Neutrino Induced Resonance Interaction in a Fine-Grained Tracker Detector

Hongyue Duyang

Introduction

- We study the neutrino induced resonance interaction (RES) in a Fine-Grained Tracker proposed as reference near detector design for DUNE.
- Use Fast MC to study the sensitivity and kinematics.
- Constrain nuclear effect.
- Similar analysis applied to NOMAD data for validation.
- Preliminary NOMAD measurement result will be reported.

 A neutrino inelastically scatters off target nucleon, with a short-lived resonant state of the excited target nucleon created, which decay into a nucleon and a single pion.

$$\nu_{\mu} + p \longrightarrow \mu^{-} + \Delta^{++} \longrightarrow \mu^{-} + p + \pi^{+}$$

$$\nu_{\mu} + n \longrightarrow \mu^{-} + \Delta^{+} \longrightarrow \mu^{-} + n + \pi^{+}$$

$$\nu_{\mu} + n \longrightarrow \mu^{-} + \Delta^{+} \longrightarrow \mu^{-} + p + \pi^{0}$$

- The most important channel for the next generation long-baseline neutrino experiments in few-GeV energy region such as DUNE (first oscillation maxima at 2.4GeV).
- Theoretically described by Rein-Seghal (RS) model, used in event generators like GENIE.
- Unfortunately also the least measured.

DUNE Experiment

- Deep Underground Neutrino Experiment (DUNE), formerly the Long-Baseline Neutrino Experiment (LBNE)
- Primary goal is to study long-baseline neutrino oscillation.
- Four 10 kt (fiducial) LAr-TPCs underground at SURF, SD (1300km from source).
- A Fine-Grained Tracker near detector is proposed as the reference design at Fermilab.

Performance Metric	FGT
Straw Tube Detector Volume	$3.5m \ge 3.5m \ge 6.4m$
Straw Tube Detector Mass	8 tonnes
Vertex Resolution	$0.1 \mathrm{~mm}$
Angular Resolution	$2 \mathrm{mrad}$
E_e Resolution	5%
E_{μ} Resolution	5%
$ u_{\mu}/ar{ u}_{\mu}$ ID	Yes
$\nu_e/\bar{\nu}_e$ ID	Yes
$NC\pi^0/CCe$ Rejection	0.1%
$NC\gamma/CCe$ Rejection	0.2%
$CC\mu/CCe$ Rejection	0.01%

- High resolution, low-density, magnetized detector built upon NOMAD experience.
- Determine the unoscillated neutrino flux with high precision for all neutrino species.
- Argon target nucleus allow cancellation of systematics.
- Constrain background to the v_e appearance measurement.
- Precision physics measurements on its own.

Performance Metric	FGT		
Straw Tube Detector Volume	$3.5m \ge 3.5m \ge 6.4m$		
Straw Tube Detector Mass	8 tonnes		
Vertex Resolution	0.1 mm		
Angular Resolution	$2 \mathrm{mrad}$		
E_e Resolution	5%		
E_{μ} Resolution	5%		
$\nu_{\mu}/\bar{\nu}_{\mu}$ ID	Yes Excell	er	nt resoluton
$\nu_e/\bar{\nu}_e$ ID	Yes		
$NC\pi^0/CCe$ Rejection	0.1%		
$NC\gamma/CCe$ Rejection	0.2%		
$CC\mu/CCe$ Rejection	0.01%		

- High resolution, low-density, magnetized detector built upon NOMAD experience.
- Determine the unoscillated neutrino flux with high precision for all neutrino species.
- Argon target nucleus allow cancellation of systematics.
- Constrain background to the v_e appearance measurement.
- Precision physics measurements on its own.

- High resolution, low-density, magnetized detector built upon NOMAD experience.
- Determine the unoscillated neutrino flux with high precision for all neutrino species.
- Argon target nucleus allow cancellation of systematics.
- Constrain background to the v_e appearance measurement.
- Precision physics measurements on its own.

]	Performance Metric	FGT
	Straw Tube Detector Volume	$3.5m \ge 3.5m \ge 6.4m$
	Straw Tube Detector Mass	8 tonnes
-	Vertex Resolution	$0.1 \mathrm{~mm}$
	Angular Resolution	2 mrad
-	E_e Resolution	5%
-	E_{μ} Resolution	5%
1	$ u_{\mu}/ar{ u}_{\mu}$ ID	Yes
1	$\nu_e/\bar{\nu}_e$ ID	Yes
]	$NC\pi^0/CCe$ Rejection	0.1%
]	$NC\gamma/CCe$ Rejection	0.2%
	$CC\mu/CCe$ Rejection	0.01%

Excellent background rejection

- High resolution, low-density, magnetized detector built upon NOMAD experience.
- Determine the unoscillated neutrino flux with high precision for all neutrino species.
- Argon target nucleus allow cancellation of systematics.
- Constrain background to the v_e appearance measurement.
- Precision physics measurements on its own.

Analysis Strategy: Fast MC and NOMAD Data

• We don't have a full GEANT4 detector simulation yet at this early stage of detector design.

Muon

- Instead, developed fast MC to mimic detector simulation and reconstruction.
- Use NOMAD data to validate.

- NOMAD was a detector at CERN upon which the proposed DUNE ND is designed.
- Accumulated ~2M neutrino events which serves as a benchmark to validate the ideas developed in the designing of DUNE FGT.
- Also leads to precise measurements of neutrino interactions on its own.

Multivariate Neural Network Analysis

• Using fast MC, built Neural Network on 9 variables: $p_{\mu}^{x}, p_{\mu}^{y}, p_{\mu}^{z}, p_{\mu}^{x}, p_{Proton}^{x}, p_{Proton}^{y}, p_{Proton}^{z}, p_{\pi}^{x}, p_{\pi}^{y}, p_{\pi}^{z}$

Cut	Sig.	Sig. Eff.	Back.	Back. Surv. Prob.
2 positive track	5.928e+06	0.3609	2.811e+06	0.06659
<i>NN</i> > 0.22	5.723e+06	0.3484	1.97e+06	0.04668
<i>NN</i> > 0.35	5.405e+06	0.3291	1.571e+06	0.03722

• Signal efficiency is 33% with 23% background.

Res Kinematics in Signal Region

NN Analysis on NOMAD Data

- Select one µ⁻ track and two positive hadron tracks events in NOMAD.
- Pre-selection cuts to reduce backgrounds, dominated by DIS.
- Events selected are taken into neural network analysis built upon track momentums.
- Normalize background to fit data.
- Compare kinematic variables in data vs MC.

Data vs MC

Backward-Going Pions

- 32.7% of the pions are backward-going according to GENIE.
- Backward-going pions are most sensitive to nuclear effects and provide an excellent probe to constrain nuclear effects such as Fermi-motion and FSI.

Backward-Going Pions in NOMAD

- Although overall MC agree with data, backward-going pions are not well described by GENIE.
- Could provide a handle to constrain nuclear effect.

Resonance Cross-Section: NOMAD Preliminary

- A similar NN analysis with 2-track sample which is statistically independent from 3-track: (muon tack + one positive hadron track).
- Subtract background from data, and fully correct it. Got Consistent result from 3-track analysis and 2-track analysis.
- Combine 3-track result with 2-track result to get a final measurement.
- Take flux measurement from earlier NOMAD publication to calculate the crosssection.

Summary

- We use fast MC to study the resonance interaction sensitivity in a Fine-Grained Track detector.
- Similar analysis applied to NOMAD data for validation.
- Overall GENIE prediction agrees with NOMAD data.
- Backward-going pions are poorly predicted by GENIE and can be used as a handle to constrain nuclear effects.
- NOMAD data provide the most precise measurement of resonance interaction in 2.5 GeV ~ 200 GeV.
- The proposed FGT for DUNE is expected to do even better.

Backup Slides

	Performance Metric	FGT
	Straw Tube Detector Volume	$3.5m \ge 3.5m \ge 6.4m$
	Straw Tube Detector Mass	8 tonnes
	Vertex Resolution	$0.1 \mathrm{mm}$
	Angular Resolution	2 mrad
	E_e Resolution	5%
	E_{μ} Resolution	5%
	$ u_{\mu}/ar{ u}_{\mu}$ ID	Yes
	$ u_e/\bar{\nu}_e$ ID	Yes
	$NC\pi^0/CCe$ Rejection	0.1%
	$NC\gamma/CCe$ Rejection	0.2%
XXX	$CC\mu/CCe$ Rejection	0.01%

- High resolution, magnetized detector built upon NOMAD experience.
- Determine the unoscillated neutrino flux with high precision for all neutrino species.
- Argon target nucleus allow cancellation of systematics.
- Constrain background to v_e appearance measurement.
- Precision physics measurements on its own.

ND Specs

- These are defined in the configuration file: \$FMC_CONFIG/FastMC_DetParams.xml within the block of <param_set name="STT_1" >
- Internal Magnetic Volume: 4.0×4.0×8.1 m
- Tracker volume (STT): 3.5×3.5×7.04 m (6.40 m), density = 0.1 g/cm³
- Fiducial volume: |x, y| < 150 cm, 25 < z < 550 cm
- Radiation length: $X_0 \simeq 600$ cm
- hadronic interaction length: 1,200 cm
- Charged particle momentum resolution: $\sigma_p/p = \frac{0.05}{\sqrt{L}} + 0.008p/\sqrt{L^5}$, where L is the track length
- Angular resolution: $\theta_0 = \frac{13.6 \text{ MeV}}{\beta c p} z \sqrt{X/X_0} [1 + 0.038 \ln(X/X_0)]$
- EM shower energy resolution: $\sigma_E/E = 1\% + 0.06/\sqrt{E}$
- Hadronic shower energy resolution: $\sigma_E/E = 1\% + 0.50/\sqrt{E}$

Fast MC

- Fast MC = Fast Detector Simulation + Fast Reconstruction
- The Chain: G4LBNE \rightarrow GENIE \rightarrow ND Fast MC \rightarrow Analyzing the output ROOT files
 - G4LBNE produces the flux
 - GENIE produces the interactions with a homogeneous detector with approximately the same composition as the current design of HiResM ν
 - ND Fast MC will mimic the detector simulation and recontruction to produce the "reconstructed" variables for downstream analysis
 - Analyzing the output "reconstructed" ROOT files for specific topics
- Use the exisiting NOMAD data to benchmark the whole chain
- Re-use as much as possible the existing Fast MC codes developed by Dan and Rik. It is also a good cross check of the existing code

NOMAD

- The Neutrino Oscillation MAgnetic Detector (NOMAD) was designed to search for v_{μ} to v_{τ} appearing in the CERN SPS wide band neutrino beam.
- A FGT detector upon which the proposed DUNE ND is designed.
- Accumulated ~2M neutrino events which can be used to validate the ideas developed in the designing of DUNE FGT
- Also leading to precise measurements of neutrino interactions on its own.

NOMAD vs FGT

	Sub-Detector	NOMAD	HiResMnu	Improvement
NOMAD -vs- HiResFGT	<u>П</u>			
 ★ Tracking Charged Particles ⇒ 	Tracking		×6 more hits in X-Y ×2 more hits along Z	imes 2 higher QE-Proton Eff. e^{\pm} down to 80 MeV γ -Conv. Reconstruction
*Electron/Positron ID	TR: Electron-ID	Downstream	Continuous	$\simeq imes 3 \; e^{\pm} ext{-Eff}$
\Rightarrow *Calorimetry \Rightarrow	Calorimetry Segmentation E-shower Resolution	Downstream No Longitudinal Transverse $3\%/\sqrt{E}$	4π Coverage Fine Longitudinal Finer Transverse $6\%/\sqrt{E}$	Much better converage e^{\pm}/π Separation Better miss- P_T Powerful 'Dirt'-Veto Poorer resolution
$*\mu$ -ID \Rightarrow	μ -ID	$egin{array}{llllllllllllllllllllllllllllllllllll$	4π Coverage	$P_{\mu}~{ m down}~{ m to}~0.3~{ m GeV}$
*Trigger ⇒	Trigger	Downstream No Cal.Trigger	Continuous in STT Calorimetric Trigger	$P~{ m down}~{ m to}~0.1~{ m GeV}$ $E\simeq 0.3~{ m GeV}$

Preselection Cuts

Cut	Sig.	Sig. Eff.	Back.	Back. Surv. Prob.
Fiducial	1.643e+07	1	4.221e+07	1
$p_{\mu} > 0.2~{ m GeV}/c$	1.619e+07	0.9856	4.136e+07	0.9799
$n_{\mu}^{\rm hits} > 12$	1.593e+07	0.9695	4.074e+07	0.9652
μ_{ID}	1.43e+07	0.8705	3.668e+07	0.869
$\pi^0/n/K_0$ veto	1.081e+07	0.6582	1.758e+07	0.4165
$>=$ 2 track w/ $n_{\rm Had}^{\rm hits}>=$ 4	8.283e+06	0.5043	8.017e+06	0.1899
>= 2 track w/ $p > 0.10$ GeV/c	8.063e+06	0.4908	7.892e+06	0.187
2 positive track	5.928e+06	0.3609	2.811e+06	0.06659

$\blacktriangleright \mu_{\rm ID}$:

- $\mu_{\mathrm{ID}} = 60\%$ @ $p_{\mu} \in [0.2, 0.6] \; \mathrm{GeV}/c$, $\mu_{\mathrm{ID}} = 80\%$ @ $p_{\mu} \in [0.6, 1.0] \; \mathrm{GeV}/c$, $\mu_{\mathrm{ID}} = 95\%$ @ $p_{\mu} > 1.0 \; \mathrm{GeV}/c$.
- ▶ π^0 veto: Require $p_{\gamma} < 0.08$ GeV,
- ▶ neutron veto: Require $T_n < 0.25$ GeV,
- ► K_0 veto: Require $T_{K_0} < 0.25$ GeV.

Background Decomposition

Cut	QE	DIS	Coh	Other	Background
Fiducial	9.269e+06	3.179e+07	4.663e+05	6.846e+05	4.221e+07
$p_{\mu} > 0.3~{ m GeV}/c$	9.259e+06	3.096e+07	4.65e+05	6.747e+05	4.136e+07
$n_{\mu}^{ m hits} > 12$	9.129e+06	3.047e+07	4.649e+05	6.719e+05	4.074e+07
$\mu_{\rm ID}$	8.408e+06	2.723e+07	4.299e+05	6.174e+05	3.668e+07
$\pi^0/n/K_0$ veto	8.135e+06	8.806e+06	4.299e+05	2.103e+05	1.758e+07
$>=$ 2 track w/ $n_{ m Had}^{ m hits}$ $>=$ 4	7.793e+05	7.042e+06	0	1.955e+05	8.017e+06
>= 2 track w/ p $>$ 0.10 GeV/ c	7.563e+05	6.941e+06	0	1.944e+05	7.892e+06
2 positive track	7.427e+05	3.533e+06	0	6186	4.282e+06
NN > 0.22	4.791e+05	2.327e+06	0	4855	2.811e+06
NN > 0.35	3.367e+05	1.233e+06	0	1311	1.571e+06

3-Track Analysis + 2-Track Analysis

- Similar analysis with 2-track sample which is statistically independent from 3-track: (muon tack + one positive hadron track).
- Result shown as ratio of fully-corrected resonance events to inclusive chargedcurrent events.
- 2-track result is consistent with 3-track analysis.
- Combine 3-track result with 2-track result to reduce statistic uncertainty. Also the combined analysis is less sensitive to some systematics.

Systematics

- Systematic uncertainties come from resonance modeling (M_A, M_V, MFP), signal selections(pre-selection cuts, NN) and flux measurement.
- Cross-section measurement agrees with GENIE prediction $(M_A = 1.12 \text{ GeV}, M_V = 0.84 \text{ GeV}).$