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Abstract 

Particle accelerators are host to myriad nonlinear and complex physical 
phenomena. They often involve a multitude of interacting systems, are subject 
to tight performance demands, and should be able to run for extended periods 
of time with minimal interruptions. Machine learning constitutes a versatile set 
of techniques that are particularly well-suited to modeling, control, and 
diagnostic analysis of complex, nonlinear, and time-varying systems, as well as 
systems with large parameter spaces. Consequently, the use of machine 
learning- and mathematical optimization-based modeling and control 
techniques could be of significant benefit to particle accelerators. For the same 
reasons, particle accelerators are also extremely useful test-beds for these 
techniques. This talk briefly discusses some promising avenues for 
incorporating machine learning into particle accelerator control systems and 
shows some initial results from our work at Fermilab. 



Control Challenges for Particle Accelerators 
•  Particle accelerators are host to myriad complex/nonlinear physical phenomena 

•  Often involve a multitude of separately-controlled, interacting systems 

•  Can have many un-modeled disturbances 

•  Instabilities, coupling 

•  Long-term process cycles and drift 

•  Sometimes have limited diagnostics (large number of variables to adjust and just a few 
measureable outputs) 

•  Increasingly tight performance demands (transition to applications, increased energy/
intensity) 

•  Desirable to run for extended periods with minimal downtime 
 



What capabilities do we want? 
•  Automatically distill large amounts of data into useful information 

•  Even for cases where data analysis is not straightforward 

•  Account for un-modeled behavior 

•  Take pre-emptive control actions if need be 

•  Adapt to drift in system behavior 
•  A change in the rules governing how actions are decided upon (a “policy”) 
•  Adaptation of a model (in model-based control) 

•  Find the best control actions to achieve a desired set of outputs 
•  Reference tracking 
•  Minimizing/maximizing some parameter(s) 
•  Strictly adhere to constraints 
 

à  Much of this is can be addressed with machine learning and optimization 

à  Particle accelerators can benefit from (and operate as a test-bed for) 
machine learning- and optimization-based control/data processing 

   
à  Application attempts can help to guide theoretical development 



Gradient descent 
Conjugate gradient 

Newton method 
Quasi-Newton methods 
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Manual control and tuning by an operator: 
 

•  Start from a previously known state or a state that is predicted to be acceptable 

•  Make a change, wait, observe a result, make another change based on some update 
rule 

•  For an operator the update rule might be based on understanding of the physics plus 
some memory of the immediately previous outcomes and general previous experience 
with similar systems, or it might be error-based 

•  Minimize difference between desired outcome and observed outcome 

•  Assess when an undesirable machine state has been entered 
 

Analogies: 
•  Grey-box modeling (mix of analytic theory, numerical simulation data, and measured data) 

•  Model predictive control (prediction/optimization of actions over a future time horizon) 

•  Model adaptation via online learning 

•  Reinforcement learning (regulated exploration of parameter space + creation of stimulus-
response rules (a policy) + environmental feedback) 

•  High-level interpretation of data: clustering, classification, dimensional reduction 

 



In general:  
 

greater theoretical understanding  
+ 

 increased computational capability 
+ 

advantageous co-developments in related fields 
+ 

feedback from a wider variety of relevant application attempts  
(and numerous successes in complicated offline data analysis tasks, process 

control tasks, fault prevention tasks, etc.)  
 

à  greater overall technological maturity 
 
 
 

Many failures in the early days à so what’s different now? 



Changing Gears: 
 High-level Overview of Preliminary 

Work At Fermilab 



Resonance Control for an Electron Gun 

•  1½ cell, normal-conducting RF photoinjector operating at 1.3 GHz 

•  Water-cooled 

•  23-kHz shift in resonant frequency per °C change in cavity 
temperature 

•  Existing requirements state that the water temperature should be 
regulated to within ± 0.02 °C 



Simplified Water System Schematic 
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Water Temperature Control Task 
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Note: the actual cavity temperature is not 
necessarily well-represented directly by the 
temperature reading, as the region around 
the sensor experiences additional heating 

under RF power 
 (linear relationship) 

 
Can’t take the readings strictly at face-value 



Performance of Existing PID Controller 
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Note: oscillations are due to water recirculation + time delay (not PID tuning) 



What can we do to improve this? 

•  Pre-emptive compensation for observed changes 

•  Account for time delays and use system history 

•  Use both the heater and the flow control valve 

à  Model predictive control 
à  Models identified from data 



supply temperature 
 

water temperature exiting 
the gun 

flow control valve settings 
 

heater settings 

temperature after mixing chamber 
(measured and target) 

 

target cavity temperature 
+ amount of RF power 

Model Predictive Control of the Water Temperature 



Input for Training and Validation Data 

Note: there are more 
data sets than I am 
showing here 



Model Performance (Training and Validation Data) 



Testing Data: Change the RF Power Settings 



Model Performance (Testing Data) 



Preliminary MPC 

•  Performance benchmark to guide future design 

•  Reliable/fast optimization in a straightforward manner 

à simplified model of water temperature subsystem 

•  Rudimentary model for target water temperature based on average 
RF power and desired cavity temperature 
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Note: 
-Difference in scale relative 
to the PID results 
 
-There is some steady state 
offset in TCAV prior to the 
step 

T02 within ±0.02 °C of 
its respective set point 
in about 3 minutes 

TCAV within ±0.02 °C 
of its set point in about 
5 minutes 

~5x faster settling 
than PID 

No large overshoot 

Preliminary MPC: 1-°C Step Change 



Preliminary MPC: 1-°C Step Change 



Next steps 
•  Improve the component that determines the water temperature set point 

•  account for variation in cave temperature  

•  Clean up the implementation 
•  use measured actions, not just requested actions 
•  online adaptation 
 

•  Additional testing 
•  RF power 
•  more complicated reference trajectory 

 

•  If deemed necessary, use the more complicated/accurate subsystem model 

•  Develop resonance control component 
•  Forward and cavity phase measurements 
•  Beam loading 
•  Reflected power 
 

•  Implementation for dedicated use 




