states?

No theoretical reason to exclude other types of (colorless) bound quark states, For example: Meson molecule, Tetraquark, or Quark-gluon hybrid states.

Recent studies at several experiments (CDF, CMS, and D0) observed such a possible exotic state Y(4140) in J/ψφ spectrum.

Search structures $\rightarrow J/\psi \Phi$ via B decays

 Experimentally attractive to search through clean B⁺ → J/ψΦK⁺ channel --taking advantage of B lifetime and narrow B mass window --B⁺ → J/ψΦK⁺ is OZI suppressed, so, low rate from phase space decays --constrained phase space favors forming of two-body structures

Reddy, for New Perspectives 2015 meeting

Motivation for current analysis

CMS reported already on the presence of substructure Y(4140) in the known decay $B+\rightarrow J/\psi\phi K+$, arXiv:1309.6920.

• A natural extension to structure in J/ $\psi\phi$ spectrum, is to search for structure in $\psi(2S)\phi$ spectrum via exclusive $B+\rightarrow\psi(2S)\phi K+$ decays. As part of that investigation, the final state $B+\rightarrow\psi(2S)\phi K+$ was observed.

Event reconstruction

- B signal: Reconstruct B signal from $\psi(2S), \Phi$, and K mesons.
- Reconstruct $\psi(2S)$ from $\mu^+\mu^$ pair and Φ from K+K- pair that has mass closest to the nominal Φ mass.
- We chose B+ → ψ(2S)K+ as normalization channel for branching fraction measurement.

 $\begin{array}{l} B^+ \rightarrow \psi(2S) \Phi K^+, \\ \psi(2S) \rightarrow \mu^+ \mu^-, \ \Phi \rightarrow K^+ K^- \end{array}$

Triggers & Data set

- Software: CMSSW_5_3_7_patch5.
- Jason file:Cert_190456-208686_8TeV_22Jan2013ReReco_Collisions12_JSON_MuonPhys.txt.
- Triggers: HLT_Dimuon5_Psiprime
- Dataset:

Dataset	[Run range]	Luminosity	Dimuon trigger
			effective Luminosity
/DoubleMuParked/Run2012A-22Jan2013-v1/AOD [19	90456, 193621]	0.9373 fb ⁻¹	0.413 fb ⁻¹
/MuOniaParked/Run2012B-22Jan2013-v1/AOD [1938	333, 196531]	4.829 <i>fb</i> ⁻¹	4.257 <i>fb</i> -1
/MuOniaParked/Run2012C-22Jan2013-v1/AOD [1980	022, 203746]	7.3079 fb ⁻¹	7.3079 fb ⁻¹
/MuOniaParked/Run2012D-22Jan2013-v1/AOD [203	768, 208686]	7.576 fb^{-1}	7.576 fb ⁻¹
	Sum	20.65 fb^{-1}	19.55 fb^{-1}

Monte Carlo samples

Monte Carlo (MC) simulated data were created using PYTHIA 6 for the particle production, EVTGEN for the particle decays, and GEANT4 for tracing the particles through a detailed model of the detector

Signal B⁺ $\rightarrow \psi$ (2S) Φ K⁺ samples Ψ Normalization channel B⁺ $\rightarrow \psi$ (2S)K⁺

Official MC events: using phase space distributions, $\psi(2S)$ decay to $\mu^+\mu^-$ is V \rightarrow LL and Φ decay to K+K- is $V \rightarrow SS$.

9538259 available in CMS DBS.

10 million requested.

samples

- Official MC events: SVS model distributions, $\psi(2S)$ decay to $\mu^+\mu^-$ is V→LL .
- 0.5 million requested.
- 504823 available in CMS DBS

MC Signal DBS Path:/BuToPsiPhiK_BFilter_TuneZ2star_8TeV-pythia6-evtgen/Summer12_DR53X-PU_RD2_START53_V19F-v2/AODSIM MC Normalization DBS path:/BuToPsiK_BFilter_TuneZ2star_SVS_8TeV-pythia6-evtgen/Summer12_DR53X-PU_RD2_START53_V19F-v2/AODSIM

These samples were created with the appropriate conditions for the data analyzed, including the effects of alignment, efficiency, and number of simultaneous pp collisions.

Event selection for Signal channel

• We use $\frac{\sqrt{S}}{[5/2+\sqrt{B}]}$ as the Figure Of Merit(FOM) for optimization. Where S is the N(B+) candidates from the official signal MC, and B is the number of background candidates within 5 σ of the B+ mass peak.

• Pointing Angle:defined as the cosine of the angle between the B meson pseudo-momentum direction and the direction obtained by the secondary and the primary vertices. The primary vertex is chosen to be the one that minimizes this angle for a given secondary vertex. $Cos(\theta^*)>0.99$

- Transverse impact parameter significance $\frac{L_{xy}}{\sigma_{xy}}(B^+) > 4.0$
- B vertex probability>0.1
- Dimuon pT > 7 GeV/c.
- Φ mass window<8 MeV</p>

Note: Event Pre-Selection cuts are in backup slides

Normalization channel

• We use exactly the same requirements for $B^+ \rightarrow \psi(2S)K^+$ as in the $B^+ \rightarrow \psi(2S) \Phi K^+$ channel except **the requirement of \Phi** to cancel systematics.

Explicit list of requirements:

- All kaon tracks to have $|\eta| \le 2.4$ and muon tracks to have $|\eta| \le 2.0$.
- All kaon tracks to have pT > 1 GeV.
- All muon tracks to have at least 1 pixel hit and at least 5 silicon hits.
- The fit probability for B vertex > 0.1.
- The detachment significance $\frac{L_{xy}}{(B^+)} > 4.0$

 σ_{xy}

• Dimuon $p_{\tau} > 7$ GeV and $\psi(2S)$ candidate should pass HLT Dimuon 5 **PsiPrime trigger**

• We require $\mu^+\mu^-$ mass should be within 5 σ of $\psi(2S)$ PDG mass at its pseudorapidity.

$B^+ \rightarrow \psi(2S)\Phi K^+$ un binned fit

Signal fitted to a double Gaussian function with fixed mean to PDG value and widths from MC fit parameters and background to a 1st order Chebyshev polynomial.

Goodness of the fit

Event display in CMS fireworks

B⁺ sideband subtracted Φ signal

- The Φ signal mass window [0.986,1.058] GeV is divided into 18 bins
- In each bin width, extract the B+ yield by fitting data to a double Gaussian signal function + a 1st order Chebyschev polynomial background function.

$B^+ \rightarrow \psi(2S)\Phi K^+$ significance

We performed two hypothesis tests to the data:

(1) A null hypothesis is tested by fitting the data using a background only model, and

(2) a signal hypothesis is tested by fitting the data to a background model and a signal model together while floating the signal amplitude.

 Likelihood returned from the nullor signal-hypothesis fit is denoted by L₀ or L_s, respectively.
 Local significance =
 $\sqrt{-2ln(L_s/L_0)}$

 $>5\sigma$

Branching fraction measurement strategy

Summary and Conclusion

● We observed the rare decay $B^+ \rightarrow \psi(2S)\Phi K^+$ for the first time

the expected BR accuracy is of the order of 10% (In approval stage).

• With large data set at higher energy (i.e., LHC Run II data), It is possible to study substructures in $\psi(2S)\Phi$ system.

Thank You. Any Questions ?

Event pre-selection

Event pre selection requirements:

- Solution All kaon tracks to have $p_{\tau} > 0.5$ GeV.
- Solution All kaon and muon tracks to have $|\eta| \le 2.4$.
- All muon tracks to have at least 1 pixel hit and at least 5 silicon hits.
- $\mathbf{P}_{\mu^+\mu^-}$ pair with a valid vertex fit and mass within the range [3.4, 4.0] GeV.
- Three different tracks with assigned kaon mass, total charge= ± 1 and mass upon combining with $\mu^+ \mu^-$ in the range [5.15, 5.45] GeV.
- We have two K+K- pairs from three charged kaon tracks. We require the mass of K+K- pair with lower mass to be smaller than 1.06 GeV.
- We do a vertex fit to the five tracks and constraint $\mu^+\mu^-$ to nominal $\psi(2S)$ mass and require vertex probability > 10⁻⁶.
- We fitted $\mu^+\mu^-$ mass with MC extracted resolution with the varied pseudorapidity. We require $\mu^+\mu^-$ mass should be within 5 σ of $\psi(2S)$ PDG mass at its pseudorapidity.