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MC tools predict very well jet properties
(jet number, momenta, shape...)

How about internal structure of the jets?
QCD
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MC dependence on QCD jet substructure

Data lies between Pythia and Herwig
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Why different?

• It’s difficult to answer easily due to many sources of 
difference among generators...

• Jet substructure is basically formed by QCD radiations 
(parton shower)

• Evolution variable is core in parton shower

• Equivalent choices are possible

• Radiation pattern depends on the evolution variable

➡ Evolution variable dependence on jet substructure
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Study of evolution variable dependence
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• Three tunable parameters

• LEP data is often used to tune parametes
➡ need hadronization

• We use e+e- → qqbar events generated by Herwig++ 
with hadronization off as “data”  alternatively. 

• Three C1(β) distributions for fitting (R=0.4, √s=200GeV)
➡ C1(β=2) ⇔ jet mass,  C1(β=1) ⇔ jet width/girth,  ... 

Tuning

A. Larkoski, G. Salam, J. Thaler, 1305.0007
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• Three tunable parameters

• LEP data is often used to tune parametes
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• We use e+e- → qqbar events generated by Herwig++ 
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Wideness of emissions in jet
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hard
process

associated jet

jet

�Rij < Ra

pti > pa

ptj > pti

Ea > 20 GeV

Associated jet

200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

pT H jsL @GeVD

Pn

NDLA Herwig++ Pythia8
n=0
n=1
n>1

Gluon
Ra=0.8

   Low no-associated jet probability

= Wide emissions 

B. Bhattacherjee, S. Mukhopadhyay, 
M. M. Nojiri, YS, B. R. Webber, 1501.04794

Pythia

Herwig

•Herwig predicts wide jets, while 

  Pythia predicts narrower jets.

no-associated jet probability
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Associated jet YS, 1505.xxxx

• The larger α is, the larger the no-associated jet probabilities become

• Angular ordered shower (α = −1) predicts most wide jets, while 
p⊥ ordered shower (α = +1) predicts narrower jets

• This is other qualitative coincidens between Pythia and Herwig

• Wideness is tunable by α
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• MC dependence on QCD jet substructure exist

• Study of evolutoin variable dependence on the jet 
substructure in the same modeling of parton shower
➡ Qα = [4z(1-z)]α q2

• The α-dependence on jet shape variables (class of C1) 
and no-associated jet probability exist

• Two qualitative coincidences of the difference between 
Pythia and Herwig just by changing α
➡ Value of tuned αS(mZ)
➡ Wideness of emissions in/around leading jets
‣ The wideness is tunable by α

Summary
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Quick explanation to formalizm

• Using kinematics on Herwig++

• Traditional 1→2 branching

• 1-loop running constant

• Imposing anglular ordering by vetoing (excepting α= -1)

• No hadronization

• Three tunable parameters

- αS(mZ)

- mqg :  effective mass for massless partons (to avoid soft 
collinear singularity).  kT cut off. 

- rcut :  (Qcut / Qmin) = (Qcut / 2mqg)
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Radiation pattern (Quark)
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Radiation pattern (Quark)
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Radiation pattern (Quark)

1st

θ=0.4

• The 1st emissions are wide and soft for small α.

• The emissoins are negrected (or often vetoed in matching)

soft
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Radiation pattern (Quark)
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Radiation pattern (Gluon)
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Observable

• One of well-studied jet shape variables

A. Larkoski, D. Neill, J. Thaler, JHEP04(2014)017
A. Larkoski, G. Salam, J. Thaler, JHEP06(2013)108
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Tuning

• LEP data is often used to tune parametes
➡  need hadronization

• We use e+e- → qqbar events generated by Herwig++ 
with hadronization off as “data”  alternatively. 

• Three C1 distributions for tuning (R=0.4, √s=200GeV)

P.Skands, S.Carrazza2, J.Rojo, 1404.5630
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Gluon @√s = 200 GeV
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Quark @√s = 1000 GeVFitted results
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Gluon @√s = 1000 GeVFitted results
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Associated jet YS, 1505.xxxx

• The larger α is, the larger the no associated jet probabilities become

• Angular ordered shower (α = −1) predicts most wide jets, while 
p⊥ ordered shower (α = +1) predicts narrower jets

• This is other qualitative coincidens between Pythia and Herwig

• Wideness is tunable by α
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Associated jet
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• The larger α is, the larger the no associated jet probabilities become

• Angular ordered shower (α = −1) predicts most wide jets, while 
p⊥ ordered shower (α = +1) predicts narrower jets

• This is other qualitative coincidens between Pythia and Herwig

• Wideness is tunable by α
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triggers ATLAS, 1203.4606

• Nature live between Pythia and Herwig
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• Nature live between Pythia and Herwig

triggers CMS, 1405.1994
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