MG5_aMC@NLO looping up to be mad!

Olivier Mattelaer IPPP/Durham

work in progress with V. Hirschi

Type of generation

	Tree (SM)	$\begin{aligned} & \text { Tree } \\ & \text { (BSM) } \end{aligned}$	$\begin{gathered} \text { NLO } \\ \text { (QCD) } \\ \text { (SM) } \end{gathered}$	$\begin{aligned} & \text { NLO } \\ & \text { (QCD) } \\ & \text { (BSM) } \end{aligned}$	NLO (EW) (SM)	NLO (EW) (BSM)	Loop Induced (SM)	Loop Induced (BSM)
Fix Order								
+Parton Shower								
Merged Sample								

Type of generation

Loop Induced

Why?

- Main production mechanism for Higgs \& Higgs associated processes
- Contribution for NNLO computation
- Correction to shape of observables
- We have the tool available

Loop Induced

Why?

- Main production mechanism for Higgs \& Higgs associated processes
- Contribution for NNLO computation
- Correction to shape of observables
- We have the tool available

Difficulties?

- The phase-space integration is based on the born diagram
- Loop evaluation are extremely slow
- Need Leading Color information for writing Events associated to the loop

Loop Induced

Difficulties?

- The phase-space integration is based on the born diagram
- Loop evaluation are extremely slow
- Need Leading Color information for writing Events associated to the loop

OLD Solution

- Use Effective Field Theory (=> Tree)
- And correct the mass effect

$$
W_{\text {new }}=\frac{\left|M_{\text {new }}\right|^{2}}{\left|M_{\text {old }}\right|^{2}} * W_{\text {old }}
$$

- Difficult control on numerical uncertainty
- Wrong Leading Color information/helicity
- Not generic

Loop Induced

Difficulties?

- The phase-space integration is based on the born diagram
- Loop evaluation are extremely slow
- Need Leading Color information for writing Events associated to the loop

OLD Solution

- Use Effective Field Theory (=> Tree)
- And correct the mass effect

$$
W_{\text {new }}=\frac{\left|M_{\text {new }}\right|^{2}}{\left|M_{\text {old }}\right|^{2}}
$$

- Diffir on .certainty y Leading Color ormation/helicity
- Not generic

Exact Integration

Difficulties?

-The phase-space integration is based on the born diagram

- Loop evaluation are extremely slow
- Need Leading Color information for writing Events associated to the loop

New Solution

- Contract the loop to have tree-level diagrams which drive the integration multichannel
-Use Monte-Carlo over helicity
-Compute the loop with the color flow algebra
- more parallel code

parallelization

MadEvent

$$
|M|^{2}=\frac{\left|M_{1}\right|^{2}}{\left|M_{1}\right|^{2}+\left|M_{2}\right|^{2}}|M|^{2}+\frac{\left|M_{2}\right|^{2}}{\left|M_{1}\right|^{2}+\left|M_{2}\right|^{2}}|M|^{2}
$$

parallelization

MadEvent

$$
\int|M|^{2}=\int \frac{\left|M_{1}\right|^{2}}{\left|M_{1}\right|^{2}+\left|M_{2}\right|^{2}}|M|^{2}+\int \frac{\left|M_{2}\right|^{2}}{\left|M_{1}\right|^{2}+\left|M_{2}\right|^{2}}|M|^{2}
$$

MadEvent

$$
\int|M|^{2}=\iint \frac{\left|M_{1}\right|^{2}}{\left|M_{1}\right|^{2}+\left|M_{2}\right|^{2}}|M|+\left.\left|\int \frac{\left|M_{2}\right|^{2}}{\left|M_{1}\right|^{2}+\left|M_{2}\right|^{2}}\right| M\right|^{2}
$$

- Iteration 1
-Grid Refinement
- Iteration 2
-Grid Refinement
- Iteration 1
-Grid Refinement
- Iteration 2
- Grid Refinement
MadEvent

$$
\left.\int|M|^{2}=\int \frac{\left|M_{1}\right|^{2}}{\left|M_{1}\right|^{2}+\left|M_{2}\right|^{2}}|M|+\left.\left|\int \frac{\left|M_{2}\right|^{2}}{\left|M_{1}\right|^{2}+\left|M_{2}\right|^{2}}\right| M\right|^{2} \right\rvert\,
$$

- Iteration 1
 -Grid Refinement

- Iteration 2
-Grid Refinement

parallelization

New MadEvent

$$
\int|M|^{2}=\iint \frac{\left|M_{1}\right|^{2}}{\left|M_{1}\right|^{2}+\left|M_{2}\right|^{2}}|M|+\iint \frac{\left|M_{2}\right|^{2}}{\left|M_{1}\right|^{2}+\left|M_{2}\right|^{2}}|M|^{2}
$$

- Iteration 1
- Iteration 1
- Grid Refinement
- Grid Refinement
- Iteration 2
- Iteration 2
- Grid Refinement
- Grid Refinement

First Example: g g> h

User Input

- generate g g > h [QCD]
- output
- launch

Loop Induced

$$
\sigma_{\text {loop }}=15.74(2) p b
$$

HEFT

$$
\sigma_{\text {heft }}=17.63(2) p b
$$

First Example: g g> h

User Input

- generate g g > h [QCD]
-output
- launch

Loop Induced

$$
\sigma_{\text {loop }}=15.74(2) p b
$$

HEFT
No bottom loop
$\sigma_{\text {heft }}=17.63(2) p b$

$$
\sigma_{\text {toploop }}=17.65(2) p b
$$

Validation p p > h j
Durham

Validation p p > h j
Durham

Validation pp>hj

- b effect only important at low pt
- at large pt, this is just a re-scaling

KT MLM

Differential Jet Rate $1 \rightarrow 0$

Differential Jet Rate $2 \rightarrow 1$

$Q_{\text {match }}=50 \mathrm{GeV}$

BSM technicalities

- Our code is fully ready for (all) BSM
- We (only) need NLO-UFO model
- Except if you provide the loop matrix-element.

BSM Example: 2HDM

BSM technicalities

- Our code is fully ready for (all) BSM
- We (only) need NLO-UFO model
- Except if you provide the loop matrix-element.

Benchmark Point

	$\tan \beta$	α / π	$m_{h^{0}}$	$m_{H^{0}}$	$m_{A^{0}}$	$m_{H^{ \pm}}$	m_{12}^{2}
B1	1.75	-0.1872	125	300	441	442	38300
B2	1.20	-0.1760	125	200	500	500	-60000
B3	1.70	-0.1757	125	350	250	350	12000

Z+Scalar Processes

Exact Phase-Space integration

	$g g \rightarrow Z h^{0}$	$g g \rightarrow Z H^{0}$	$g g \rightarrow Z A^{0}$
B1	$113.6_{-21.2 \%}^{+28.9 \%}{ }_{-1.2 \%}^{+1.0 \%}$	$682.4_{-21.5 \%}^{+29.6 \%}{ }_{-1.2 \%}^{+1.2 \%}$	$0.6203_{-23.0 \%}^{+32.5 \%}{ }_{-1.9 \%}^{+1.9 \%}$
B2	$85.59_{-21.4 \%}^{+29.9 \%}{ }_{-1.1 \%}^{+1.4 \%}$	$1545_{-21.8 \%}^{+30.1 \%}{ }_{-1.3 \%}^{+1.3 \%}$	$0.8614_{-23.3 \%}^{+33.0 \%}{ }_{-2.0 \%}^{+2.0 \%}$
B3	$169.9_{-19.9 \%}^{+28.1 \%}{ }_{-0.5 \%}^{+1.4 \%}$	$0.8968_{-22.3 \%}^{+31.2 \%}{ }_{-1.6 \%}^{+1.5 \%}$	$1317_{-20.8 \%}^{+28.4 \%}{ }_{-1.0 \%}^{+1.0 \%}$

Reweighting (1503.01656)

	$g g \rightarrow Z h^{0}$	$g g \rightarrow Z H^{0}$	$g g \rightarrow Z A^{0}$
B1	$113_{-21 \%}^{+30 \%}$	$686_{-22 \%}^{+30 \%}$	$0.622_{-23 \%}^{+32 \%}$
B2	$85.8_{-21 \%}^{+30.1 \%}$	$1544_{-22 \%}^{+30 \%}$	$0.869_{-23 \%}^{+34 \%}$
B3	$167_{-19 \%}^{+31 \%}$	$0.891_{-21 \%}^{+33 \%}$	$1325_{-21 \%}^{+28 \%}$

Z+Scalar Processes

Exact Phase-Space integration

		Z		$g g \rightarrow Z H^{0}$	$g g \rightarrow Z A^{0}$
B1	113.6	${ }_{-21.2 \%}^{+28.9 \%}$	${ }_{-1.2 \%}^{+1.0 \%}$	$682.4{ }_{-21.5 \%}^{+29.6 \%}{ }_{-1.2 \%}^{+1.2 \%}$	$0.6203{ }_{-23.0 \%}^{+32.5 \%}{ }_{-1.9 \%}^{+1.9 \%}$
B2	85.59	${ }_{-21.4 \%}^{+29.9 \%}$	${ }_{-1.1 \%}^{+1.4 \%}$	$1545{ }_{-21.8 \%}^{+30.1 \%}{ }_{-1.3 \%}^{+1.3 \%}$	$0.8614_{-23.3 \%}^{+33.0 \%}{ }_{-2.0 \%}^{+2.0 \%}$
B3	169.9	${ }_{-19.9 \%}^{+28.1 \%}$	${ }_{-0.5 \%}^{+1.4 \%}$	$0.8968_{-22.3 \%}^{+31.2 \%}{ }_{-1.6 \%}^{+1.5 \%}$	$1317_{-20.8 \%}^{+28.4 \%}{ }_{-1.0 \%}^{+1.0 \%}$

Reweighting (1503.01656)

	$g g \rightarrow Z h^{0}$	$g g \rightarrow Z H^{0}$	$g g \rightarrow Z A^{0}$
B1	$113_{-21 \%}^{+30 \%}$	$686_{-22 \%}^{+30 \%}$	$0.622_{-23 \%}^{+32 \%}$
B2	$85.8_{-21 \%}^{+30.1 \%}$	$1544_{-22 \%}^{+30 \%}$	$0.869_{-23 \%}^{+34 \%}$
B3	$167_{-19 \%}^{+31 \%}$	$0.891_{-21 \%}^{+33 \%}$	$1325_{-21 \%}^{+28 \%}$

Charged Higgs

Exact Phase-Space integration

	$g g \rightarrow H^{+} H^{-}$	$q \bar{q} \rightarrow H^{+} H^{-}$
B1	$0.2334_{-23.8 \%-2.2 \%}^{+34.0 \%}+2.2 \%$	$0.7669_{-5.4 \%}^{+5.9 \%}{ }_{-1.0 \%}^{+1.1 \%}$
B2	$0.7011_{-24.1 \%}^{+34.6 \%}{ }_{-2.4 \%}^{+2.4 \%}$	$0.4406_{-5.9 \%}^{+6.5 \%}{ }_{-1.0 \%}^{+1.4 \%}$
B3	$0.618_{-23.2 \%-1.9 \%}^{+32.8 \%}+1.9 \%$	$2.072_{-4.3 \%-0.8 \%}^{+4.6 \%}+0.9 \%$

Charged Higgs

Durham

	$\tan \beta$	α / π	$m_{h^{0}}$	$m_{H^{0}}$	$m_{A^{0}}$	$m_{H^{ \pm}}$	m_{12}^{2}
B1	1.75	-0.1872	125	300	441	442	38300
B2	1.20	-0.1760	125	200	500	500	-60000
B3	1.70	-0.1757	125	350	250	350	12000

Type of generation

	Tree (SM)	$\begin{aligned} & \text { Tree } \\ & \text { (BSM) } \end{aligned}$	$\begin{gathered} \text { NLO } \\ \text { (QCD) } \\ \text { (SM) } \end{gathered}$	NLO (BSM)	NLO (EW) (SM)	NLO (EW) (BSM)	Loop Induced (SM)	Loop Induced (BSM)
Fix Order				f				
+Parton Shower								
Merged Sample								

	Tree (SM)	$\begin{aligned} & \text { Tree } \\ & \text { (BSM) } \end{aligned}$	$\begin{aligned} & \text { NLO } \\ & \text { (QCD) } \\ & \text { (SM) } \end{aligned}$	$\begin{aligned} & \text { NLO } \\ & \text { (QCD) } \\ & \text { (BSM) } \end{aligned}$	NLO (EW) (SM)	NLO (EW) (BSM)	Loop Induced (SM)	Loop Induced (BSM)
Fix Order								
+Parton Shower								
Merged Sample	$/ /$							

- 2 to 2 processes: OK on a laptop
- 2 to 3 processes: OK on a small size cluster
- 2 to 4 processes: Specific case

SM Tables

Process Single boson + jets	Syntax	Cross section $\begin{aligned} & (\mathrm{pb}) \\ & 13 \mathrm{TeV}\end{aligned}$	$\Delta_{\hat{\mu}} \quad \Delta_{P D F}$
$\begin{array}{ll}\text { a. } 1 & p p \rightarrow H \\ \text { a.2 } & p p \rightarrow H j \\ \text { a.3 } & p p \rightarrow H j j\end{array}$	$\begin{aligned} & \text { p p>h [noborn=QCD] } \\ & p \text { p }>\mathrm{h} \text { j [noborn=QCD] } \\ & \mathrm{p} \mathrm{p}>\mathrm{h} j \text { } \mathrm{jED=1} \text { [noborn=QCD] } \end{aligned}$	$\begin{aligned} & 17.79 \pm 0.060 \\ & 12.86 \pm 0.030 \\ & 6.175 \pm 0.020 \end{aligned}$	$\begin{array}{ll} \hline+31.3 \% & +0.7 \% \\ -23.1 \% & -1.0 \% \\ +42.3 \% & +0.6 \% \\ -27.7 \% & -0.9 \% \\ +61.8 \% & +0.9 \% \\ -35.6 \% & -0.9 \% \end{array}$
a. $4 \quad g g \rightarrow Z g$ a. $5 \quad g g \rightarrow Z g g$	$\begin{aligned} & \mathrm{g} \mathrm{~g}>\mathrm{z} \mathrm{~g} \text { [noborn=QCD] } \\ & \mathrm{g} \mathrm{~g}>\mathrm{z} \mathrm{~g} \mathrm{~g} \text { [noborn=QCD] } \end{aligned}$	$\begin{aligned} & 43.05 \pm 0.060 \\ & 20.85 \pm 0.030 \end{aligned}$	$\begin{array}{ll} +43.7 \% & +0.7 \% \\ -28.4 \% & -1.0 \% \\ +64.5 \% & +1.2 \% \\ & -36.5 \% \\ & -1.2 \% \end{array}$
$\begin{array}{ll} \text { a. } 6 & g g \rightarrow \gamma g \\ \text { a. } 7 & g g \rightarrow \gamma g g \\ \hline \end{array}$	$\begin{aligned} & \mathrm{g} \mathrm{~g}>\mathrm{a} \mathrm{~g} \text { [noborn=QCD] } \\ & \mathrm{g} \mathrm{~g}>\mathrm{a} \mathrm{~g} \mathrm{~g} \text { [noborn=QCD] } \end{aligned}$	$\begin{aligned} & 75.61 \pm 0.200 \\ & 14.50 \pm 0.030 \end{aligned}$	$\begin{aligned} & +73.8 \% \\ & -41.6 \% \\ & \hline \end{aligned}$
Process Double bosons + jet	Syntax	Cross section (pb) 13 TeV	$\Delta_{\hat{\mu}} \quad \Delta_{P D F}$
b. $1 \quad p p \rightarrow H H$ b. $2 \quad p p \rightarrow H H j$ b. $3 \quad p p \rightarrow H \gamma j$ b. $4 \quad g g \rightarrow H Z$ b. $5 \quad g g \rightarrow H Z g$	$\mathrm{p} \mathrm{p}>\mathrm{h} \mathrm{h}$ [noborn=QCD] $\mathrm{p} \mathrm{p}>\mathrm{h} \mathrm{h} \mathrm{j} \mathrm{[noborn=QCD]}$ p p > h a j [noborn=QCD] $\mathrm{g} \mathrm{g}>\mathrm{h} \mathrm{z}$ [noborn=QCD] $\mathrm{g} \mathrm{g}>\mathrm{h} \mathrm{zg}$ [noborn=QCD]	$\begin{aligned} & 1.641 \pm 0.002 \cdot 10^{-2} \\ & 1.758 \pm 0.003 \cdot 10^{-2} \\ & 4.225 \pm 0.006 \cdot 10^{-3} \\ & 6.537 \pm 0.030 \cdot 10^{-2} \\ & 5.465 \pm 0.020 \cdot 10^{-2} \end{aligned}$	
b. $6 \quad g g \rightarrow Z Z$ b. $7 \quad g g \rightarrow Z Z g$ b. $8 \quad g g \rightarrow Z \gamma$ b. $9 \quad g g \rightarrow Z \gamma g$	$\begin{aligned} & g \mathrm{~g}>\mathrm{z} \text { z }[\text { noborn=QCD] } \\ & \mathrm{g} \mathrm{~g}>\mathrm{z} \text { z } g \text { [noborn=QCD] } \\ & \mathrm{g} \mathrm{~g}>\mathrm{z} \text { a [noborn=QCD] } \\ & \mathrm{g} \mathrm{~g}>\mathrm{z} \text { a } \mathrm{g} \text { [noborn=QCD] } \end{aligned}$	$\begin{aligned} & 1.313 \pm 0.004 \\ & 0.6361 \pm 0.002 \\ & 1.265 \pm 0.0007 \\ & 0.4604 \pm 0.001 \end{aligned}$	
b. $10 \quad g g \rightarrow \gamma \gamma$ b. $11 \quad g g \rightarrow \gamma \gamma g$	$\begin{aligned} & g \mathrm{~g}>\mathrm{a} \text { a [noborn=QCD] } \\ & \mathrm{g} \mathrm{~g}>\mathrm{a} \text { a } \mathrm{g} \text { [noborn=QCD] } \end{aligned}$	$\begin{aligned} & 5.182 \pm 0.010 \cdot 10^{+2} \\ & 19.22 \pm 0.030 \end{aligned}$	$\begin{aligned} & +72.3 \% \\ & -43.4 \% \\ & -1.2 \% \\ & +59.7 \% \\ & +0.9 \% \\ & -35.7 \% \\ & \hline \end{aligned}$
$\begin{array}{ll} \mathrm{b} .12 & g g \rightarrow W^{+} W^{+} \\ \mathrm{b} .13 & g g \rightarrow W^{+} W^{-} g \end{array}$	$\begin{aligned} & \mathrm{g} \mathrm{~g}>\mathrm{w}+\mathrm{w}-\quad[\text { noborn=QCD] } \\ & \mathrm{g} \mathrm{~g}>\mathrm{w}+\mathrm{w}-\mathrm{g} \quad[\text { noborn=QCD] } \end{aligned}$	$\begin{aligned} & 4.099 \pm 0.010 \\ & 1.837 \pm 0.004 \end{aligned}$	$\begin{aligned} & +26.5 \% \\ & -19.7 \% \\ & +0.7 \% \\ & +45.2 \% \\ & \\ & -29.0 \% \\ & \\ & \hline \end{aligned}$

SM Tables

Process Triple bosons	Syntax	Cross section (pb)	$\Delta_{\hat{\mu}} \quad \Delta_{P D F}$
		13 TeV	
c. $1 \quad p \mathrm{p} \rightarrow \mathrm{HHH}$	$\mathrm{p} \mathrm{p}>\mathrm{h} \mathrm{h} \mathrm{h} \mathrm{[noborn=QCD]}$	$3.968 \pm 0.010 \cdot 10^{-5}$	$\begin{aligned} & +31.8 \% \\ & -21.7 \% \end{aligned}$
c. $2 \mathrm{gg} \rightarrow \mathrm{HHZ}$	$\mathrm{g} \mathrm{g} \mathrm{>} \mathrm{~h} \mathrm{~h} \mathrm{z} \mathrm{[noborn=QCD]}$	$5.260 \pm 0.009 \cdot 10^{-5}$	${ }_{-22.2 \%}^{+31.2 \%}{ }_{-1.6 \%}^{+1.6 \%}$
c. 3 g g \rightarrow HZZ	$\mathrm{g} \mathrm{g} \mathrm{>} \mathrm{~h} \mathrm{z} \mathrm{z} \mathrm{[noborn=QCD]}$	$1.144 \pm 0.004 \cdot 10^{-4}$	
c. $4 \quad g g \rightarrow H Z \gamma$	$\mathrm{g} \mathrm{g}>\mathrm{h} \mathrm{z}$ a [noborn=QCD]	$6.190 \pm 0.020 \cdot 10^{-6}$	$\begin{aligned} & -20.2 \%-1.5 \% \\ & { }_{-21.2 \%}^{+29.3 \%}+1.1 \% \\ & -1.2 \% \end{aligned}$
c. $5 \quad p p \rightarrow H \gamma \gamma$	$\mathrm{p} \mathrm{p}>\mathrm{h}$ a a [noborn=QCD]	$6.058 \pm 0.004 \cdot 10^{-6}$	$\begin{aligned} & \begin{array}{c} -21.2 \% \\ { }_{-20.8 \%}^{+30.3 \%} \\ -1.2 \% \\ -1.2 \% \end{array} \end{aligned}$
c. $6 \quad p p \rightarrow H W^{+} W^{-}$	$\mathrm{g} \mathrm{g} \mathrm{>} \mathrm{~h} \mathrm{w+} \mathrm{w-} \mathrm{[noborn=QCD]}$	$2.670 \pm 0.007 \cdot 10^{-4}$	
c. $7 \quad g g \rightarrow Z Z Z$	$\mathrm{g} \mathrm{g}>\mathrm{zzz}$ [noborn=QCD]	$6.964 \pm 0.009 \cdot 10^{-5}$	$\begin{aligned} & +30.9 \% \\ & { }_{-22.1 \%}+1.5 \% \end{aligned}$
c. $8 \quad g g \rightarrow Z Z \gamma$	$\mathrm{g} \mathrm{g}>\mathrm{z} \mathrm{z}$ a [noborn=QCD]	$3.454 \pm 0.010 \cdot 10^{-6}$	$\begin{aligned} & -28.1 \% \%+1.0 \% \\ & \begin{array}{l} -20.0 \% \\ -20.9 \% \end{array}-1.1 \% \end{aligned}$
c. $9 \quad g \mathrm{~g} \rightarrow Z \gamma \gamma$	$\mathrm{g} \mathrm{g}>\mathrm{z}$ a a [noborn=QCD]	$3.079 \pm 0.005 \cdot 10^{-4}$	
c. $10 \quad \mathrm{~g} g \rightarrow Z W^{+} W^{-}$	$\mathrm{g} \mathrm{g} \mathrm{>} \mathrm{z} \mathrm{w+} \mathrm{w-} \mathrm{[noborn=QCD]}$	$8.595 \pm 0.020 \cdot 10^{-3}$	
c. $12 \mathrm{~g} g \rightarrow \gamma W^{+} W^{-}$	$\mathrm{g} \mathrm{g} \mathrm{>} \mathrm{a} \mathrm{w+} \mathrm{w-} \mathrm{[noborn=QCD]}$	$1.822 \pm 0.005 \cdot 10^{-2}$	$\begin{aligned} & \hline+28.7 \%{ }^{+0.9 \%} \\ & -20.9 \%{ }_{-1.1 \%} \\ & \hline \end{aligned}$

Process	Syntax	Decay width (GeV)
Bosonic decays		
g. $1 \quad H \rightarrow j j$	$\mathrm{h}>\mathrm{j} \mathrm{j}$ [noborn=QCD]	$1.646 \pm 0.003 \cdot 10^{-4}$
g. $2 \quad H \rightarrow j j j$	$h>\mathrm{j} j \mathrm{j}$ [noborn=QCD]	$4.630 \pm 0.030 \cdot 10^{-5}$
g. $3 \quad H \rightarrow j j j j$	$\mathrm{h}>\mathrm{j} \mathrm{j} \mathrm{j} \mathrm{j}$ QED=1 [noborn=QCD]	$2.549 \pm 0.020 \cdot 10^{-6}$
g. $4 \quad H \rightarrow \gamma \gamma$	$\mathrm{h}>\mathrm{a}$ a [noborn=QED]	$9.743 \pm 0.004 \cdot 10^{-6}$
g. $5 \quad Z \rightarrow g g g$	$\mathrm{z}>\mathrm{g} \mathrm{g} \mathrm{g}$ [noborn=QCD]	$3.921 \pm 0.010 \cdot 10^{-7}$

SM Tables

	Syntax	Cross section (pb)	$\Delta_{\hat{\mu}} \quad \Delta_{P D F}$
Selected $2 \rightarrow 4$		13 TeV	
d. $1 \quad p p \rightarrow H j j j$	$\mathrm{p} \mathrm{p}>\mathrm{h} \mathrm{j} \mathrm{j} \mathrm{j}$ QED=1 [noborn=QCD]	2.519 ± 0.005	$0 \% 0 \%$ $0 \% ~ 0 \%$
d. $2 \quad p p \rightarrow H H j j$	$\mathrm{ph}>\mathrm{hh} \mathrm{j} \mathrm{j}$ QED=1 [noborn=QCD]	$1.085 \pm 0.002 \cdot 10^{-2}$	${ }_{-35.8 \%}^{+62.1 \%}{ }_{-1.6 \%}^{+1.5 \%}$
d. $3 \quad p p \rightarrow H H H j$	$\mathrm{p} \mathrm{p}>\mathrm{hh} \mathrm{h} \mathrm{j} \mathrm{[noborn=QCD]}$	$4.981 \pm 0.008 \cdot 10^{-5}$	${ }^{-29.6 \%}{ }^{+4.3 \%}{ }^{+4.8 \%}{ }^{+1.8 \%}$
d. $3 \quad p \mathrm{p} \rightarrow$ HHHH	$\mathrm{p} \mathrm{p}>\mathrm{hhhh}$ [noborn=QCD]	$1.080 \pm 0.003 \cdot 10^{-7}$	${ }^{-23.3 \%}{ }^{+33.3 \%}{ }^{+1.82 \%}$
d. $4 \quad \mathrm{gg} \rightarrow e^{+} e^{-} \mu^{+} \mu^{-}$	$\mathrm{g} \mathrm{g}>\mathrm{e}+\mathrm{e}-\mathrm{mu}+\mathrm{mu}-$ [noborn=QCD]	$2.022 \pm 0.003 \cdot 10^{-3}$	$\begin{aligned} & -23.4 \% \\ & +26.4 \% \\ & +1.0 \% \\ & -19.4 \% \\ & -1.3 \% \end{aligned}$
d. $5 \quad p p \rightarrow H Z \gamma j$	$\mathrm{g} \mathrm{g} \mathrm{>} \mathrm{~h} \mathrm{z}$ a g [noborn=QCD]	$4.950 \pm 0.008 \cdot 10^{-6}$	$\begin{aligned} & 19.400-1.5 \% \\ & +45.8 \% \\ & -29.3 \%-1.6 \% \end{aligned}$
$e^{+} e^{-}$processes		$\hat{s}=500 \mathrm{G}$	
e. $1 \quad e^{+} e^{-} \rightarrow g g g$	e+ e- > g g g [noborn=QED]	$2.526 \pm 0.004 \cdot 10^{-6}$	
e. $2 \quad e^{+} e^{-} \rightarrow H H$	$\mathrm{e}+\mathrm{e}->\mathrm{h} \mathrm{h} \mathrm{[noborn=QED]}$	$1.567 \pm 0.003 \cdot 10^{-5}$	${ }^{+0.0 \%}$
e. $3 \quad e^{+} e^{-} \rightarrow$ H Hgg	e+ e- > h h g g [noborn=QED]	$6.629 \pm 0.010 \cdot 10^{-11}$	$\begin{aligned} & +19.2 \% \\ & -14.8 \% \end{aligned}$
Miscellaneous		13 TeV	
f. $1 \quad p p \rightarrow t t$	$\mathrm{p} p>\mathrm{t}$ t [noborn=QED]	$4.045 \pm 0.007 \cdot 10^{-15}$	$\begin{aligned} & +0.2 \% \\ & +1.1 \% \\ & -0.8 \% \end{aligned}{ }_{-1.1 \%}$

- MadGraph5_aMC@NLO
- Framework for LO and NLO computation
- Fixed order or matched to the shower
- Merging possible
- SM and BSM on the same level
- Loop-Induced
- Code in public beta
- Fine tuning in progress
- Officially release in ~ weeks

