Forward–backward Asymmetry in Top Pair Production at CDF

Ziqing Hong on behalf of the CDF Collaboration

New Perspectives 2015 June 8, 2015

Top-Quark Pair at Tevatron

- $p\bar{p}$ collision at Tevatron
 - Asymmetric initial state
 - Proton direction as "forward"
- Top quark majorly produced in pairs
 - Very heavy particles
 - Very short lived, don't form hadrons
- Fascinating particle, unique opportunity to study a "bare" quark

$A_{\rm FB}^{t\bar{t}}$ at Tevatron

- Forward-backward asymmetry (A_{FB})
- **Does top quark prefer proton** direction or the opposite?
 - Characterized by rapidity difference between top and anti-top,

$$\Delta y = y_t - y_{\bar{t}}$$

• Define A_{FB} of $t\bar{t}$ production:

$$\mathcal{A}_{\mathsf{FB}}^{tar{t}} = rac{\mathcal{N}(\Delta y > 0) - \mathcal{N}(\Delta y < 0)}{\mathcal{N}(\Delta y > 0) + \mathcal{N}(\Delta y < 0)}$$

$A_{\rm FB}^{t\bar{t}}$ at Tevatron

- Forward-backward asymmetry (A_{FB})
- **Does top quark prefer proton** direction or the opposite?
 - Characterized by rapidity difference between top and anti-top,

$$\Delta y = y_t - y_{\overline{t}}$$

• Define A_{FB} of $t\bar{t}$ production:

$$A_{\text{FB}}^{t\bar{t}} = \mathsf{P(top} \rightarrow) - \mathsf{P(\leftarrow top)}$$

A_{FB} at Tevatron: Why important?

Why this is important?

- No net asymmetry in leading order diagram
- Slight asymmetry starting from next-to-leading order (NLO) effects
- Large EW correction (25%@LO) and higher order QCD corrections (27%@NNLO) complicate the calculation
- Precision probe of SM predictions with large mass particles

A_{FB} at Tevatron: Why important?

Why this is important?

- No net asymmetry in leading order diagram
- Slight asymmetry starting from next-to-leading order (NLO) effects

• Large EW correction (25%@LO) and

hig Might even find signs for new physics here! (27) \overline{q} \overline{t} $\overline{$

 Precision probe of SM predictions with large mass particles

A_{FB}^{tt} at Tevatron: History

Previous experimental results? • CDF: $A_{\text{FR}}^{tt} = 0.164 \pm 0.047$ (Lep+jets, PRD 87, 092002 (2013)) • D0: $A_{\text{FR}}^{tt} = 0.106 \pm 0.030$ (Lep+jets, PRD 90, 072011 (2014)) $A_{
m FR}^{tt} = 0.180 \pm 0.086$ (Dilepon, D0 note 6445-CONF (2014)) Final result from CDF in tension with NNLO SM calculation (0.095), with both results from D0 consistent

$t\overline{t}$ forward-backward asymmetry

with calculation

- First time presentation of:
- $A_{FB}^{t\bar{t}}$ measurement in **dilepton final state** at CDF
- $A_{FB}^{t\bar{t}}$ CDF combination

$t \overline{t} ightarrow { m dilepton}$ Event selection

- Need a sample enriched by $t\bar{t}$ events with dilepton signature:
 - Two opposite charged leptons
 - At least two jets, from *b*-quark hadronization
 - Large imbalanced *p*_T, due to neutrinos
- Details of $t\overline{t} \rightarrow$ dilepton data selection criteria, and signal and background modeling in the backups

tt Kinematic Reconstruction

- Need to reconstruct the $t\bar{t}$ momenta to find Δy_t
 - Usually just identify the final-state particles and add up the momenta Not in dilepton channel
- Dilepton channel: under-constrained system
 - Mainly due to two neutrinos leaving the detector
 - \bullet Also, don't measure jet energies and imbalanced p_{T} well
 - ullet Plus, cannot tell which jet is from b and which is from $ar{b}$
- Quantify the probability of a certain configuration (thus a certain Δy_t) coming from a measured $t\bar{t}$ dilepton event with a likelihood term
- Employ Markov-chain Monte Carlo (MCMC) to map out the probability distribution of Δy_t for each event

Extract truth-level A^{tt}_{FB}

- Have the measurement after top reconstruction
- Need to correct it to truth-level
 - What you would get imagining you could see top quarks directly
- Correct for two effects in a Bayesian model
 - Smearing caused by detector response and $t\bar{t}$ reco
 - Acceptance imposed by detector coverage and efficiency caused by object ID and event selection

$$\exp[r] = \sum_{t=1}^{4} \operatorname{truth}[t] * \operatorname{Eff}[t](A_{\operatorname{FB}}^{t\overline{t}}) * \operatorname{Det}[t][r] + \operatorname{bkg}[r]$$

- Find truth-level truth[t] resulting in the expectation $\exp[r]$ that matches data best
- Truth-level $A_{\mathsf{FB}}^{t\bar{t}}$ from best matched $\operatorname{truth}[t]$

Bias test

- Test the A_{FB}^{tt} extraction algorithm with simulated samples
- No bias in SM-like scenarios
- Don't anticipate unfolding to work perfectly in BSM scenarios, though the deviation is modest

$A_{\text{FB}}^{t\bar{t}}$ in CDF Dilepton

• Apply reconstruction and unfolding algorithm to data

- $A_{\text{FB}}^{t\bar{t}} = 0.12 \pm 0.11(\text{stat}) \pm 0.07(\text{syst})$
- Table of uncertainties in backups
- \bullet Consistent with NNLO SM prediction 0.095 ± 0.007

CDF $A_{FB}^{t\bar{t}}$ combination

- Combine with CDF result in lepton+jets
 - Best Linear Unbiased Estimator employed
 - Account for all uncertainties with correlations
- Result is $A_{ extsf{FB}}^{tt} = 0.160 \pm 0.045$
- All results consistent with SM predictions

Conclusions: Top AFB

- Final measurement of $A_{\rm FB}^{tt}$ in dilepton final state at CDF: $A_{\rm FB}^{t\bar{t}} = 0.12 \pm 0.13$
- CDF combination yields $A_{\text{FB}}^{t\bar{t}} = 0.160 \pm 0.045$
- \bullet Consistent with NNLO SM calculation of 0.095 ± 0.007
- No clear sign of new physics, which is kind of disappointing
- Have been pushing top physics calculation to higher precision

Conclusions: Top AFB

- Final measurement of $A_{\rm FB}^{tt}$ in dilepton final state at CDF: $A_{\rm FB}^{t\bar{t}} = 0.12 \pm 0.13$
- CDF Thanks to the organizer for arranging this event
 - 0.095 ± 0.007
- No clear sign of new physics, which is kind of disappointing
- Have been pushing top physics calculation to higher precision

Backup slides

Tevatron and CDF

FERMILAB'S ACCELERATOR CHAIN

Tevatron

- *pp* collider
- Center-of-mass energy 1.96 TeV
- \bullet Run II delivered $12 {
 m fb}^{-1}$
- \bullet Acquired $\sim 10 {\rm fb}^{-1}$ by CDF

CDF

- General purpose detector
 - 1.4 T magnetic field
 - Tracking, Calorimeter and Muon systems

Backup Slides

$tar{t} ightarrow$ dilepton event selection criteria

	Baseline Cuts	Exactly two leptons with $E_{\rm T}>20~{\rm GeV}$ and passing standard identification requirements with following modifications
		-COT radius exit $>$ 140 cm for CMIO
		$-\chi^2/ndf < 2.3$ for muon tracks
		At least one trigger lepton
		At least one tight and isolated lepton
		At most one lepton can be loose and/or non-isolated
		$\not\!$
		MetSig (= $\not\!$
		$\mathrm{m}_{\mathrm{ll}} > 10~\mathrm{GeV}/\mathrm{c}^2$
_	Cuts	Two or more jets with $E_{ m T} > 15~{ m GeV}$ within $ \eta < 2.5$
igna		$\rm H_{T} > 200~GeV$
S		Opposite sign of two leptons
	Quality	Jet-deviation in top reconstruction < 3.5
Seco		$m_{lb}^2 > 24000 ({ m GeV}^2)$
		$\Delta R_{min}(\mathrm{lepton, jet}) > 0.2$

 $t\bar{t} \rightarrow dilepton$ Signal and background modeling

• Signal modeling:

- Prediction with POWHEG MC (NLO SM w/ only QCD correction)
- Background modeling:
 - Diboson production (WW,WZ,ZZ, $W\gamma$) MC prediction
 - Z/γ^* +jets MC prediction with correction from data
 - W+jets Data-based
 - *tt* non-dilepton
 - $\label{eq:prediction with POWHEG MC} \ensuremath{\mathsf{Prediction with POWHEG MC}}$
 - Agreement is excellent

CDF Run II Preliminary (9.1 ${ m fb}^{-1}$)				
Expected and observed events				
$(t\bar{t} \rightarrow I^+I^- + 2 \text{jets} + \not{\!\! E}_T)$				
Source	Events			
Diboson	26±5			
$Z/\gamma^*+{ m jets}$	37±4			
<i>W</i> +jets	28±9			
$t\bar{t}$ non-dilepton	$5.3{\pm}0.3$			
Total background	96±18			
Signal $t\bar{t}$ ($\sigma = 7.4 \text{ pb}$)	386±18			
Total SM expectation	482±36			
Observed	495			

$$\begin{split} \mathcal{L}(\vec{p}_{\nu},\vec{p}_{\bar{\nu}},E_{b},E_{\bar{b}}) = & P(p_{z}^{t\bar{t}})P(p_{T}^{t\bar{t}})P(M^{t\bar{t}}) \times \\ & \frac{1}{\sigma_{jet1}}\exp\left(-\frac{1}{2}\left(\frac{E_{jet1}^{measure}-E_{jet1}^{fit}}{\sigma_{jet1}}\right)\right) \times \frac{1}{\sigma_{jet2}}\exp\left(-\frac{1}{2}\left(\frac{E_{jet2}^{measure}-E_{jet2}^{fit}}{\sigma_{jet2}}\right)\right) \\ & \frac{1}{\sigma_{x}^{\not{\ell}}\tau}\exp\left(-\frac{1}{2}\left(\frac{\not{\ell}_{x}^{measure}-\not{\ell}_{x}^{fit}}{\sigma_{x}^{\not{\ell}}\tau}\right)\right) \times \frac{1}{\sigma_{y}^{\not{\ell}}\tau}\exp\left(-\frac{1}{2}\left(\frac{\not{\ell}_{y}^{measure}-\not{\ell}_{y}^{fit}}{\sigma_{y}^{\not{\ell}}\tau}\right)\right) \end{split}$$

Table of uncertainties

CDF Run II	Preliminary	(9.1	fb ⁻	1)
------------	-------------	------	-----------------	----

$(t\bar{t} \rightarrow l^+l^- + 2 \text{jets} + \not{\!\!E}_T)$

Source of uncertainty $A_{\rm FB}^{t\bar{t}}$	Value	
Statistical	0.11	
Background	0.04	
Parton Showering	0.03	
Color reconnection	0.03	
I/FSR	0.03	
JES	0.02	
Unfolding	0.02	
PDF	0.01	
Total systematic	0.07	
Total uncertainty	0.13	