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Outline

•  Motivation: physics beyond the Standard Model

•  Review of jet finding algorithms

•  Introduction of a global definition

•  Application to QCD-like jets

•  Extension to boosted two-prong jets

•  Conclusion
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What is a jet?

An ensemble of particles in detectors can be called a jet

Jet-finding algorithm: how to group particles together?
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Jets in BSM

• Mono-jet plus MET events as the 
dark matter signature

MONOJET – SEARCH DETAILS

• Select%sample%of%Monojet+MET%events%(keeping%muons)
– Basic%cuts%on%jet%cons=tuents–%charged%and%neutral%HAD%and%EM%frac=ons%
– Removes%cosmics,%instrumental%backgrounds,%mismeasured%jets

• Basic%topological%selec=on
– MET%>%200%GeV,%%#%of%Jets%=%1%or%2
– Par=cle%flow%jets;%an=[kT%with%R%=%0.5
– Leading%Jet:%pT%>%110%GeV,%|η|<2.4
– Second%Jet:%pT%>%30%GeV
– Δϕ(jet1,jet2)%<%2.5

• Monojet%Signal%Sample%(Lepton%Rejec=on)%
– Reject%events%with%e,%μ%isolated%in%a%cone%of%∆R%=%0.3
– Reject%events%with%tracks%isolated%in%a%cone%of%∆R%=%0.3
– MET%>%350%GeV%for%DM%search

• Data[driven%Background%Es=ma=on%(Lepton%Iden=fica=on)
– Isolated%muon%>%20%GeV/c
– Obtain%Z+jet%sample%from%M(μμ),%W+jet%sample%from%pT(μ)+MET
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Figure 1: Dark matter production in association with a single jet in a hadron collider.

3.1. Comparing Various Mono-Jet Analyses

Dark matter pair production through a diagram like figure 1 is one of the leading channels
for dark matter searches at hadron colliders [3, 4]. The signal would manifest itself as an excess
of jets plus missing energy (j + /ET ) events over the Standard Model background, which consists
mainly of (Z � ⇥⇥)+ j and (W � ⌅inv⇥)+ j final states. In the latter case the charged lepton ⌅ is
lost, as indicated by the superscript “inv”. Experimental studies of j + /ET final states have been
performed by CDF [22], CMS [23] and ATLAS [24, 25], mostly in the context of Extra Dimensions.

Our analysis will, for the most part, be based on the ATLAS search [25] which looked for mono-
jets in 1 fb�1 of data, although we will also compare to the earlier CMS analysis [23], which used
36 pb�1 of integrated luminosity. The ATLAS search contains three separate analyses based on
successively harder pT cuts, the major selection criteria from each analysis that we apply in our
analysis are given below.3

LowPT Selection requires /ET > 120 GeV, one jet with pT (j1) > 120 GeV, |�(j1)| < 2, and events
are vetoed if they contain a second jet with pT (j2) > 30 GeV and |�(j2)| < 4.5.

HighPT Selection requires /ET > 220 GeV, one jet with pT (j1) > 250 GeV, |�(j1)| < 2, and events
are vetoed if there is a second jet with |�(j2)| < 4.5 and with either pT (j2) > 60 GeV or
�⇤(j2, /ET ) < 0.5. Any further jets with |�(j2)| < 4.5 must have pT (j3) < 30 GeV.

veryHighPT Selection requires /ET > 300 GeV, one jet with pT (j1) > 350 GeV, |�(j1)| < 2, and
events are vetoed if there is a second jet with |�(j2)| < 4.5 and with either pT (j2) > 60 GeV
or �⇤(j2, /ET ) < 0.5. Any further jets with |�(j2)| < 4.5 must have pT (j3) < 30 GeV.

In all cases events are vetoed if they contain any hard leptons, defined for electrons as |�(e)| < 2.47
and pT (e) > 20 GeV and for muons as |�(µ)| < 2.4 and pT (µ) > 10 GeV.

The cuts used by CMS are similar to those of the LowPT ATLAS analysis. Mono-jet events
are selected by requiring /ET > 150 GeV and one jet with pT (j1) > 110 GeV and pseudo-rapidity
|�(j1)| < 2.4. A second jet with pT (j2) > 30 GeV is allowed if the azimuthal angle it forms with
the leading jet is �⇤(j1, j2) < 2.0 radians. Events with more than two jets with pT > 30 GeV are
vetoed, as are events containing charged leptons with pT > 10 GeV. The number of expected and
observed events in the various searches is shown in table I.

3 Both ATLAS and CMS impose additional isolation cuts, which we do not mimic in our analysis for simplicity and
since they would not have a large impact on our results.

• Multi-jets plus MET for RPC SUSY or without MET 
for RPV SUSY
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1 Introduction
The standard model (SM) has been extremely successful at describing particle physics phenom-
ena. However, it suffers from such shortcomings as the hierarchy problem, where fine-tuned
cancellations of large quantum corrections are required in order for the Higgs boson to have
a mass at the electroweak symmetry breaking scale of order 100 GeV [1–6]. Supersymmetry
(SUSY) is a popular extension of the SM that postulates the existence of a superpartner for ev-
ery SM particle, with the same quantum numbers but differing by one half unit of spin. SUSY
provides a natural solution to the hierarchy problem through the cancellations of the quadratic
divergences of the top quark and scalar top squark loops. In addition, it provides a connec-
tion to the cosmological sector, with the lightest supersymmetric particle (LSP), if neutral and
stable, serving as a dark matter candidate.

This note describes a search for the pair production of top squarks using the full dataset col-
lected at

p
s = 8 TeV by the Compact Muon Solenoid (CMS) experiment [7] at the Large

Hadron Collider (LHC) during 2012, corresponding to an integrated luminosity of 19.5 fb�1.
The results presented here constitute an extension of a previous CMS search [8]. This search
is motivated by the observation that relatively light top squarks, with masses less than several
hundred GeV, are necessary if SUSY is to be the “natural”, i.e., not fine-tuned, solution to the
gauge hierarchy problem [9–13]. These constraints are especially relevant given the recent dis-
covery of a particle that closely resembles the Higgs boson, with a mass of ⇠125 GeV [14–16].
Searches for top-squark pair production have also been performed by the ATLAS collaboration
at the LHC in several final states [17–21], and by the CDF [22] and D0 [23] collaborations at the
Tevatron.

The search presented here focuses on two decay modes of the top squark (t̃): t̃ ! tec0
1 and t̃ !

bec+
1 . These modes are expected to have large branching fractions if kinematically accessible.

Here the neutralinos (ec0) and charginos (ec±) are the mass eigenstates formed by the linear
combination of the gauginos and higgsinos, fermionic superpartners of the gauge and Higgs
bosons, respectively. The charginos are unstable and subsequently decay into neutralinos and
W bosons, leading to the following processes of interest: pp ! t̃t̃⇤ ! ttec0

1 ec0
1 ! bbW+W� ec0

1 ec0
1

and pp ! t̃t̃⇤ ! bbec+
1 ec�

1 ! bbW+W� ec0
1 ec0

1, as displayed in Fig. 1. The lightest neutralino ec0
1

is considered to be the stable LSP, which escapes without detection and results in large missing
transverse energy (Emiss

T ).

The signatures in the t̃ ! tec0
1 and t̃ ! bec+

1 decay modes include four high transverse mo-
mentum (pT) jets, two of which are from bottom quarks, and Emiss

T . The requirement of exactly
one isolated, high pT electron or muon serves to suppress many of the backgrounds present in
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Figure 1: Diagram for top-squark pair production for the t̃ ! tec0
1 ! bWec0

1 decay mode (left)
and the t̃ ! bec+

1 ! bWec0
1 decay mode (right).
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Fat-jet object

• Boosted top quark, W/Z, Higgs ……

pp ! Z 0 ! WW

j

Z ′

j
j

Z ′

j

W
W

pT (W ) ⇠ MW pT (W ) � MW

Search for a few TeV resonance decaying into t, W, Z, h …
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Jet substructure
A jet may not be just a parton and it could have an 
internal structure

Many new objects: (incomplete list)

• …; Butterworth, Cox, Forshaw, WW scattering, hep-ph/0201098
• Butterworth, Davison, Rubin, Salam, boosted Higgs, 0802.2470

• Kaplan, Rehermann, Schwartz, Tweedie, boosted top, 0806.0848
• Thaler and Wang, boosted top, 0806.0023

Many new variables or procedures:
• mass drop, N-subjettiness, pull, dipolarity, without trees, …

• Jet grooming: filtering, trimming, pruning …

• Almeida, Lee, Perez, Sterman, Sung, boosted top, 0807.0234;…
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Jet substructure: an example
Boosted Higgs for measuring the            decay  h ! bb̄

(1)  start from a jet-finding algorithm (C/A) to cover a wider             
      area 

Two steps: 

(2)  mass-drop: (the QCD quark is massless) some subset of   
      particles inside a Higgs-jet can have a much smaller mass. 
    Filter: (reduce underlying events) introduce a finer angular
    scale

Butterworth et.al., 0802.2470

2

b Rbb Rfilt

Rbbg

b
R

mass drop filter

FIG. 1: The three stages of our jet analysis: starting from a hard massive jet on angular scale R, one identifies the Higgs
neighbourhood within it by undoing the clustering (effectively shrinking the jet radius) until the jet splits into two subjets
each with a significantly lower mass; within this region one then further reduces the radius to Rfilt and takes the three hardest
subjets, so as to filter away UE contamination while retaining hard perturbative radiation from the Higgs decay products.

objects (particles) i and j, recombines the closest pair,
updates the set of distances and repeats the procedure
until all objects are separated by a ∆Rij > R, where R
is a parameter of the algorithm. It provides a hierarchical
structure for the clustering, like the K⊥algorithm [9, 10],
but in angles rather than in relative transverse momenta
(both are implemented in FastJet 2.3[11]).

Given a hard jet j, obtained with some radius R, we
then use the following new iterative decomposition proce-
dure to search for a generic boosted heavy-particle decay.
It involves two dimensionless parameters, µ and ycut:

1. Break the jet j into two subjets by undoing its last
stage of clustering. Label the two subjets j1, j2 such
that mj1 > mj2 .

2. If there was a significant mass drop (MD), mj1 <
µmj, and the splitting is not too asymmetric, y =
min(p2

tj1
,p2

tj2
)

m2

j

∆R2
j1,j2

> ycut, then deem j to be the

heavy-particle neighbourhood and exit the loop.
Note that y ≃ min(ptj1 , ptj2)/ max(ptj1 , ptj2).

1

3. Otherwise redefine j to be equal to j1 and go back
to step 1.

The final jet j is to be considered as the candidate Higgs
boson if both j1 and j2 have b tags. One can then identify
Rbb̄ with ∆Rj1j2 . The effective size of jet j will thus be
just sufficient to contain the QCD radiation from the
Higgs decay, which, because of angular ordering [12, 13,
14], will almost entirely be emitted in the two angular
cones of size Rbb̄ around the b quarks.

The two parameters µ and ycut may be chosen inde-
pendently of the Higgs mass and pT . Taking µ ! 1/

√
3

ensures that if, in its rest frame, the Higgs decays to a
Mercedes bb̄g configuration, then it will still trigger the
mass drop condition (we actually take µ = 0.67). The cut
on y ≃ min(zj1 , zj2)/ max(zj1 , zj2) eliminates the asym-
metric configurations that most commonly generate sig-
nificant jet masses in non-b or single-b jets, due to the

1 Note also that this ycut is related to, but not the same as, that
used to calculate the splitting scale in [5, 6], which takes the jet
pT as the reference scale rather than the jet mass.

Jet definition σS/fb σB/fb S/
√

B · fb

C/A, R = 1.2, MD-F 0.57 0.51 0.80

K⊥, R = 1.0, ycut 0.19 0.74 0.22

SISCone, R = 0.8 0.49 1.33 0.42

TABLE I: Cross section for signal and the Z+jets background
in the leptonic Z channel for 200 < pTZ/GeV < 600 and
110 < mJ/GeV < 125, with perfect b-tagging; shown for
our jet definition, and other standard ones at near optimal R
values.

soft gluon divergence. It can be shown that the maxi-
mum S/

√
B for a Higgs boson compared to mistagged

light jets is to be obtained with ycut ≃ 0.15. Since we
have mixed tagged and mistagged backgrounds, we use a
slightly smaller value, ycut = 0.09.

In practice the above procedure is not yet optimal
for LHC at the transverse momenta of interest, pT ∼
200 − 300 GeV because, from eq. (1), Rbb̄ ! 2mh/pT is
still quite large and the resulting Higgs mass peak is sub-
ject to significant degradation from the underlying event
(UE), which scales as R4

bb̄
[15]. A second novel element

of our analysis is to filter the Higgs neighbourhood. This
involves resolving it on a finer angular scale, Rfilt < Rbb̄,
and taking the three hardest objects (subjets) that ap-
pear — thus one captures the dominant O (αs) radiation
from the Higgs decay, while eliminating much of the UE
contamination. We find Rfilt = min(0.3, Rbb̄/2) to be
rather effective. We also require the two hardest of the
subjets to have the b tags.

The overall procedure is sketched in Fig. 1. We il-
lustrate its effectiveness by showing in table I (a) the
cross section for identified Higgs decays in HZ produc-
tion, with mh = 115 GeV and a reconstructed mass re-
quired to be in an moderately narrow (but experimen-
tally realistic) mass window, and (b) the cross section
for background Zbb̄ events in the same mass window.
Our results (C/A MD-F) are compared to those for the
K⊥algorithm with the same ycut and the SISCone [16]
algorithm based just on the jet mass. The K⊥algorithm
does well on background rejection, but suffers in mass
resolution, leading to a low signal; SISCone takes in less
UE so gives good resolution on the signal, however, be-
cause it ignores the underlying substructure, fares poorly
on background rejection. C/A MD-F performs well both
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Our motivation

Can we combine this two-step procedure into a 
single one? 

• Hope:  keep more hard process information and 
less underlying event contamination 

• Method:  define a new jet-finding algorithm suitable 
for a boosted heavy object

To proceed, let’s start with traditional jet-finding 
algorithms for QCD jets
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A brief review of jet-finding algorithms

★  Cone algorithm

★  Sequential recombination algorithm

• Started by Sterman and Weinberg in 70’s 

• CDF SearchCone, Mid point, SISCone …

• Started by the JADE collaboration in 80’s

• Used at UA1, Tevatron

•    , Cambridge/Aachen,     kt anti-kt

• Extensively used at the LHC
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Cone algorithm
Iterative process:

• choose particle with highest transverse momentum as 
the seed particle

• draw a cone of radius R around the seed particle
• sum the momenta of all particles in the cone as the jet 

axis 
• if the jet axis does not agree with the original one, 

continue; otherwise find a stable cone and stop

jet 2
jet 1jet 1jet 1 jet 1

αs x (+ )∞nαs x (− )∞n αs x (+ )∞nαs x (− )∞n

Infinities cancel Infinities do not cancel

a) b) d)c)
Collinear safe jet alg. Collinear unsafe jet alg

Figure 1: Illustration of collinear safety (left) and collinear unsafety in an IC-PR type algorithm
(right) together with its implication for perturbative calculations (taken from the appendix of
[33]). Partons are vertical lines, their height is proportional to their transverse momentum, and
the horizontal axis indicates rapidity.

W

jet

soft divergence

W

jet jet

W

jet jet

(a) (b) (c)

Figure 2: Configurations illustrating IR unsafety of IC-SM algorithms in events with a W and
two hard partons. The addition of a soft gluon converts the event from having two jets to just
one jet. In contrast to fig. 1, here the explicit angular structure is shown (rather than pt as a
function of rapidity).

to find a new stable cone. Once passed through the split–merge step this can lead to the
modification of the final jets, thus making the algorithm infrared unsafe. This is illustrated
in fig. 2: in an event (a) with just two hard partons (and a W , which balances momentum),
both partons act as seeds, there are two stable cones and two jets. The same occurs in the
(negative) infinite loop diagram (b). However, in diagram (c) where an extra soft gluon
has been emitted, the gluon provides a new seed and causes a new stable cone to be found
containing both hard partons (as long as they have similar momenta and are separated
by less than 2R). This stable cone overlaps with the two original ones and the result of
the split–merge procedure is that only one jet is found. So the number of jets depends
on the presence or absence of a soft gluon and after integration over the virtual/real soft-
gluon momentum the two-jet and one-jet cross sections each get non-cancelling infinite
contributions. This is a serious problem, just like collinear unsafety. A good discussion of
it was given in [39].
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both partons act as seeds, there are two stable cones and two jets. The same occurs in the
(negative) infinite loop diagram (b). However, in diagram (c) where an extra soft gluon
has been emitted, the gluon provides a new seed and causes a new stable cone to be found
containing both hard partons (as long as they have similar momenta and are separated
by less than 2R). This stable cone overlaps with the two original ones and the result of
the split–merge procedure is that only one jet is found. So the number of jets depends
on the presence or absence of a soft gluon and after integration over the virtual/real soft-
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12

Colinear safety?

SISCone 
(split-merge)



12

          algorithm

Iterative process:

• Find the minimum of the       and 

• If it is a      , recombine i and j into a single new particle, 
and repeat  

Anti-kt

dij = min(p�2
ti , p�2

tj )
�R2

ij

R2 diB = p�2
ti

�R2
ij = (yi � yj)

2 + (�i � �j)
2

dij diB

dij

• otherwise, if it is a      , declare i to be a jet, and remove 
it from the list of particles 

diB

• stop when no particles remain

Infrared and collinear safe !
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Behaviors of different algorithms
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Figure 7: A sample parton-level event (generated with Herwig [101]), together with many ran-
dom soft “ghosts”, clustered with four different jet algorithms, illustrating the “active” catchment
areas of the resulting hard jets (cf. section 4.4). For kt and Cam/Aachen the detailed shapes are
in part determined by the specific set of ghosts used, and change when the ghosts are modified.

degree of regularity (or not) of the boundaries of the resulting jets and their extents in the
rapidity-azimuth place.

3 Computational geometry and jet finding

It takes the human eye and brain a fraction of a second to identify the main regions of
energy flow in a calorimetric event such as fig. 7. A good few seconds might be needed to
quantify that energy flow, and to come to a conclusion as to how many jets it contains.
Those are timescales that usefully serve as a reference when considering the speed of jet
finders — if a jet finder takes a few seconds to classify an event it will seem somewhat
tedious, whereas a few milliseconds will seem fast. One can reach similar conclusions by
comparing to the time for a Monte Carlo event generator to produce an event (from tens
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3 Computational geometry and jet finding

It takes the human eye and brain a fraction of a second to identify the main regions of
energy flow in a calorimetric event such as fig. 7. A good few seconds might be needed to
quantify that energy flow, and to come to a conclusion as to how many jets it contains.
Those are timescales that usefully serve as a reference when considering the speed of jet
finders — if a jet finder takes a few seconds to classify an event it will seem somewhat
tedious, whereas a few milliseconds will seem fast. One can reach similar conclusions by
comparing to the time for a Monte Carlo event generator to produce an event (from tens
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Salam, 0906.1833
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Quantify the goodness of algorithms

Salam, 0906.1833
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Figure 18: The distribution of back reaction for high-pt jets (pt > 1 TeV) immersed in pileup
corresponding to high-luminosity LHC running (ρ ∼ 15 GeV per unit area). Simulated with
Pythia 6.4 and shown for 4 algorithms.

factor is often O (1)), the term of order αsρ is usually as important as the formally leading
term. Both terms are generally small compared to the direct contamination of the jet from
UE/pileup noise, O (ρ · πR2).

The concrete situation for the various algorithms is illustrated in fig. 18, which shows
the distribution of back reaction for a high-pt jet immersed in pileup (ρ ∼ 15 GeV). In
about 1% of events one has a back reaction of order of ρ, except for anti-kt, whose back
reaction is far more suppressed. Fig. 18 confirms that back reaction is a modest effect
compared to the direct contamination of a jet from background noise. Essentially it is
relevant only when trying to determine a jet’s energy to very high precision, or in the
presence of extreme noise (as in heavy-ion collisions).

4.5 Summary

We have seen a number of results here. Let us summarise them:

• Most jet algorithms will cluster a pair of particles if they are within R of each other;
SISCone reaches out to 2R (somewhat less in real events) if the two particles are of
similar hardness.

• At small R, a jet’s pt is reduced relative to a parton’s by an amount ∼ αspt ln 1/R.
With R = 0.4, that’s of order 5% for a quark, 10% for a gluon. The mean squared
jet mass goes as αsR2p2t .

58

Back-reaction: how much adding soft background particles 
changes the original particles in a jet 
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“A Simple Alternative”

● Maximize a fixed function

Event

H. Georgi, arXiv:1408.1161  

“A Simple Alternative”

● Maximize a fixed function

Jet Function

Event

Jet

H. Georgi, arXiv:1408.1161

Can one has a more intuitive way to 
define a jet-finding algorithm?

events with 
N particles a jet with 

subset particles
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“A Simple Alternative”

● Maximize a fixed function

Event

H. Georgi, arXiv:1408.1161  

“A Simple Alternative”

● Maximize a fixed function

Jet Function

Event

Jet

H. Georgi, arXiv:1408.1161

Can one has a more intuitive way to 
define a jet-finding algorithm?

events with 
N particles a jet with 

subset particles

A jet 
function

Look for a simple jet definition function
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Start with a QCD jet

★  QCD partons are massless

★  The jet function should

• prefer increasing jet energy

• disfavor increasing jet mass
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Start with a QCD jet

★  QCD partons are massless

★  The jet function should

• prefer increasing jet energy

• disfavor increasing jet mass

★  The simple option at a lepton collider:

J(Pµ) = E � �
m2

E
[H. Georgi, 1408.1161]
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Start with a QCD jet

★  QCD partons are massless

★  The jet function should

• prefer increasing jet energy

• disfavor increasing jet mass

For N particles and       possibilities, find the one 
maximizing this jet function. One does this iteratively to 
find all jets in one event.

2N

★  The simple option at a lepton collider:

J(Pµ) = E � �
m2

E
[H. Georgi, 1408.1161]
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Special cases

J(Pµ) = E � �
m2

E

•            :              � = 0 J = E

  

Special Cases

● Jet Function:

●

–

●

–

J=E−β
m
2

E
,β≥0

β=1

J=|p|

β=0

J=E

include all particles in one jet
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Special cases

J(Pµ) = E � �
m2

E

•            :              � = 0 J = E

  

Special Cases

● Jet Function:

●

–

●

–

J=E−β
m
2

E
,β≥0

β=1

J=|p|

β=0

J=E

include all particles in one jet

•            :              � = 1 J = |~P |

hemisphere way for two jets

  

Special Cases

● Jet Function:

●

–

●

–

J=E−β
m
2

E
,β≥0

β=1

J=|p|

β=0

J=E
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General cases
★  A group of particles will have a boost factor from its 

rest frame and has a jet function bigger than a soft 
particle

  

General   (a shortcut)

● Boosted object

● Relativistic beaming

J=
(E 2−βm2)

E
=(γ2−β)

m
2

E
≥0

γ≥√β

sin θ≤√ 1β

β

  

General   (a shortcut)

● Boosted object

● Relativistic beaming

J=
(E 2−βm2)

E
=(γ2−β)

m
2

E
≥0

γ≥√β

sin θ≤√ 1β

β

★  Relativistic beaming effect

  

General   (a shortcut)

● Boosted object

● Relativistic beaming

J=
(E 2−βm2)

E
=(γ2−β)

m
2

E
≥0

γ≥√β

sin θ≤√ 1β

β

★  The particles are inside a jet cone
A larger value of     means a smaller cone size�
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Extension to hadron colliders
★ The center-of-mass frame is likely to be highly boosted 

in the beam direction

★ The simplest way to extend the jet definition is

JET (P
µ
J ) ⌘ ET � �

m2

ET

★ One could also try other powers

JET (P
µ
J ) ⌘ E↵

T (1� �
m2

E2
T

)

★ Does this new function has a similar cone geometry?
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Try an “easier” function
★ For            ,    ↵ = 2

JE2
T
= E2

T � �m2 = E2 � P 2
z � �m2

★ Requiring                              , the boundary satisfiesJE2
T
(Pµ

J ) > JE2
T
(Pµ

J � pµj )

  

Brutal Force Approach

● An “Easier” Jet Function

● New Boundary

J
ET
2=ET

2−βm2=E 2−P z
2−βm2

1

|p||P|(P x px+P y py+(1−1β )Pz pz)=1v (1− 1β )
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Try an “easier” function
★ For            ,    ↵ = 2

JE2
T
= E2

T � �m2 = E2 � P 2
z � �m2

★ Requiring                              , the boundary satisfiesJE2
T
(Pµ

J ) > JE2
T
(Pµ

J � pµj )

  

Brutal Force Approach

● An “Easier” Jet Function

● New Boundary

J
ET
2=ET

2−βm2=E 2−P z
2−βm2

1

|p||P|(P x px+P y py+(1−1β )Pz pz)=1v (1− 1β )

  

Circle on 2-sphere

1

|p||P|(P x px+P y py+(1−1β )Pz pz)=1v (1− 1β )

{ px
2+ py

2+ pz
2=C1(P )

( px−P x)
2+( py−P y)

2+( pz−(1−1β )P z)
2

=C 2(P )

  

Circle on 2-sphere

1

|p||P|(P x px+P y py+(1−1β )Pz pz)=1v (1− 1β )

{ px
2+ py

2+ pz
2=C1(P )

( px−P x)
2+( py−P y)

2+( pz−(1−1β )P z)
2

=C 2(P )

★ Can be interpreted as intersection of two spheres
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Still a cone jet
★ For a general    , the boundary is ↵

  

Generalization

● New parameter 

● Boundary

● Center:

α ,(0<α<2)

J ETα=ET
α(1−m

2

ET
2 )

1

|p||P|
(P x px+P y py+κ Pz pz )=

κ
v

κ=1− α
2β

+
α−2
2

m
2

ET
2

(P x , P y ,κ Pz) cosθ '= κ
v √1−(1−κ2)cos2θZ

  

Generalization

● New parameter 

● Boundary

● Center:

α ,(0<α<2)

J ETα=ET
α(1−m

2

ET
2 )

1

|p||P|
(P x px+P y py+κ Pz pz )=

κ
v

κ=1− α
2β

+
α−2
2

m
2

ET
2

(P x , P y ,κ Pz) cosθ '= κ
v √1−(1−κ2)cos2θZ

the center is shifted from the jet momentum towards 
the central region

soft and approximately massless particle with E
j

⌧ E
J

, or r
j

⌘ E
j

/E
J

⌧ 1. Expanding in terms of

r
j

, we have

E
T

(P
J

� p
j

) = E
J

q
1 � v2

J

cos2 ✓
J


1 � r

j

1 � v
J

cos ✓
J

cos ✓
j

1 � v2
J

cos2 ✓
J

�
+ O(r2

j

) . (2)

The condition of J
ET (P

J

) � J
ET (p

j

) can be translated to

1 � v2
J

� 1 � 1/�

1 � cos2 ✓
J

/�
. (3)

This means that a central jet, with ✓
J

closer to ⇡/2, can have a lower limit on v
J

, while a forward jet

is more relativistic.

From the other condition, J
ET (P

J

) � J
ET (P

J

� p
j

), we can prove that the jet has a circular

boundary on the (✓,�) plane. 3 It turns out that the geometric center of the circle is not exactly along

the jet momentum. Instead, it is along the direction defined by

~̂P
c

=
1q

1 � (1 � 2)P̂ z 2
J

(P̂ x

J

, P̂ y

J

,  P̂ z

J

) , (4)

where the unit vector is defined as ~̂P ⌘ ~P/|~P |. The parameter  < 1 is a function of v
J

and ✓
J

, given

by

 = 1 � 1

2�
� 1 � v2

J

2 � (1 + cos 2✓
J

)v2
J

. (5)

Denoting z
c

as the cosine of the angle, ⌦
c

, between a particle ~̂p
j

and the jet geometric center ~̂P
c

, we

have z
c

bound by

z
c

� 

v
J

p
1 � (1 � 2) cos2 ✓

J

+ r
j

f(v
J

, ✓
J

, ✓
j

, �) . (6)

One can show that the function f satisfies f(v
J

, ✓
J

, ✓
j

, �) � 0. So, particles belonging to the jet are

confined inside a circle around the direction ~̂P
c

. Similarly, one can prove that a particle not belonging

to the jet is located outside this circle. 4 Therefore, we have proved that the J
ET jet has a nice

circular shape in Cartesian coordinates. For a central jet with P̂ z

J

= 0, we have the jet geometric

center matching the direction of the jet momentum. For a forward jet, on the other hand, the jet

geometric center is more central compared to the jet momentum and hence stays farther away from

the beam direction. This is because for particles that contribute the same amount of E
T

to the jet,

3
This is in contrast to traditional jets that are circular on the (⌘,�) plane.

4
The corresponding expression can be obtained by changing � to  and rj ! �rj in Eq. (6).
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particles belong to the jet is within a cone from the 
center
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Still a cone jet
★ For a general    , the boundary is ↵
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4

particles belong to the jet is within a cone from the 
center

★ The beam direction always stays away from the jet and 
does not need any special treatment
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Cone identification

once N > O(100). Fortunately, the subset of particles maximizing the J
ET function has been proved

to be geometrically separated from the rest of the particles by a cone. This fact allows dramatic

simplifications for implementing our J
ET jet algorithm. Instead of testing all possible combinations

of the particles in an event, we only need to check those subsets that are enclosed in a cone. Thus we

change the problem of finding all possible subsets to identifying all cones that contain distinct sets of

particles. As we will show later in this section, we only need to consider cones uniquely determined

by three particles on the boundary. It requires O �
N3

�
operations to determine all possible cones, and

for each cone, we also need to check whether an individual particle is inside or outside the cone. So,

in total we anticipate O �
N4

�
operations. In the previous section, we have shown that there exists a

fiducial region for each particle. Therefore we do not need to check cones outside the fiducial region.

The number of particles in the fiducial region, denoted by n, depends on the value of �. Then the

actual number of operations is O �
Nn3

�
. The number n could be smaller than N by one order of

magnitude or more, which dramatically reduces the time needed by the algorithm. After calculating

all J
ET values for all cones, one chooses the one with the largest J

ET as one of the final jets. As

a comparison, the number of operations needed in the k
t

or anti-k
t

algorithm is O(N log N) [12].

Although our algorithm is substantially slower, it is still manageable, even for a single CPU with

thousands of particles in an event with � = 6. Our current code 5 finds jets in an event containing

1000 particles with � = 6 in a half second, based on a 2.6 GHz MacBook Pro.

(I)

P

(II)

PQ

(III)

PQ
R

Figure 1: Specific procedure to reduce an arbitrary cone containing a subset of particles to a cone
with three particles of the subset on the boundary. The blue spheres are particles inside the cone, and
red squares are particles outside the cone.

Before we end this section, we turn to prove that we only need to consider cones determined by

three particles on the boundary. We need to show that for an arbitrary cone containing a set of

particles inside, there exists another cone with three (or two) particles sitting on the boundary which

contains the same set of particles (except for particles sitting on the boundary, which could be either

5https://github.com/LHCJet/JET.
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Cone identification

once N > O(100). Fortunately, the subset of particles maximizing the J
ET function has been proved

to be geometrically separated from the rest of the particles by a cone. This fact allows dramatic

simplifications for implementing our J
ET jet algorithm. Instead of testing all possible combinations

of the particles in an event, we only need to check those subsets that are enclosed in a cone. Thus we

change the problem of finding all possible subsets to identifying all cones that contain distinct sets of

particles. As we will show later in this section, we only need to consider cones uniquely determined

by three particles on the boundary. It requires O �
N3

�
operations to determine all possible cones, and

for each cone, we also need to check whether an individual particle is inside or outside the cone. So,

in total we anticipate O �
N4

�
operations. In the previous section, we have shown that there exists a

fiducial region for each particle. Therefore we do not need to check cones outside the fiducial region.

The number of particles in the fiducial region, denoted by n, depends on the value of �. Then the

actual number of operations is O �
Nn3

�
. The number n could be smaller than N by one order of

magnitude or more, which dramatically reduces the time needed by the algorithm. After calculating

all J
ET values for all cones, one chooses the one with the largest J

ET as one of the final jets. As

a comparison, the number of operations needed in the k
t

or anti-k
t

algorithm is O(N log N) [12].

Although our algorithm is substantially slower, it is still manageable, even for a single CPU with

thousands of particles in an event with � = 6. Our current code 5 finds jets in an event containing

1000 particles with � = 6 in a half second, based on a 2.6 GHz MacBook Pro.
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Figure 1: Specific procedure to reduce an arbitrary cone containing a subset of particles to a cone
with three particles of the subset on the boundary. The blue spheres are particles inside the cone, and
red squares are particles outside the cone.

Before we end this section, we turn to prove that we only need to consider cones determined by

three particles on the boundary. We need to show that for an arbitrary cone containing a set of

particles inside, there exists another cone with three (or two) particles sitting on the boundary which

contains the same set of particles (except for particles sitting on the boundary, which could be either

5https://github.com/LHCJet/JET.
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Alternative boundaries

inside or outside the original circle). This can be done by moving and deforming the original cones,

as illustrated in Fig. 1, which include the cases with three particles on the boundary. We consider

a small patch in the Cartesian coordinate, and cones are represented by circles. Starting from (I) in

Fig. 1, the dashed circle is the starting cone as defined in Eq. (6). The first step is to shrink the cone

with the center fixed until we cross the first particle “P”. (II) Move the center of the cone towards

P. In the meanwhile, shrink the cone size by keeping P on the boundary until the cone crosses the

second point “Q”. (III) Move the center on the bisector of P and Q towards their midpoint, and at

the same time reduce the cone size to keep P and Q on the boundary, until the cone crosses the third

point “R”. In Fig. 2, we show all alternative scenarios that require additional care. As shown in (a),

(a)

PQ

R' (b)

P

Q
(c)

P

Figure 2: All alternative scenarios require special cares. Scenario (a): instead of crossing point “R”
from the insider, the cone might cross point “R0” from the outside first. Scenario (b): the center of the
cone reaches the midpoint of “P” and “Q” without changing the particle content in the cone. Scenario
(c): a single particle cone.

in step (III), one may encounter a particle outside the original circle, denoted “R0”, before reaching

the particle R. In (b), it happens that the circle becomes so small that the segment PQ becomes a

diameter of the circle. Then one can not further reduce the cone size to reach the third particle. In

the extreme case, one could have just a singe particle sitting inside a cone as depicted in (c).

In practice our code simply finds all cones defined by three/two/one particles, and calculates the

J
ET function of the subset of particles that the cone encloses. Particles on the boundary require special

care, since they may or may not belong to the subset. After that, one finds the global maximum of all

subset J
ET values to determine a jet. We then remove particles associated with this jet and update

all a↵ected cones due to the removal. We then choose the cone with the next largest J
ET and so on,

until all particles are exhausted.

7
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Numerical implementation

★ In general, we need to check all       possible subsets of 
particles for a general function, which is not possible 

2N

★ Knowing the geometrical shape of jets, one only need 
to check all possible cones and choose the one 
maximizing the jet function — “global”

★ For each particle, one can also determine its fiducial 
region such that one only needs to check “n << N” 
nearby particles as a neighbor 

★ For each particle, the physically distinct cones is               
, the total operation time is 

O(n3)

O(N n3)

https://github.com/LHCJet/JET
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Comparison: shape
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Figure 5: Left panel: an example of parton-level events with many random soft “ghosts”, grouped
using J

ET jet algorithm with � = 1.4. Right panel: the same as the left panel, but using the anti-k
t

algorithm with R = 1.0.

Figure 6: The normalized event distribution in terms of the back-reaction momentum �p(b)
t

. It is
calculated for dijet events in which the two hardest jets have p

T

> 1 TeV and |y| < 3.

of �p(b)
t

. This suggests that the J
ET algorithm may have some advantage over the J

E

2
T

algorithm in

a busy hadron collider environment.

So far, we have seen several similarities between the J
ET and the anti-k

t

algorithms. Due to its

global feature, the J
ET algorithm also has di↵erence from the anti-k

t

algorithm. As an example, we

consider boosted hadronically decaying W bosons. After matching the jet cone size using QCD jets

10

JET with � = 1.4 anti-kT with R = 1.0
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Comparison: size

For � = 6, one has R = 0.43, which is used in Fig. 3 and later plots. To further demonstrate the

goodness of this mapping, we show the leading jet p
T

distributions for QCD dijet events in Fig. 4 for

J
ET with � = 6 and anti-k

t

with di↵erent values of R. To generate this plot, we have imposed cuts

p
T

> 250 GeV and |⌘| < 5 on the parton-level events. We see J
ET jets with � = 6 match precisely to

anti-k
t

jets with R = 0.43, and the match is better than other R choices.
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anti-kt (R = 0.33)

Figure 4: The leading jet p
T

distributions for QCD dijet events. Cuts of p
T

> 250 GeV and |⌘| < 5
have been imposed on the parton-level events.

We then study the sensitivity of J
ET to soft contaminations such as those from underlying events

and pileup, following the discussion in Ref. [8]. We take a parton-level event with O(103) random

soft “ghost” particles with p
T

= 1 MeV and then show in Fig. 5 the energy deposition lego plot for

the active catchment areas [16] of the resulting hard jets. Similar to the shapes of anti-k
t

jets, we

have a regular and circular jet shape for the J
ET jets. Quantitively, one can use the so-called “back-

reaction” [16] to quantify the modification to the hard scattering event from soft events. Specifically,

one defines �p(b)
t

as the change to the summed transverse momentum of particles belonging to the

hard process after including soft events. In Fig. 6, we show the normalized distributions of the back-

reaction �p(b)
t

for di↵erent jet-finding algorithms. One can clearly see that the distribution from our

J
ET algorithm is very close to the one from the anti-k

t

algorithm, both of which have a much narrower

shape than the one from the k
t

algorithm. In Fig. 6, we have also included the distribution from

an alternative definition of the jet function (see the definition in Appendix A) which we call the J
E

2
T

algorithm. Although the distribution from the J
E

2
T

is also narrow, it is biased towards a negative value

9

match anti-kt results very well for a QCD jet
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Comparison: back-reaction

again, similar to the anti-kt results
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Figure 5: Left panel: an example of parton-level events with many random soft “ghosts”, grouped
using J

ET jet algorithm with � = 1.4. Right panel: the same as the left panel, but using the anti-k
t

algorithm with R = 1.0.
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Figure 6: The normalized event distribution in terms of the back-reaction momentum �p(b)
t

. It is
calculated for dijet events in which the two hardest jets have p

T

> 1 TeV and |y| < 3.

of �p(b)
t

. This suggests that the J
ET algorithm may have some advantage over the J

E

2
T

algorithm in

a busy hadron collider environment.

So far, we have seen several similarities between the J
ET and the anti-k

t

algorithms. Due to its

global feature, the J
ET algorithm also has di↵erence from the anti-k

t

algorithm. As an example, we

consider boosted hadronically decaying W bosons. After matching the jet cone size using QCD jets

10
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Comparison: dijet Z’ mass

again, similar to the anti-kt results

4 Physics Examples and Comparison to the anti-kt Jet

To demonstrate that we can use our J
ET algorithm to precisely reconstruct the jet momentum cor-

responding to a hard parton, we consider a narrow Z 0 resonance that decays to two jets. All our

simulations are based on the 13 TeV LHC. We use MadGraph [15] to generate the parton-level dijet

events from U(1)
B�L

Z 0 decays. We will compare with the anti-k
t

jet finding algorithm, which also

gives us circular jets with the cone size determined by a parameter R. In Fig. 3, we show the re-

constructed invariant mass distributions of the two leading jets for both the J
ET and the anti-k

t

jet

algorithms. For the examples in this section, we have rendered all particles massless by fixing the

three-momentum of each particle and scaling its energy to match the momentum. As can be seen

from Fig. 3, both the J
ET and the anti-k

t

jet algorithms give us a good reconstruction of the dijet Z 0

peak. The di↵erence between the two algorithms for this distribution is barely visible.
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Figure 3: The invariant mass distribution for the two leading jets after the J
ET and the anti-k

t

algorithms. At parton level, a narrow U(1)
B�L

Z 0 has been simulated with M
Z

0 = 2 TeV and
�
Z

0 = 18 GeV.

In the above discussion, we have matched the parameters � of J
ET and R of anti-k

t

such that they

give the same cone size in the central region. For central jets, the di↵erence between the ✓ angle used

in J
ET and the rapidity y used in anti-k

t

becomes small. Therefore, we can use the bound on z
c

in

Eq. (8) and obtain the following simple approximate relation,

R ⇡ �1

2
log

✓
1 � 1/

p
�

1 + 1/
p

�

◆
. (11)

8
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A naive comparison for W-jet

by setting � = 6 for J
ET and R = 0.43 for anti-k

t

, in Fig. 7 we show the jet mass distribution for

the leading two jets, for boosted W boson pairs with a parton level cut of p
T

(W ) > 250 GeV. We

have plotted the distributions both with and without pile-up (PU) events (25 minimum bias events

generated with PYTHIA6 [17]). From Fig. 7, we see either with or without pile-up events, the J
ET

0 20 40 60 80 100
Jet Mass (GeV)

0

500

1000

1500

2000

2500

3000
MW

JET (� = 6)

anti-kt (R = 0.43)

JET (� = 6) with PU

anti-kt (R = 0.43) with PU

Figure 7: The event distributions in terms of jet masses for the two leading jets from pp ! W+W�

with p
T

(W ) > 250 GeV for di↵erent jet algorithms. Solid (dashed) lines are events with (without)
pile up events. The W mass peaks are obtained when both partons from the W decay are clustered in
a single jet, while the lower peaks correspond to the case when only one hard parton is reconstructed
as a single jet.

algorithm gives us a higher W mass peak than anti-k
t

, indicating the former is more e�cient for

reconstructing boosted massive particles.

A simple way to understand the di↵erence in Fig. 7 is to consider the two partons from the decay of a

W -boson moving in the purely central direction with p
T

= |~p
W

|. The transverse energy is E = E
T

=q
p2
T

+ M2
W

and the individual massless patrons have four-momenta as p1,2 = E

2 (1, sin ✓, 0, ± cos ✓)

with tan ✓ = p
T

/M
W

. For the J
ET jet, the condition to have J

ET (pµ
W

) > max[J
ET (pµ1 ), J

ET (pµ2 )] is

tan ✓ > 3.2 or p
T

> 261 GeV for � = 6. For the anti-k
T

jet, we can perform a similar calculation and

obtain the condition of tan ✓ > 4.6 or p
T

> 371 GeV for R = 0.43, which requires a more boosted

W to include both partons from the W decay. Intuitively, this e↵ect can be understood as follows:

for two hard particles of similar p
T

’s that are separated by a distance just above R, a cone with a

radius R and the axis sitting in between the two particles should have no problem clustering the two

11

pT (W ) > 250 GeV

our jet-finding algorithm is designed for QCD jets so far



30

Design a W-jet-finding function

• A boosted W-jet contains 
a two-prong structure

• Need to incorporate a jet 
shape in the function

• The existing part of         
may be kept 

JET
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Design a W-jet-finding function

• The new function need to prefer two-prong 

JW
ET

(Pµ
J ) = E↵

T


1� �

m2

E2
T

+ �H2,J

�
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Design a W-jet-finding function

• The new function need to prefer two-prong 

• try the jet energy correlation functions: 
1 JW

E Definition for a Lepton Collider (C-function, lab frame)

Following the paper in Ref. [?, ?], we introduce the following energy correlation function:

Ha ≡
∑

i ̸=k

|p⃗i||p⃗k|

E2
J

| sinϕik|
a(1− | cosϕik|)

1−a . (1)

It has nice factorization and resumption properties. It is also infrared and collinear (IRC) safe for all

a < 2. As one can see, this function prefers a two-prong structure. For simplicity, we first choose

a = 1 and define the following function:

JW
E (Pµ

J ) = EJ

[

1 − β
m2

J

E2
J

+ γH1,J

]

= EJ

⎡

⎣1 − β
m2

J

E2
J

+ γ
∑

i ̸=k

|p⃗i||p⃗k|

E2
J

| sinϕik|

⎤

⎦ (2)

Let’s try some simple kinematics. For case A with a symmetrical structure, we have

case A : p1 =
EJ

2
(1, 0, sin θA, cos θA) , p2 =

EJ

2
(1, 0,− sin θA, cos θA) , (3)

with θA = 0.1615, EJ = 500 GeV and mJ = MW . The jet function is

JW (A) = 500 − 0.026β + 0.079 γ . (4)

To make sure that the jet function for two jets is larger than the jet function for the individual one,

we need to have −0.026β + 0.079 γ > 0 or γ > 0.326β.

For the case B, we consider an asymmetrical di-jet events

case B : p1 = (490, 0, 0, 490) , p2 = (10, 0, 10 sin θB, 10 cos θB) , (5)

with θB = 1.223, EJ = 500 GeV and mJ = MW . The jet function is

JW (B) = 500 − 0.026β + 0.0184 γ . (6)

To make sure that the jet function for two jets is larger than the jet function for the individual one, we

need to have γ > 1.40β. Combined with the results from the case one, if we choose 1.40 > γ/β > 0.326,

the symmetrical structure is preferred.

For the case C, we consider one jet with two softer jets

case C : p1 = (250, 0, 0, 250) , p2 = 125(1, 0, sin θC , cos θC) p3 = 125(1, 0,− sin θC , cos θC) , (7)

with θC = 0.228, EJ = 500 GeV and mJ = MW . The jet function is

JW (C) = 500− 0.026β + 0.084 γ . (8)

Looks like the event topology for the case C with three-prong is preferred.

1

Banfi, Salam, Zanderighi, 
hep-ph/0407286 

angular exponent �. This function is well-defined in any number of space-time dimensions

as well as for systems that do not have zero total momentum. Note that it is infrared and

collinear (IRC) safe for all � > 0. Moreover, ECF(N,�) goes to zero in all possible soft and

collinear limits of N partons.

As written, Eq. (2.1) is most appropriate for e+e� colliders where energies and angles

are the usual experimental observables. For hadron colliders, it is more natural to define

ECF(N,�) as a transverse momentum correlation function:3

ECF(N,�) =
X

i1<i2<...<iN2J

 

N

Y

a=1

p
T

ia

! 

N�1

Y

b=1

N

Y

c=b+1

R
ibic

!

�

, (2.2)

where R
ij

is the Euclidean distance between i and j in the rapidity-azimuth angle plane,

R2

ij

= (y
i

� y
j

)2 + (�
i

� �
j

)2, with y
i

= 1

2

ln Ei+pzi
Ei�pzi

. In this paper, we will only consider up to

4-point correlation functions:

ECF(0,�) = 1, (2.3)

ECF(1,�) =
X

i2J
p
T

i

, (2.4)

ECF(2,�) =
X

i<j2J
p
T

i

p
T

j

(R
ij

)� , (2.5)

ECF(3,�) =
X

i<j<k2J
p
T

i

p
T

j

p
T

k

(R
ij

R
ik

R
jk

)� , (2.6)

ECF(4,�) =
X

i<j<k<`2J
p
T

i

p
T

j

p
T

k

p
T

`

(R
ij

R
ik

R
i`

R
jk

R
j`

R
k`

)� . (2.7)

If a jet has fewer than N constituents then ECF(N,�) = 0. Note that the computational

cost for ECF(N,�) with k particles scales like kN/N !.

From the ECF(N,�), we would like to define a dimensionless observable that can be

used to determine if a system has N subjets. The key observation is that the (N + 1)-

point correlators go to zero if there are only N particles. More generally, if a system has N

subjets, then ECF(N + 1,�) should be significantly smaller than ECF(N,�). One potentially

interesting ratio is

r
(�)

N

⌘ ECF(N + 1,�)

ECF(N,�)
, (2.8)

which behaves much like N -subjettiness ⌧
N

in that for a system of N partons plus soft

radiation, the observable is linear in the energy of the soft radiation.4 Of course, this is but

one choice for an interesting combination of the energy correlation functions, and one can

imagine using the whole set of energy correlation functions in a multivariate analysis.

3We will continue to use the notation ECF, though we will mainly use the transverse momentum version

in this paper.
4Unlike N -subjettiness, this ratio scales like �1�N� under transverse Lorentz boosts �, which is somewhat

undesirable when considering systems with several subjets.

– 4 –

Larkoski, Salam, Thaler, 
1305.0007
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A working function

• It is Lorentz invariant except the overall factor

• It becomes transparent in the jet rest frame

• One can easily show that this function reaches 
its maximum for a two-prong structure

H2,J =

0

@
X

i,k

|~pi||~pk|
E2

T

cos

2 'ik

1

A

rest

=

0

@
X

i,k

(~pi · ~pk)2

E2
T |~pi||~pk|

1

A

rest

H2,J ⌘ H2,J

E2
T

=
1

E2
T

X

i,k

⇥
m2

J pi · pk � (PJ · pi)(PJ · pk)
⇤2

m2
J(PJ · pi)(PJ · pk)
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A working function

• It is Lorentz invariant except the overall factor

• It becomes transparent in the jet rest frame

• One can easily show that this function reaches 
its maximum for a two-prong structure

• The function in rest frame is the Fox-Wolfram 
moment, introduced as an event shape at lepton 
colliders

H2,J =

0

@
X

i,k

|~pi||~pk|
E2

T

cos

2 'ik

1

A

rest

=

0

@
X

i,k

(~pi · ~pk)2

E2
T |~pi||~pk|

1

A

rest

H2,J ⌘ H2,J

E2
T

=
1

E2
T

X

i,k

⇥
m2

J pi · pk � (PJ · pi)(PJ · pk)
⇤2

m2
J(PJ · pi)(PJ · pk)
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Double-cone shape

in the rest frame
in the lab frame

W

W
• a double-cone structure with the subjet size 

determined dynamically

JW
ET

(Pµ
J ) = E↵

T


1� �
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T

+ �H2,J
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Double-cone shape

in the rest frame
in the lab frame

W

W
• a double-cone structure with the subjet size 

determined dynamically

JW
ET

(Pµ
J ) = E↵

T


1� �

m2

E2
T

+ �H2,J

�

•          controls the subjet size and            
controls the fat jet size 
1/
p

� 1/(� � �)
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     resultsJW
E2

T

no pile-up included yet
pruning jet: S. Ellis, Vermilion, Walsh; 0912.0033

14 TeV LHC

WW 

pT (W ) > 200 GeV
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Variables used in CMS

5.2 Comparison of algorithms 9

5.2 Comparison of algorithms

We compare the performance of observables used to identify W jets with the goal of establish-
ing which provides the best signal-to-background discrimination between W jets and QCD jets.
Because the pruned jet mass is the best discriminant, we examine the other variables only for
jets satisfying 60 < mjet < 100 GeV. Observables highly correlated with the pruned jet mass
will therefore show weaker additional improvement in performance.

The figure of merit for comparing different substructure observables is the background rejec-
tion efficiency as a function of signal efficiency (“receiver operating characteristic”, or the ROC
curve). Figure 3 shows the performance of the observables in the W+jet final state for jet pT
250–350 GeV. The pruned jet mass selection is applied in both the numerator and the denomi-
nator of the efficiency, and only the additional discrimination power of the other observables is
therefore shown in the figure. The performance of the t2/t1, pruned t2/t1, exclusive-kT t2/t1,
GQjet, Cb

2 , mass drop, and jet charge are compared. For the jet charge ROC curve, a positively
charged lepton is required in the event selection, and therefore the discrimination power of
negatively charged W jets against QCD jets is compared. We find that the best performant vari-
able is t2/t1 up to an efficiency of 75%. Above an efficiency of 75%, GQjet is the best variable.
The pruned t2/t1 is slightly worse than the default t2/t1. The performance of the t2/t1 with-
out optimization of the axes is worse than the t2/t1 variants with a ”one-pass” optimization.
The worst performing variables are the mass drop, C2(b = 1.7), and the jet charge. We also
find that the discrimination power between W+ jets and W� jets varies by less than 10% for
values of the k parameter in Eq. 4 between 0.3 and 1.0.

sigε
0 0.2 0.4 0.6 0.8 1

bk
g

ε
1 

- 

0

0.2

0.4

0.6

0.8

1

CA R = 0.8
 < 350 GeV

T
250 < p

| < 2.4η|
 < 100 GeVjetm60 < 

W+jet

MLP neural network
Naive Bayes classifier

1τ/2τ
QjetΓ

 pruned1τ/2τ
 no axes optimization1τ/2τ
=1.7)β (2C

Mass drop
+ = 1.0) WκJet charge (

8 TeV

CMS
Simulation

Figure 3: Performance of several discriminants in the background-signal efficiency plane in the
low jet pT bin of 250–350 GeV in the W+jet topology. The efficiencies and mistagging rates of
the various discriminants are estimated on samples of W jets and QCD jets that satisfy a pruned
jet mass selection of 60 < mjet < 100 GeV.

In addition to the performance of individual variables, we study how their combination can
improve the separation between W and QCD jets. A multivariate optimization is performed
using the TMVA package [58]. A combination of observables is considered in a naive Bayes
classifier and in a Multilayer Perceptron (MLP) neural network discriminant. Additional ob-
servables with respect to those shown in Fig. 3 are used in an attempt to increase the discrim-
ination power. The variables used in both discriminants are the mass drop, GQjet, t2/t1, Cb

2 ,

CMS; 1410.4227 

N-subjettiness: Thaler and Tilburg; 1011.2268
Q-jets: Ellis, Hornig, Roy, Krohn, Schwartz; 1201.1914 
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Performance w. Jet-sub. Variables
preliminary

A better jet-finding algorithm makes some improvement
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Byproduct: A New Event Shape Variable

preliminary
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Conclusions
★ A global jet-finding algorithm for maximizing a jet 

function works for a QCD jet

★ Our preliminary results show that our W-jet 
function can tag a W-jet very well

★ We are finalizing the numerical code with a trade-off 
between finding a global maximum and running speed

★ Other jet functions to tag top quark, black-hole multi-
jets and new conformal gauge sector signatures are 
also interesting to explore
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Thanks
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Real proof for a cone jet

★ Check the angular distance of a soft particle from the 
jet momentum

  

The Real Proof
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The Real Proof

● Opening angle 

● Particle   belonging to the jet:

● Particle   not belonging to the jet:   

● “VERY IR safe”
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Real proof for a cone jet

★ For a soft particle    belongs to the jet: j

  

The Real Proof

● Opening angle 

● Particle   belonging to the jet:
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★ For a soft particle    not belongs to the jet: k

  

The Real Proof

● Opening angle 

● Particle   belonging to the jet:

● Particle   not belonging to the jet:   

● “VERY IR safe”
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★ Soft particles are on the boundary; very IR safe

★ So, a cone-like boundary for individual jets


