MC₄BSM 2015 Monte Carlo Tools for Physics Beyond Standard Model

Boosted Top Tagging

18 – 20 May 2015 Fermilab LPC Seung J. Lee

Outline

- Introduction: top jets @ LHC
- Modern boosted top tagging
 - review of existing top tagging

- pile-up removal & mass reconstruction
- Top partners @ Run II
- Summary

The LHC:

The LHC:

Fine tuning solution => New states decay quickly into top + * If $m_X >> m_t$, the outgoing tops are ultra-relativistic, their products collimate => top jets. $\Delta R \approx 2 \text{ m / } p_T$

The LHC:

ng sclueb) => New states decay melly mostop +

By hundleness,

The LHC:

 ν

q,g

q.g

000000

If $m_X >> m_t$, the outgoing tops are ultra-relativistic, their (ν) products collimate => top jets. $\Delta R \approx 2 \text{ m} / p_T$

q ↓/Ψeeeeee E t

Similar to ordinary 2-jet QCD process impossible to observe ??

Need to understand the energy flow inside jet

Need to understand the energy flow inside jet

Jet Substructure

i)Algorithmic... (Jet declustering)

ii)Jet Shape (calculable)

iii)Matrix-element...

iv)...

Jet substructure

Very active research field

Lesson from Run I: it works!

Lesson from Run I: it works!

Lesson from Run I: it works!

Modern boosted top tagging

apologies for omitted ones...

*Algorithm: Filtering, pruning, trimming, mass drop, soft drop, etc (simple to implement, very successful)

> Seymour (93); Butterworth, Cox, Forshaw (02); Butterworth, Davison, Rubin & Salam (08); Kaplan, Rehermann, Schwartz, Tweedie (08); Krohn, Thaler & Wang (10); Ellis, Vermilion & Walsh (09); T. Plehn, G. P. Salam, & M. Spannowsky (09),Larkoski, Marzani,Soyez,Thaler (14),etc

SetShape: Moments. (easy to get LO PQCD, weak jet finder dependence, etc)
Almeida, SL, Perez, Sterman, Sung & Virzi; Thaler & Wang (08);
Thaler & Tilburg (10), Gallichio & Schwartz (10), Hook, Jankowiak & Wacker (11), etc

*Matrix element method shower deconstruction method

Soper & Spannowsky (11,12)

***** Template Overlap.

(easy to get LO PQCD, weak jet finder dep'& beyond,

Almeida, SL, Perez, Sterman & Sung (10); Almeida, Erdogan, Juknevich, SL, Perez, Sterman (11);Backovic, Juknevich, Perez (13); Backovic, Gabizon, Juknevich, Perez, Soreq (14)

Jet Grooming

Filtering: Butterworth, Davison, Rubin, Salam 0802.2470 Pruning: Ellis, Vermilion, Walsh 0912.0033 *Jet horticulture: soft removal Trimming: Krohn, Thaler, Wang 0912.1342

filtering

1306.4945

Jet Grooming

*e.g. how HepTopTagger works:

->start with a C/A fat jet (R=1.5) -> find hard jet

substructure by mass drop (m<50GeV)₂

-> apply filtering ($R_{max} = 0.3$, $N_{fit} = 5$) to get top decay ->Applies kinematic cuts and demand that a pair of

sub-jets falls within W-mass window

Jet shapes: Jet mass Almeida, SL, Perez, Sung & Virzi (09)

*****Jet mass-sum of "massless" momenta in h-cal inside the cone: $m_J^2 = (\sum_{i \in R} P_i)^2$, $_{Pi^2 = 0}$

 $J^{t}(m_{J}, R, p_{T}) \sim \int d(\delta m_{EW}) dm_{QCD} \, \delta(m_{J} - m_{QCD} - \delta m_{EW}) \\ \times J^{t}_{QCD}(m_{QCD}, R, p_{T}) \, \mathcal{F}_{EW}(\delta m_{EW}, m_{QCD}/(p_{T}R))$ $\Rightarrow \text{In practice } m^{t}_{J} \sim m_{t} + \delta m_{QCD} + \delta m_{EW}$

+ pile-up effects+detector smearing.

Boosted QCD Jet mass distribution

$$\frac{d\sigma(R)}{dp_T dm_J} = \sum_c J^c(m_J, p_T, R) \, \frac{d\hat{\sigma}^c(R)}{dp_T}$$

$$\int dm_J J^i = 1$$

Jet shapes: Jet mass Almeida, SL, Perez, Sung & Virzi (09)

*Jet mass-sum of "massless" momenta in h-cal inside the cone: $m_J^2 = (\sum_{i \in R} P_i)^2$, $P_i^2 = 0$ $J^t(m_J, R, p_T) \sim \int d(\delta m_{EW}) dm_{QCD} \,\delta(m_J - m_{QCD} - \delta m_{EW})$ $\times J_{QCD}^t(m_{QCD}, R, p_T) \mathcal{F}_{EW}(\delta m_{EW}, m_{QCD}/(p_T R))$ \clubsuit In practice $m_J^t \sim m_t + \delta \eta^{\rm For \ large jet \ mass \& \ small \ R,}$ no big logs => + | can be calculated via smearing. perturbative QCD! Boosted QCD Jet mass istribution $\frac{d\sigma(R)}{dp_T dm_J} = \sum_{c} J^c(m_J, p_T, R) \, \frac{d\hat{\sigma}^c(R)}{dp_T}$ $\int dm_J J^i = 1$

Jet shapes: Jet mass

Almeida, SL, Perez, Sung & Virzi (09)

Jet shapes: Jet mass *Jet ma 0.012 Data nicely interpolates between quark and gluon jet functions insic 50000 0.001 $J^{t}(m_{J}, 0.006)$ consistent with mostly quark case neorv Gluon R)) Theory Curve (quarks) Midpoint, R = 1.00.002 Quark earing. Ω 250 100 150 200 300 350 400 *****Booste m^{jet1} [GeV/c²] $\frac{d\sigma(R)}{dp_T dn} J^{(eik),c}(m_J, p_T, R) \simeq \alpha_{\rm S}(p_T) \frac{4C_c}{\pi m_J} \log\left(\frac{R p_T}{m_J}\right) = 1$ C $C_F = 4/3$ for quarks, $C_A = 3$ for gluons.

Calculable Jet shape: Planar flow

Top-jet is 3 body vs. massive QCD jet <=> 2-body (our result)

Thaler & Wang, JHEP (08); Almeida, SL, Perez, Stermam, Sung & Virzi, PRD (09).

Planar flow, *Pf*, measures the energy ratio between two primary axes of cone surface:

(i) "moment of inertia":
$$I_E^{kl} = \frac{1}{m_J} \sum_{i \in R} E_i \frac{p_{i,k}}{E_i} \frac{p_{i,l}}{E_i}$$
,
(ii) Planar flow: $Pf = 4 \frac{\det(I_E)}{\operatorname{tr}(I_E)^2} = \frac{4\lambda_1\lambda_2}{(\lambda_1 + \lambda_2)^2}$

leading order QCD, *Pf=0*

Calculable Jet shape: Planar flow

Top-jet is 3 body vs. massive QCD jet <=> 2-body (our result)

Thaler & Wang, JHEP (08); Almeida, SL, Perez, Stermam, Sung & Virzi, PRD (09).

top jet, Pf=1

Planar flow, *Pf*, measures the energy ratio between two primary axes of cone surface:

(i) "moment of inertia":
$$I_E^{kl} = \frac{1}{m_J} \sum_{i \in R} E_i \frac{p_{i,k}}{E_i} \frac{p_{i,l}}{E_i}$$
,
(ii) Planar flow: $Pf = 4 \frac{\det(I_E)}{\operatorname{tr}(I_E)^2} = \frac{4\lambda_1 \lambda_2}{(\lambda_1 + \lambda_2)^2}$

IRC safe, but sensitive to pile-up effect

0-0

leading order QCD, *Pf=0*

Jet shape: N-subjettiness

$$\tau_N = \frac{1}{d_0} \sum_k p_{T,k} \min \left\{ \Delta R_{k,1}, \Delta R_{k,2}, \dots, \Delta R_{k,N} \right\}$$

Generalization of thrust to multiple (sub)jets!

(strictly speaking, generalization of jet broadening)

Jet shape "counts" number of subjets! # subjets: $\leq N > N$ T_N: 0

Thaler & Tilburg (10)

Jet shape: N-subjettiness

$$\tau_N = \frac{1}{d_0} \sum_k p_{T,k} \min \left\{ \Delta R_{k,1}, \Delta R_{k,2}, \dots, \Delta R_{k,N} \right\}$$

Ratio observables: IRC unsafe, but Sudakov safe: To all-orders, singular region is exponentially suppressed by perturbative Sudakov factor (Larkoski & Thaler)

$$\tau_{2,1}^{(\beta)} = \frac{\tau_2^{(\beta)}}{\tau_1^{(\beta)}}$$

Powerful boosted W tagger Selects for 2-subjet structures

 $\tau_{3,2}^{(\beta)} = \frac{\tau_3^{(\beta)}}{\tau_2^{(\beta)}}$

Powerful boosted t tagger Selects for 3-subjet structures

))

Template Overlap Method

*Template overlaps: functional measures that quantify how well the energy flow of a physical jet matches the flow of a boosted partonic decay

describe jet energy flow as spikes

|j>=set of particles or calorimeter towers that make up a jet. e.g. |j>=|t>,|g>,etc, where:

|t > = top distribution d |g > = massless QCD distribution

Lunch table discussion with Juan Maldacena

We need a probe distribution, |f >, such that "template" $R = \left(\frac{\langle f|t \rangle}{\langle f|g \rangle}\right)$ is maximized.

Template Overlap Method

Template Overlap Method

pile-up removal & mass reconstruction

Boosted top tagging and pile-up at very high luminosity High pile-up scenarios for top tagging David Miller, Aspen, Jan 2015

- The anti-k_t R = 1.0 jet mass distribution in Z' → tt̄ events where the mean number of interactions per bunch crossing (⟨μ⟩) is 40, 80, 140, and 200.
- The pileup correction is made to the subjets only, before their pT fraction is calculated.
- When both trimming and jet 4-vector pileup subtraction are applied, the jet mass distribution is stable even at $\langle \mu \rangle = 200$.

pile-up removal & mass reconstruction

Boosted top tagging and pile-up at very high luminosity High pile-up scenarios for top tagging David Miller, Aspen, Jan 2015

- The anti-k_t R = 1.0 jet mass distribution in Z' → tt̄ events where the mean number of interactions per bunch crossing (⟨μ⟩) is 40, 80, 140, and 200.
- The pileup correction is made to the subjets only, before their pT fraction is calculated.
- When both trimming and jet 4-vector pileup subtraction are applied, the jet mass distribution is stable even at $\langle \mu \rangle = 200$.

Jet Substructure with Artificial Neural Network (ANN)

Almeida, Backovic, Cliche, SL, Perelstein `15 **Solution Set as an Image:** HCAL output = digital image of the jet: each cell=pixel, energy deposit in each cell Bias nodes ε_i Calorimeter image Input layer Hidden layer 1 Hidden layer 2 Output layer $\epsilon_i \to h_i^{(1)} = f(W_{ii}^{(1)}\epsilon_j + b_i^{(1)}) \to \dots \to h_i^{(l)} = f(W_{ii}^{(l)}h_i^{(l-1)} + b_i^{(l)}) \to Y = f(W_i^{(O)}h_i^{(l)} + b^{(O)}),$ succession of non-linear transformations: $f(z) = \frac{1}{1 + e^{-z}}$. - "activation function"

- ANN is a highly non-linear map from N inputs to 1 output
- Our ANN has 30x30=900 inputs (0.1x0.1 HCAL cells); 2 hidden layers of 100 nodes each; and 1 output node
- There are ~100,000 "neurons" (connections), each with its own "weight" W

ANN

Almeida, Backovic, Cliche, SL, Perelstein `I5

* Network Training

- The weights W are determined through a "training" procedure:
 - Generate large MC samples of top-jets (SM ttbar) and QCD jets (dijet)
 - "Feed" these samples to ANN, record output Y_i for each jet
 - Compute the "error function" (desired outputs: y_i=1 for top, y_i=0 for QCD):

Log-loss =
$$-\frac{1}{N} \sum_{i=1}^{N} [y_i \log(Y_i) + (1 - y_i) \log(1 - Y_i)].$$

- Adjust weights iteratively to minimize the error function
- Minimizing a function of 100,000 variables is not trivial, but there are well-know numerical techniques for this; we use the back-propagation algorithm, with "batch gradient descent with momentum" minimization
- Outcome: a set of weights such that Y_i close to 1 for top jets, close to 0 for QCD jets
- ANN "learns" how to tell them apart, using all available info! (or: it just constructed a complicated but optimal - in some sense - observable)

ANN

* Network Training

ANN

* Network Training

$$\begin{split} g_{XWt}^L &= G_{Li}^X \left(U_L^t \right)_{i1}^{\dagger} = \mathcal{O}(\epsilon^2) \,, \\ g_{XWt}^R &= G_{Ri}^X \left(U_R^t \right)_{i1}^{\dagger} = \frac{g}{\sqrt{2}} \left(U_{R13}^{*t} + c_R \epsilon U_{R14}^{*t} \right) + \mathcal{O}(\epsilon^2) \,, \\ &= -\frac{g e^{-i\tilde{\phi}}}{\sqrt{2}} \frac{\epsilon}{\sqrt{2}} \left(\frac{y_R f M_1}{M_4 M_{Ts}} - \sqrt{2} c_R \frac{e^{-i\phi} y_R f}{M_{Ts}} \right) + \mathcal{O}(\epsilon^2) \,. \end{split}$$

$$\begin{array}{ll} \text{Backovic. Flacke. SL. Perez `I4} \\ m_t &= \frac{v}{\sqrt{2}} \frac{|M_1 - e^{-i\phi}M_4|}{f} \frac{y_L f}{\sqrt{M_4 + y_L^2 f^2}} \frac{y_R f}{\sqrt{|M_1|^2 + y_R^2 f^2}} + \mathcal{O}(\epsilon^3), \\ M_B &= \sqrt{M_4^2 + y_L^2 f^2}, \\ M_{X_{5/3}} &= M_4, \\ M_{Tf1} &= M_4 + \mathcal{O}(\epsilon^2), \\ M_{Tf2} &= \sqrt{M_4^2 + y_L^2 f^2} + \mathcal{O}(\epsilon^2), \\ M_{Ts} &= \sqrt{|M_1|^2 + y_R^2 f^2} + \mathcal{O}(\epsilon^2), \end{array}$$

$$\begin{aligned} & \text{Backovic, Flacke, SL, Perez} \quad 14 \\ & m_t \quad = \frac{v}{\sqrt{2}} \frac{|M_1 - e^{-i\phi}M_4|}{f} \frac{y_L f}{\sqrt{M_4 + y_L^2 f^2}} \frac{y_R f}{\sqrt{|M_1|^2 + y_R^2 f^2}} + \mathcal{O}(\epsilon^3), \\ & M_B \quad = \sqrt{M_4^2 + y_L^2 f^2}, \\ & M_{X_{5/3}} = M_4, \\ & M_{Tf1} = M_4 + \mathcal{O}(\epsilon^2), \\ & M_{Tf2} = \sqrt{M_4^2 + y_L^2 f^2} + \mathcal{O}(\epsilon^2), \\ & M_{Ts} = \sqrt{|M_1|^2 + y_R^2 f^2} + \mathcal{O}(\epsilon^2), \end{aligned}$$

Dealers to Electre CL Dense 14

$$\begin{array}{ll} \text{Backovic. Flacke. SL. Perez `I4} \\ m_t &= \frac{v}{\sqrt{2}} \frac{|M_1 - e^{-i\phi}M_4|}{f} \frac{y_L f}{\sqrt{M_4 + y_L^2 f^2}} \frac{y_R f}{\sqrt{|M_1|^2 + y_R^2 f^2}} + \mathcal{O}(\epsilon^3), \\ M_B &= \sqrt{M_4^2 + y_L^2 f^2}, \\ M_{X_{5/3}} &= M_4, \\ M_{Tf1} &= M_4 + \mathcal{O}(\epsilon^2), \\ M_{Tf2} &= \sqrt{M_4^2 + y_L^2 f^2} + \mathcal{O}(\epsilon^2), \\ M_{Ts} &= \sqrt{|M_1|^2 + y_R^2 f^2} + \mathcal{O}(\epsilon^2), \end{array}$$

jet substructure method necessary!

50 avg. pileup

jet substructure method necessary!

*Template Overlap Method

Note: very difficult to reconstruct the resonance mass with

Top Partner Searches Beyond the 2 TeV Mass Region

Backovic, Flacke, SL, Perez `14 *Template Overlap Method w/ forward jet

tagging & b-tagging

Top Partner Searches Beyond the 2 TeV Mass Region

*Template Overlap Method w/ forward jet tagging & b-tagging

 Run 2 of the LHC at 13 TeV can detect and measure 2 TeV top partners in a lepton-jet final state, with almost 5 sigma signal significance and S/B > 1 at 35 fb⁻¹

★ For Run I, (Z → MET)+hadronic channel was not utilized due to large SM background (e.g. t+MET):
 (Z → dilepton)+hadronic channel has been the Backovic, Flacke, Kim, SL `15 Backovic, Flacke

★ For Run I, (Z → I ET)+hadronic channel was not utilized due to large SM background (e.g. t+MET):
(Z → dilepton)+hadronic channel has been the Backovic, Flacke, Kim, SL `15 Backovic, Flacke, Kim, SL to appear

T(tZ)

T(tH)

★ For Run I, (Z → MET)+hadronic channel was not utilized due to large SM background (e.g. t+MET):
 (Z → dilepton)+hadronic channel has been the Backovic, Flacke, Kim, SL `15 Backovic, Flacke

For simple study we chose SU(2)L singlet top partners (with charge 2/3)

$Z \rightarrow \nu \bar{\nu}$		$M_{T'} = 1.0$ TeV search								$M_{T'} = 1.5 \text{ TeV search}$						
		signal	signal $t\bar{t}$ $Z + X Z + t$		$S/B S/\sqrt{E}$		$\overline{3}$ (35 fb ⁻¹	¹) signa		nal $t\bar{t}$	Z + X	(Z +	$t \mid S/B$	S/\sqrt{B} (100	$) fb^{-1}$	
basic cuts		5.7	5.7 900 6100		11	0.00082	2	0.40		1.	0 140	1200	2.4	0.00074	4 0.27	
$Ov_3^t > 0.6$		4.6	4.6 510 840		6.5	0.0034		0.73		0.8	87 81	230	1.6	0.0028	0.49	
b-tag		3.2	3.2 320 16		4.3	0.0094		1.0		0.5	4 45	3.2	0.94	0.011	0.77	
E_T -cut		2.2	13	3 5.3 0.89		0.11		2.9	.9 0		1 1.00	0.78	0.14	0.21	3.0	
$N_{\rm fwd} \ge 1$		1.4	2.6	0.74	0.27	0.37		4.2		0.2	28 0.20	0.11	0.04	1 0.80	4.7	
$\Delta \phi_{\not\!\!E_T,j} > 1.0$		1.1	0.94	4 0.58	0.22	0.63		5.0		0.2	22 0.07	6 0.083	0.03	3 1.2	5.1	
	7 1+1-			$M_{T'} = 1.0$ TeV search						$M_{T'} = 1.5 \text{ TeV search}$						
				signal 2	Z + X	Z+t	S/B S	S/\sqrt{B} (35 fl		$^{-1})$	signal	Z + X	Z + t	S/B S	S/\sqrt{B} (100 fb	$^{-1})$
	basic cuts			1.7	7 750 1.3 0.0		.0023	023 0.37			0.30	170	0.36	0.0018	0.23	
	$Ov_3^t > 0.0$.6 1.2		71	0.61 0	0.017	7 0.83			0.24	19	0.14	0.012	0.54	
b-ta		ag		0.85	1.6	0.42	0.41	3.5			0.15	0.36	0.086	0.33	2.2	
	$\Delta R_{ll} <$	< 1.0		0.85	1.6	0.41	0.42	3.5	.5		0.15	0.36	0.086	0.33	2.2	.
$ m_{ll}-m_Z $		< 10 G	eV	0.78	1.5	0.37	0.43	3.4			0.13	0.33	0.078	0.32	2.1	
$N_{\rm fwd} >$		>1		0.49	0.23	0.11	1.5	5.0			0.088	0.051	0.019	1.3	3.3	

TABLE I: Example-cutflow for signal- and background events in the $Z_{inv} + t + j$ search (top table) and in the $Z_{ll} + t + j$ channel (bottom table) for $\sqrt{s} = 14$ TeV. Cross sections after the respective cuts for signal and backgrounds are given in fb. The S/\sqrt{B} values are given for a luminosity of 35 fb^{-1} (100 fb⁻¹) for the $M_{T'} = 1.0$ TeV ($M_{T'} = 1.5$ TeV) search. The example signal $\sigma_{T'} \equiv \sigma(pp \to T'/\bar{T'} + X) \times BR(T' \to tZ)$ displayed here are 142 fb for $M'_T = 1.0$ TeV searches and 24.1 fb for $M'_T = 1.5$ TeV searches. The corresponding parameter points of our sample model are given in the text.

Backovic, Flacke, Kim, SL `15

Summary

a lot of development in boosted top taggers over last ~7 years (for high p_T top) top-tagging becomes like btagging? i.e for MC study, not bothering to decaying top, but use efficiency @ fake rate?

Top partners @ Run II

Boosted jet-substructure is a must tool for RUN II physics!

