Search for Sterile Antineutrinos in MINOS

Navaneeth Poonthottathil

Fermilab/Cochin University of Science and Technology for the MINOS Collaboration

June 08, 2015

⁺The MINOS Experiment

 High Intensity, flexible NuMI beam at Fermilab (320 kW, 120 GeV)

Near Detector

- At Fermilab, 1km away from the source
- ▶ 1 kton, measures the energy spectra and beam composition

Far Detector

- At Soudan mine, 735km away from the source
- 5.4kton and 700m deep, functionally identical to the Near Detector
- Alternating layers of 2.54cm steel and 1cm plastic scintillator with WLS and clear fibers
- 1.3T magnetic field

⁺MINOS Antineutrino Beam

- ► MINOS has taken data in antineutrino mode between 2009-2011
- Collected 3.36 x10²⁰ PoT antineutrino data
- Bombard graphite target with 120 GeV protons from the Main Injector: produce pions and kaons
- Focus π^+/K^+ for neutrinos and π^-/K^- for antineutrinos

+ MINOS Event Topology

 ν_{μ} -CC event

 ν_e -CC event

NC event

*Sterile Neutrinos

- Many anomalies from reactor, radio-chemical, short-baseline, may be explained with oscillation to light sterile neutrinos
- Evidence is not yet conclusive
- MINOS can probe sterile neutrinos through v_{μ} and $\overline{v_{\mu}}$ disappearance
- MINOS v_{μ} limit combined with Bugey can be compared with LSND and MiniBooNE allowed region. Will explore this with \overline{v}_{μ} disappearance

Sterile Neutrinos

- ▶ 3+1 Sterile neutrino model is used in the study
- 3 active neutrinos (ν_e, ν_μ, ν_τ) and one sterile neutrino (ν_s) and additional mass eigen state (ν₄) => 4x4 mixing matrix
- We assume $\overline{\nu}_{\mu}$ and ν_{μ} disappearance due to oscillations are governed by the same mixing parameters, deviations from this would be an indication of CPT violation.
 - Oscillation is described by

Standard three flavor parameters

 $\bullet \Delta m^{2}_{32}, \Delta m^{2}_{21}, \theta_{12}, \theta_{23}, \theta_{13}$

δ13

Sterile parameters

- $\bullet \Delta m^{2}_{43}, \theta_{14}, \theta_{24}, \theta_{34}$
- δ24, δ14

*Sterile Neutrinos in MINOS

 Oscillation to sterile neutrinos can be seen in both detectors

• Small $\Delta m^2_{43} \ll 0.5 \text{ eV}^2$

- No ND oscillation
- Distortion at FD spectrum

• Medium $\Delta m^2_{43} \sim 0.5 \text{ eV}^2$

- No ND oscillation
- Fast oscillation in FD average out
- Effectively a counting experiment

• Higher $\Delta m^2_{43} \gg 0.5 \text{ eV}^2$

- Oscillations at both detectors
- Spectral distortion at ND
- Constant depletion in FD

*Selection of Antineutrino Events

- Selects only the muon track with positive charge sign
- ▶ High efficiency ~ 95 %
- Very low wrong sign contamination and NC background

Far-over-near Ratio

- Using only antineutrino CC samples
 We look for the perturbation from the standard oscillation signature
- Fit to F/N ratio incorporates oscillations in both detectors into the fit
- Systematics uncertainties cancel out in the ratio
- Fit 4 parameters Δm²₃₂,θ₂₃,θ₂₄,Δm²₄₁
 (fix all other parameter)

*Systematic Uncertainties

- Incorporate different systematics in to the χ^2 function for the fit thorough a covariance matrix
 - Detector Acceptance
 - Normalisation
 - Hadron Production
 - Beam optics
 - Cross sections
 - Energy Scale
 - Background

 e_i :

$$\chi^2 = \sum_{i=1}^{N} \sum_{j=1}^{N} (o_i - e_i)^T [V^{-1}]_{ij} (o_j - e_j)$$

 o_i : Observed events in bin i

Predicted events in bin i

- V: Covariance matrix
- V is the total covariance matrix, sum of statistical and systematics matrices
- \blacktriangleright MINOS $\overline{\nu}_{\mu}$ sample is statistically limited

MINOS Sensitivity for Sterile Antineutrino

- Spans 3 orders of magnitude in Δm^{2}_{41}
- Exploring the region below 0.5eV² for the first time with antineutrinos
- Excludes the region right to the curve

Combination with Bugey

- Combine our $\overline{\nu}_{\mu}$ disappearance sensitivity with $\overline{\nu}_{e}$ disappearance limit from Bugey reactor experiment
- Both are antineutrinos, it is a more direct comparison
- MINOS 90% C.L on θ_{24} and Bugey 90% C.L in θ_{14} , combined sensitivity on $\sin^2 2\theta_{\mu e} = \sin^2 2\theta_{14} \sin^2 \theta_{24}$
- Combined sensitivity can be compared with the appearance allowed region from MiniBooNE, LSND

⁺Future Sensitivity with MINOS +

- Projected sensitivity for MINOS+ one year of antineutrino running, combined with the MINOS antineutrino mode
- MINOS+ is in 2^{nd} year of running in v_{μ} mode
- MINOS+ \overline{v}_{μ} mode running improves the sterile antineutrino limit significantly

- MINOS has set limit on sterile neutrino parameters, which is 3 orders of magnitude in Δm^{2}_{41}
- We also have the ability to look at the sterile antineutrinos, presented our sensitivity to sterile antineutrinos and results are coming soon
- Combination with Bugey allow us for a direct comparison to the existing hints for sterile neutrinos
- We have other set of antineutrino data, the NC sample and antineutrinos from neutrino mode, together will produce a stronger limit
- Expecting more exciting results on sterile antineutrinos

THANK YOU

Backup

+

MINOS ν_{μ} Disappearance Results

Far-over- ratio binned as a function of reconstructed energy. Fit the distribution to get the oscillation parameter
F/N ratio - many systematics cancels out

Comparison to the ve Signal Bugey limit combined with MINOS and MINOS+ sensitivity

Neutrino Mode

Antineutrino Mode

$$\begin{aligned} |U_{e4}|^2 &= \sin 2\theta_{14} \\ |U_{\mu4}|^2 &= \cos 2\theta_{14} \sin 2\theta_{24} \\ &=> \sin^2 2\theta_{\mu e} = \sin^2 2\theta_{14} \sin^2 \theta_{24} \end{aligned}$$