

CMS Pixel Detector Upgrade

Xuan Chen

on behalf of the CMS FPIX Upgrade group

Senior, Physics Undergraduate Student Advisors: Prof. Neeti Parashar, Dr. John Stupak III

Outline

- The LHC
- The CMS detector
- The phase 0 pixel detector
- The phase 1 pixel detector upgrade

LHC

CMS

Pixel Detector

The Large Hadron Collider

- 17-mile circumference hadron collider across Switzerland and France
- Located at the European Organization for Nuclear Research (CERN)
- 14 Trillion electron-volt (TeV) proton-proton collision design energy
- Accelerates protons to 99.999999% the speed of light
- 4 state-of-the-art particle detectors: CMS, ATLAS, ALICE, LHCb
- Allows precision tests of the Standard Model of Particle Physics, and searches for the Higgs Boson and other New Physics beyond Standard Model

The Compact Muon Solenoid (CMS)

- General purpose, "onion-like" detector to study LHC collisions
- Designed for LHC luminosities of 10 34 cm $^{-2}$ s $^{-1}$ with 25 ns bunch spacing 6/8/2015

Silicon Tracker

 Responsible for recording the trajectory of charged particles and measuring their momenta, →

Pixel Detector: Si Strip Tracker:

- 3 Barrel Pixel Layers (BPIX), 2 x 2 Forward Pixel Disks (FPIX)
- 4 Inner Barrel Layers (TIB), 6 Outer Layers (TOB)
- 3 x 2 Forward Inner Disks (TID), 9 x 2 Outer Disks (TEC)

Current Pixel Detector – Phase 0

- The pixel detector is the closest detector to the interaction point
- Provides precise track and vertex reconstruction
- Integral part of the Tracker
- Made of silicon with 65 million pixels
- Pixels record the passage of charged particles
- Precise 3D position measurement
 - Each pixel is 100 μm by 150 μm
- Hit resolution of 10 µm
- 40 MHz analog readout

Phase 0 FPIX Detector

- 4 Forward/Endcap Disks (FPIX)
- Populated with 672 pixel modules (called plaquettes), with five different types (with 2 to 10 ROCs)

The LHC Run II

The LHC Run II

 Increased energy and luminosity offer unique potential for historic discoveries

- Precision Higgs physics
- Additional Higgs bosons
- Dark Matter
- Extra spatial dimensions
- SuperSymmetry
- Etc...

Many Simultaneous overlapping soft interactions (pileup)

Current Detector

Challenges

Upgrade Detector

- High energy and luminosity brings new challenges
 - Extreme pile-up conditions
 - High hit rate and data transfer requirements, which the current pixel detector can't satisfy

The Pixel Detector – Phase I Upgrade

- Maintain or improve current level of performance under extreme pile-up conditions
 - Sustain the high efficiencies and low fake rates of the current detector
 - Preserve hit resolution of current detector
- Improve radiation hardness
- Minimize data loss due to latencies

The Pixel Detector – Phase I Upgrade

- Optimized detector layout for 4-pixel-hit coverage over the full tracker acceptance
 - Barrel layers from 3 to 4; Forward disks from 4 to 6
- Reduced material budget
 - New cooling system based on two-phase CO₂
- New pixel readout chip (ROC) and token bit manger (TBM), digital readout (160MHz)
- Improved pattern recognition and track reconstruction

FPIX Module

Schematic cross section:

Module Testing & Qualification

- The bulk of the module testing will be performed at Fermilab
- Two stations with cold boxes
 - Test 4 modules in parallel
- Expect to test 8 modules / day (average)
- Finish testing ~1000 modules around April 2016

Test Boards

Pixel Alive Test

- Pixel alive is a three-fold test that measures the functionality of the pixel unit cell
 - Inject calibration charge 10 times and measures the number of hits
 - Inject calibration charge into each individual pixel and verify that the correct pixel responds
 - Check that pixels can be masked

Bump Bonding Test

- Send fixed calibration charge into sensor
- Scan over the comparator threshold
- Generate efficiency curve vs. the comparator threshold
- Fit efficiency to extract turn-on value
- Fit Gaussian to bulk of this distribution, flag pixels with high turn-on as bad

Module Testing Workflow

Assembly Testing

- •**I**V
- Pretest
- •≥5 thermal cycles (-30C to 50C)
- •**IV**
- Pretest
- Pixel alive
- •Trim
- Bump bonding

Calibration Testing

- Pretest
- Pixel alive
- •Trim
- Pulse height optimization
- Gain pedestal
- Bump bonding
- S-curves

X-Ray Testing

High Rate Test

~10%

- Pretest
- Pixel alive
- •Trim
- Pulse height optimization
- Gain pedestal
- Bump bonding
- S-curves

Purdue/Nebraska

FNAL

University of Illinois - Chicago/Kansas

Summary

- The pixel detector is an integral part of the Silicon Tracker
- The current pixel detector performs well under current run conditions
 - Under future run conditions will experience performance degradation
- An upgraded pixel detector is under construction to be installed in the winter of 2016/2017
 - Will maintain the current performance under extreme pileup conditions
- Module testing and qualification procedures established and validated

Thank you!

Backup

The LHC Upgrade

TBM Decoding Test

The TBM decoding test issues a single trigger to the TBM

Pretest

- The pretest establishes the basic functionality of the module and prepares it for further testing
 - Check ROC Programability
 - Tune analog voltage such that each ROC pulls 24mA
 - Verify the TBM and ROC timing
 - Set the comparator threshold and calibration delay for each ROC

CalDel

Trim Test

- The trim test consists of two different test that unify the pixel response across all ROCs
 - RMS of threshold distribution should not exceed 400 e⁻
- The trim test sets the VThrComp and VTrim of each ROC
- The trim bit test sets 4 trim bits for each pixel.
- The goal of this process is to provide the narrowest turn on for a target VCal.

Pulse Height Optimization

- Establish the dependency of the pulse height on the injected charge
- Phscale and Phoffset are scanned, and the point where the pixel amplifier saturates at the target Vcal is selected

Gain Pedestal Test

- The gain pedestal test measures the response of each pixel
 - Ensure linearity
 - Tolerate up to 20% variation of the gains
 - Pedestal RMS is required to be less than 5000 e⁻
- This is done by measuring the pulse height vs. injected VCal and fitting the response curve
- Once the gain pedestal test is finished, the module is fully calibrated and ready for X-ray tests

$$P_3 + P_2 \tanh(P_0 x - P_1)$$

S-curves Test

- The S-curves test measures the performance of a module as a function of a single dac parameter
- Once a module is fully calibrated, a VCal S-curve will measure the performance of the trim and the pixel noise
 - Noise should not exceed 1000 e⁻

