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Motivation
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Stop search

 Pair-produced supersymmetric top partners in a compressed regime

 Standard observables such as 𝑝𝑇
𝑗
, 𝐸𝑇

𝑚𝑖𝑠𝑠 etc. → hard to separate/distinguish signal events 

from background ones
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Motivation
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Stop search

 Clever observables such as 𝑚𝑏𝑙 and 𝑀𝑇2

 Still hopeless to suppress background events while keeping a large number of signal ones



Motivation
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Stop search using 𝑴𝟐 variables

 More clever (signal/background-targeted) observables (implementing characteristic 

features of signal/background): E.g., 𝑀2 variables

Great for probing challenging region



𝑴𝟐 Variables
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Definition

 𝑀2 variables as (3+1) dimensional analogue of the (2+1) dimensional 𝑀𝑇2 variable: 

minimization of the two invariant mass quantities constructed with visible particles over 

the unknown invisible momenta subject to relevant constraints [ Cho, Gainer, DK, Matchev, 

Moortgat, Pape, and Park, ‘14 ]
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𝑴𝟐 Variables
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Why minimize?

 We want to “reconstruct” the given event in spite of existence of invisible particles

 In general, # of unknowns > # of constraints

 Scanning over solution space defined by constraints to obtain “best” guess/ansatz

Constraints

 Targeting at 𝑡  𝑡-like event topology

 MET condition relating the two decay sides: linear constraint, easily 

absorbed/implemented

 On-shell intermediate states with same mass (via full momentum ansatz for invisible 

particles): non-linear constraints, (in general) highly non-trivial to implement/perform 

constrained minimization



Constrained minimization
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Problem definition

Min f(x) subject to ci(x) = 0    x∈ Rn i=1,2,…,m  n>m

 f(x): objective function

 x: variables to be minimized over

 ci(x): in general, inequality constraints possible

 Some constraints can be easily solved/reduced.

 Linear constraints: Ex) MET in MT2

 Some non-linear constraints: Ex) x2+y2=1 through polar coordinate

 In general, this is not the case!



Constrained minimization
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Basic/conceptual algorithm

 Schematically, from an initial guess the solution evolves by some preferred algorithms 

until it satisfies some convergence criteria

𝑥0 → 𝑥1 → 𝑥2 → ⋯ → 𝑥𝑘

 Optimality (first order derivative)

𝜕𝑥𝑓 𝑥𝑘 = 0

 Convexification (second order derivative)

𝜕𝑥𝜕𝑥𝑓 𝑥𝑘 > 0

 Feasibility

𝑐𝑖 𝑥𝑘 = 0



Constrained minimization
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Basic algorithm

 Conceptually trivial, but not machine-friendly

 Convexification sufficient for the hyper-surface defined by the constraints!

 Hard to perform for the computer

 Find transformation/modification of           

constrained min. → unconstrained min. 

to guarantee the convexification in all 

directions.
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Unconstrained minimization
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Method of Lagrange multipliers

 Formally, the stationary points → KKT conditions 

𝑐𝑖 𝑥𝑘 = 0

𝜕𝑥𝑓 𝑥𝑘 − 𝜆 ∙ 𝑐 𝑥𝑘 = 0

 Lagrange multiplier methods reproduce

the KKT conditions successfully

𝐿 𝑥, 𝜆 = 𝑓 𝑥 − 𝜆 ∙ 𝑐(𝑥)

 Convexification not guaranteed in the

direction normal to the surface defined

by the constraints

 Successful, but difficult to examine the convexification numerically

 Modification on the objective function
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Unconstrained minimization
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Quadratic penalty method (QPM)

 Intuitively, enforced to be convexified in all directions

𝑃 𝑥, 𝜇 = 𝑓 𝑥 +
1

2𝜇
𝑐(𝑥)2 (𝜇 > 0)

 KKT conditions and convexification guaranteed

𝜆𝑖 → −
𝑐𝑖 𝑥

𝜇
(𝜇, 𝑐𝑖(𝑥) → 0 as 𝜆𝑖 → 𝜆𝑖

∗)

 Penalty parameter decreases 

as sub-minimizations are performed

 However, for a very small penalty parameter,

too sensitive to 𝑐(𝑥): ill-conditioning

 Not make it too small but keep the good properties 

f

x1

x2

P

x1

x2



Unconstrained minimization
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Augmented Lagrangian method (ALM)

 Add Lagrange multipliers

 𝐿 𝑥, 𝜆 = 𝑓 𝑥 − 𝜆 ∙ 𝑐 𝑥 +
1

2𝜇
𝑐(𝑥)2

 KKT conditions and convexification guaranteed

𝜆𝑖 → 𝜆𝑖 −
𝑐𝑖 𝑥

𝜇
(𝑐𝑖(𝑥

∗) ≈ −𝜇 𝜆𝑖
∗ − 𝜆𝑖 )

 Penalty parameter decreases &

Lagrange multipliers also evolves,

as sub-minimizations are performed

 Without too small penalty parameter, 

can be approximated to 𝜆𝑖
∗: no ill-conditioning
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MINUIT
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Tool for the unconstrained minimization

 Remaining job is to find a (at least) reasonable unconstrained minimization tool!

 We choose MINUIT framework

 Could exist better options

 Has been used in-and-outside HEP community

 Among minimization schemes, we use MIGRAD and SIMPLEX

 MIGRAD: good at folded profile, 𝑀2 develops folded regions

 SIMPLEX: good at shallow profile, 𝑀2 develops shallow regions



Implementing the algorithm
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Flow chart

Initiate minimizer/tolerance/penalty term/Lagrangian multiplier 

Minimization: MIGRAD and SIMPLEX+MIGRAD

Convergence test: optimality and feasibility

Pass test? or Too many iterations?

Set minimizer/Tighten tolerance/Evolve penalty&Lagrangian terms

End iterations

yes

no



Validity of the algorithm
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Results (preliminary)

 𝑀𝑇2 vs. 𝑀2𝐶𝑋: test of the reliability of the constrained minimization with 𝑡  𝑡 sample



Validity of the algorithm
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Results (preliminary)

 𝑀2𝐶𝐶: internal test of the accuracy between two independently implemented codes



Application
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Stop search

 Asymmetric event topology: pair-produced 

stops going through different decay processes

 Main idea [ Cho, Gainer, DK, Matchev, Moortgat, Pape

and Park, ‘14 ]

 Model assumptions targeted for ttbar

decay topology, i.e., symmetric decay 

process

 Signal process having an asymmetric 

decay topology, i.e., contradiction to the 

model assumption

 Expecting a huge endpoint violation
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Application
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Sample Result

 𝑚  𝑡 = 174 GeV, 𝑚 𝜒 = 1 GeV, 𝑚 𝜒± = 150 GeV, 𝑚 𝜈 = 110 GeV

 Standard approach hopeless/poor signal sensitivity, e.g., 𝑀𝑇2

 Imposing a cut (dashed line) to suppress backgrounds

 Huge signal-background separation with a constrained M2 variable

[ Cho, Gainer, DK, Matchev, Moortgat, Pape and Park, ‘14 ]



Application
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Dark Z search 
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 New physics searches via rare decays of top 

quark, e.g., light invisible Z’ [ Davoudiasl, Lee and 

Marciano, ‘12 ]

 Signal: asymmetric process naturally emerging 

due to a tiny branching fraction

 (Typically) soft bottom from the rare decay of top 

quark

 Hard to discriminate the signal and 

background by a simple cut and count in 

standard observables, e.g., 𝑝𝑇
𝑏, 𝐸𝑇

𝑚𝑖𝑠𝑠



Application
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Result

 𝑚𝐻± = 130 GeV, 𝑚𝑍′ = 1 GeV

 No endpoint violation for background vs. significant overflow for signal

 Imposing a cut (dashed line) to suppress backgrounds

 Substantial signal-background discrimination with a constrained M2 variable

[ DK, Lee and Park, ‘14 ]



Code(𝜷 ver.) available
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http://www.phys.ufl.edu/~cho/Optimized_Mass/Opt
M_introduction.html



Conclusions
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Summary and outlook

 Better kinematic variables can be more sensitive to signal processes. Sometimes, they 

require a constrained optimization procedure which is, in general, non-trivial to perform. 

One example is the recently proposed M2 variable.

 To compute its value, the non-trivial constrained minimization should be transformed to 

the (machine-friendly) unconstrained minimization. We adapt the augmented Lagrange 

methods with the aid of MINUIT framework. 

 Performance of the code is quite remarkable for the M2 variable. Using the code, the M2

variable can be studied along with various applications. We also expect that the algorithms 

can be applicable to other observables/variables/functions involving constrained 

optimizations. 



Thank you!


