MC₄BSM 2015 Monte Carlo Tools for Physics Beyond Standard Model Calculational Algorithms for Mo

Doojin Kim

Variables

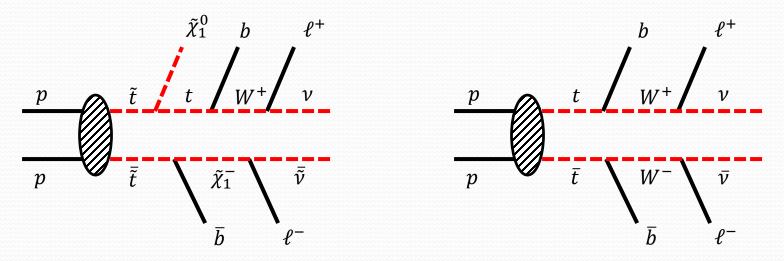
UNIVERSITY of FLORIDA

MC4BSM Workshop, FNAL, May 20 2015 In collaboration with W.S.Cho, J.Gainer, K.Matchev, F.Moortgat, L.Pape, and M.Park

Motivation

Stop search

□ Pair-produced supersymmetric top partners in a compressed regime

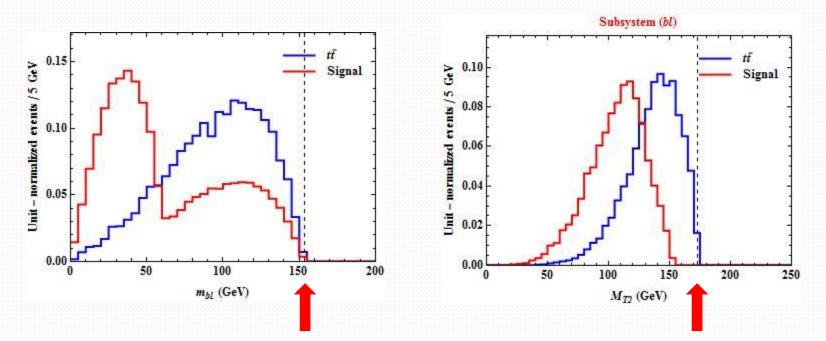


□ Standard observables such as p_T^j , E_T^{miss} etc. → hard to separate/distinguish signal events from background ones

Motivation

Stop search

 \Box Clever observables such as m_{bl} and M_{T2}



□ Still hopeless to suppress background events while keeping a large number of signal ones

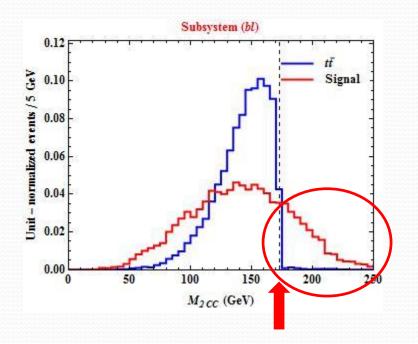
-2-

University of Florida

Motivation

Stop search using M₂ variables

□ More clever (signal/background-targeted) observables (implementing characteristic features of signal/background): E.g., *M*₂ variables



Great for probing challenging region

University of Florida

-3-

M₂ Variables

Definition

*M*₂ variables as (3+1) dimensional analogue of the (2+1) dimensional *M*_{T2} variable:
minimization of the two invariant mass quantities constructed with visible particles over the unknown invisible momenta subject to relevant constraints [Cho, Gainer, DK, Matchev, Moortgat, Pape, and Park, '14]

$$M_{2}(\tilde{m}) = \min_{\text{constraints}} [\max\{M^{(1)}, M^{(2)}\}]$$
$$(M^{(i)})^{2} = (p_{Ai} + p_{vi})^{2}$$

MC4BSM Workshop at FNAL, 2015

B,

p

 v_1

Α,

University of Florida

M₂ Variables

• Why minimize?

- U We want to "reconstruct" the given event in spite of existence of invisible particles
- □ In general, # of unknowns > # of constraints
- □ Scanning over solution space defined by constraints to obtain "best" guess/ansatz

Constraints

- \Box Targeting at $t\bar{t}$ -like event topology
 - MET condition relating the two decay sides: linear constraint, easily absorbed/implemented
 - On-shell intermediate states with same mass (via full momentum ansatz for invisible particles): non-linear constraints, (in general) highly non-trivial to implement/perform constrained minimization

Constrained minimization

Problem definition

 $\operatorname{Min} f(x) \text{ subject to } c_i(x) = o \quad x \in \mathbb{R}^n \ i=1,2,...,m \ n > m$

- \Box *f*(*x*): objective function
- □ *x*: variables to be minimized over
- \Box $c_i(x)$: in general, inequality constraints possible

□ Some constraints can be easily solved/reduced.

- \blacktriangleright Linear constraints: Ex) MET in M_{T_2}
- Some non-linear constraints: Ex) $x^2+y^2=i$ through polar coordinate

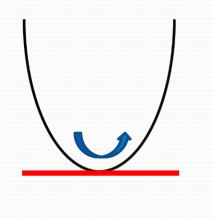
In general, this is not the case!

Constrained minimization

Basic/conceptual algorithm

Schematically, from an <u>initial guess</u> the solution evolves by some <u>preferred algorithms</u> until it satisfies some <u>convergence criteria</u>

$$x_0 \to x_1 \to x_2 \to \cdots \to x_k$$



Optimality (first order derivative)
\$\partial_x f(x_k) = 0\$
Convexification (second order derivative)
\$\partial_x \partial_x f(x_k) > 0\$

□ Feasibility

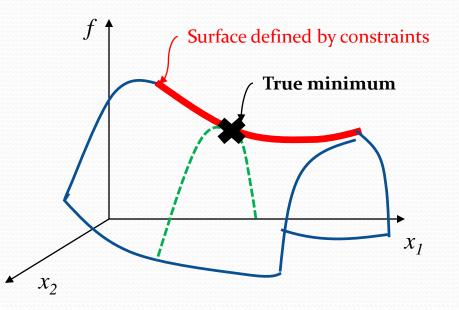
$$c_i(x_k) = 0$$

Constrained minimization

Basic algorithm

□ Conceptually trivial, but not machine-friendly

- Convexification sufficient for the hyper-surface defined by the constraints!
- Hard to perform for the computer
- □ Find transformation/modification of constrained min. → unconstrained min. to guarantee the convexification in all directions.



-8-

Unconstrained minimization

Method of Lagrange multipliers

 \Box Formally, the stationary points \rightarrow KKT conditions

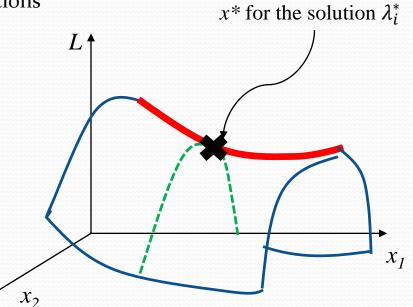
 $c_i(x_k) = 0$

 $\partial_x f(x_k) - \lambda \cdot c(x_k) = 0$

 Lagrange multiplier methods reproduce the KKT conditions successfully

 $L(x,\lambda) = f(x) - \lambda \cdot c(x)$

 Convexification not guaranteed in the direction normal to the surface defined by the constraints



□ Successful, but difficult to examine the convexification numerically

-9-

Modification on the objective function

Unconstrained minimization

Quadratic penalty method (QPM)

□ Intuitively, enforced to be **convexified** in all directions

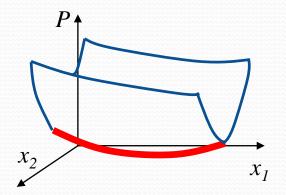
$$P(x,\mu) = f(x) + \frac{1}{2\mu}c(x)^2 \ (\mu > 0)$$

KKT conditions and convexification guaranteed

$$\lambda_i \to -\frac{c_i(x)}{\mu} \ (\mu, c_i(x) \to 0 \text{ as } \lambda_i \to \lambda_i^*)$$

Penalty parameter decreases as sub-minimizations are performed

- □ However, for a very small penalty parameter, too sensitive to c(x): *ill-conditioning*
 - Not make it too small but keep the good properties



 x_1

Unconstrained minimization

Augmented Lagrangian method (ALM)

□ Add Lagrange multipliers

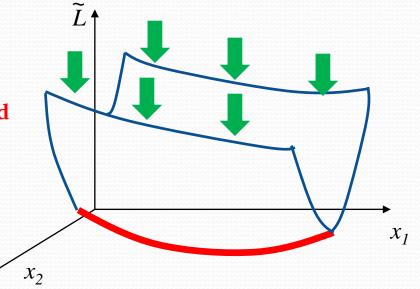
$$\tilde{L}(x,\lambda) = f(x) - \lambda \cdot c(x) + \frac{1}{2\mu}c(x)^2$$

KKT conditions and convexification guaranteed

$$\lambda_i \rightarrow \lambda_i - \frac{c_i(x)}{\mu} (c_i(x^*) \approx -\mu(\lambda_i^* - \lambda_i))$$

 Penalty parameter decreases & Lagrange multipliers also evolves, as sub-minimizations are performed
Without too small penalty parameter,

can be approximated to λ_i^* : *no ill-conditioning*



University of Florida

MINUIT

Tool for the unconstrained minimization

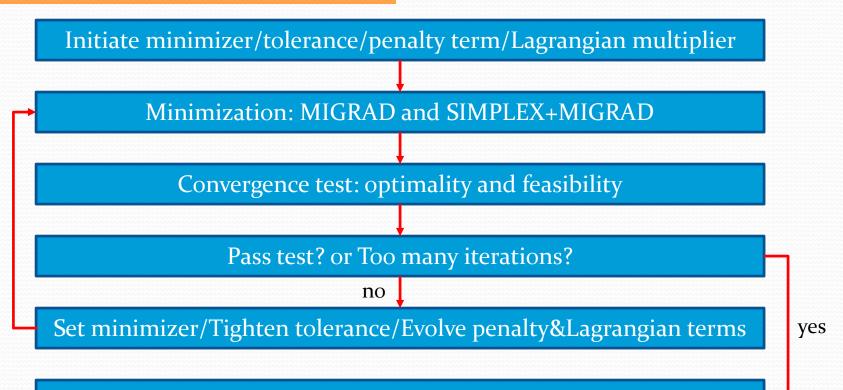
- □ Remaining job is to find a (at least) reasonable unconstrained minimization tool!
- □ We choose MINUIT framework
 - Could exist better options
 - Has been used in-and-outside HEP community

□ Among minimization schemes, we use MIGRAD and SIMPLEX

- > MIGRAD: good at folded profile, M_2 develops folded regions
- > SIMPLEX: good at shallow profile, M_2 develops shallow regions

Implementing the algorithm

Flow chart



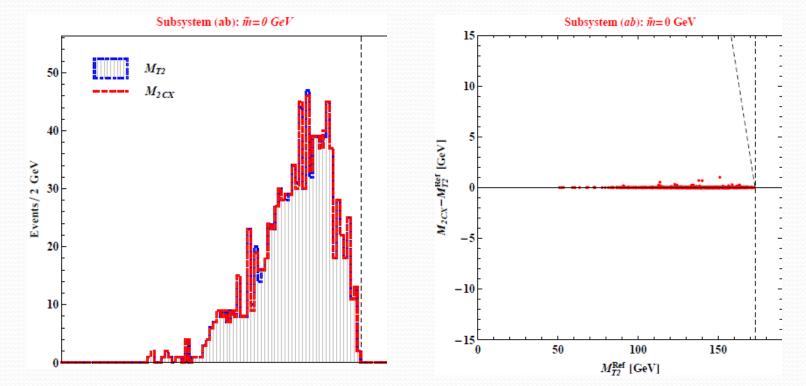
End iterations

University of Florida

Validity of the algorithm

Results (preliminary)

 \square M_{T2} vs. M_{2CX} : test of the reliability of the constrained minimization with $t\bar{t}$ sample

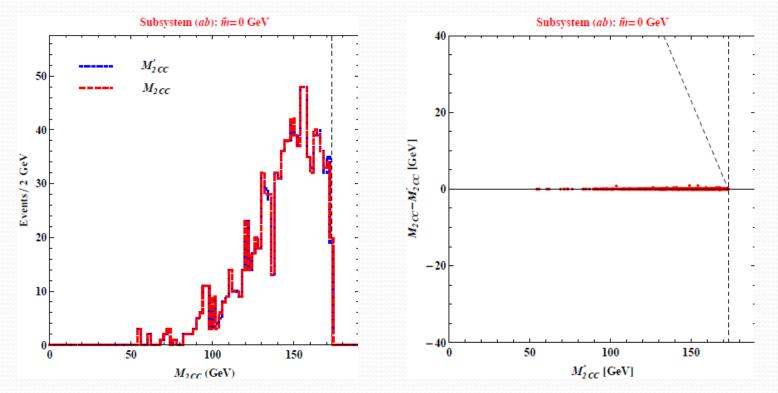


University of Florida

Validity of the algorithm

Results (preliminary)

 \square M_{2CC} : internal test of the accuracy between two independently implemented codes



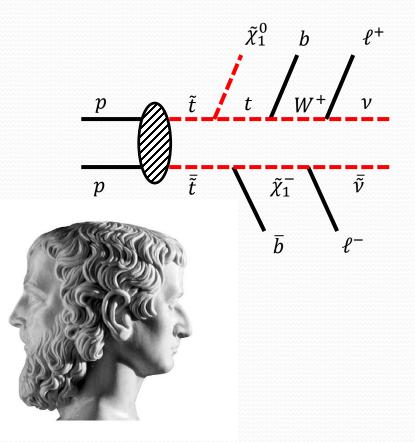
University of Florida

MC4BSM Workshop at FNAL, 2015

-15-

Stop search

- Asymmetric event topology: pair-produced stops going through different decay processes
- Main idea [Cho, Gainer, DK, Matchev, Moortgat, Pape and Park, '14]
 - Model assumptions targeted for ttbar decay topology, i.e., symmetric decay process
 - Signal process having an asymmetric decay topology, i.e., contradiction to the model assumption
 - Expecting a huge endpoint violation

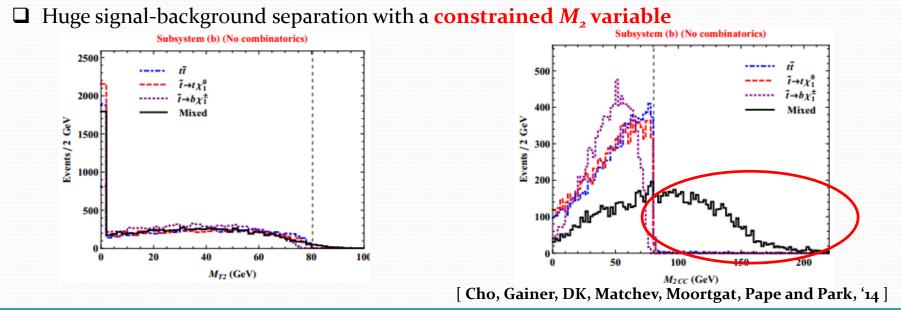


Sample Result

 $\Box m_{\tilde{t}} = 174 \text{ GeV}, m_{\widetilde{\chi}} = 1 \text{ GeV}, m_{\widetilde{\chi}^{\pm}} = 150 \text{ GeV}, m_{\widetilde{\nu}} = 110 \text{ GeV}$

□ Standard approach hopeless/poor signal sensitivity, e.g., M_{T2}

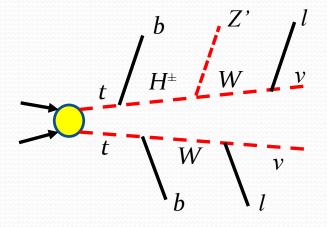
Imposing a cut (dashed line) to suppress backgrounds



University of Florida

Dark Z search

- New physics searches via rare decays of top quark, e.g., light invisible Z' [Davoudiasl, Lee and Marciano, '12]
- Signal: asymmetric process naturally emerging due to a tiny branching fraction
- (Typically) soft bottom from the rare decay of top quark
 - Hard to discriminate the signal and background by a simple cut and count in standard observables, e.g., p^b_T, E^{miss}_T



University of Florida

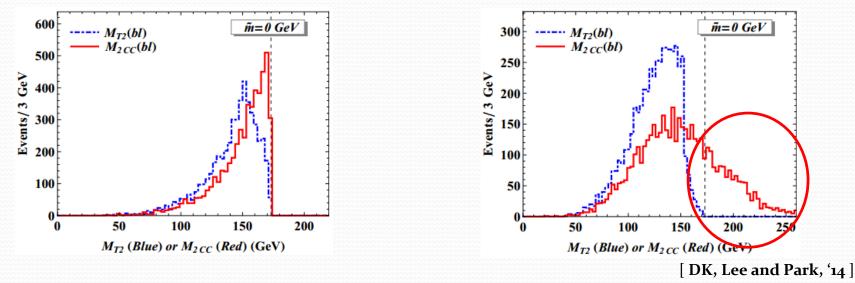
Result

 $\Box m_{H^{\pm}} = 130 \text{ GeV}, m_{Z'} = 1 \text{ GeV}$

□ No endpoint violation for background vs. significant overflow for signal

Imposing a cut (dashed line) to suppress backgrounds

□ Substantial signal-background discrimination with a **constrained** *M*₂ **variable**



University of Florida

$Code(\beta ver.)$ available

Library of Optimized Masses $ar{M}$ for Event Topologies

Code of the Optimized Mass. $ar{M}$

http://www.phys.ufl.edu/~cho/Optimized_Mass/Opt M_introduction.html

Contact	for each optimized mass can be found in "Dictionary of \bar{M} ".
Links	The constrained minimization process for the optimization of the \bar{M} is based on the algorithm of the augmented Lagrangian method, realized with the power of the unconstrained minimization algorithms of MINUIT for the case of the M_2 variable. In particular, the constrained- M_2 variable, which is a good example of the optimized mass, had been surveyed in the series of papers:
	Guide to transverse projections and mass-constraining variablesA. J. Barr, T. J. Khoo, P. Konar, K. Kong, C. G. Lester, K. T. Matchev, M. Park
	On-shell constrained M_2 variables with applications to mass measurements and topology disambiguation, W. S. Cho, J. S. Gainer, D. Kim, K. T. Matchev, F. Moortgat, L. Pape and M. Park, arXiv:1401.1449 [hep-ph].
	As optimized in a topology-by-topology basis, our code provides the routine for various optimized masses, especially for the well-known background/signal events of the Standard Model/Beyond the Standard Model. The list of the embodied \hat{M} can be found in the "Description of \hat{M} and \hat{M} can be found in the "Description of \hat{M} can be found in the model.

Conclusions

Summary and outlook

- Better kinematic variables can be more sensitive to signal processes. Sometimes, they require a constrained optimization procedure which is, in general, non-trivial to perform. One example is the recently proposed *M*₂ variable.
- To compute its value, the non-trivial constrained minimization should be transformed to the (machine-friendly) unconstrained minimization. We adapt the augmented Lagrange methods with the aid of MINUIT framework.
- □ Performance of the code is quite remarkable for the M_2 variable. Using the code, the M_2 variable can be studied along with various applications. We also expect that the algorithms can be applicable to other observables/variables/functions involving constrained optimizations.

Thank you!