A

Global Jet Finding Algorithm

Yang Bai
University of Wisconsin-Madison
MC4BSM Workshop@LPC
May 20, 2015

In collaboration with:

Zhenyu Han

Ran Lu

University of Oregon
Univ. of Wisconsin-Madison

arxiv: I4 I I. 3705 and work in progress

Outline

- Motivation: physics beyond the Standard Model
- Review of jet finding algorithms
- Introduction of a global definition
- Application to QCD-like jets
- Extension to boosted two-prong jets
- Conclusion

What is a jet?

An ensemble of particles in detectors can be called a jet

Jet-finding algorithm: how to group particles together?

Jets in BSM

- Mono-jet plus MET events as the dark matter signature

- Multi-jets plus MET for RPC SUSY or without MET for RPV SUSY

Fat-jet object

Search for a few TeV resonance decaying into $\mathrm{t}, \mathrm{W}, \mathrm{Z}, \mathrm{h} \ldots$

- Boosted top quark,W/Z, Higgs

$$
p_{T}(W) \gg M_{W}
$$

Jet substructure

A jet may not be just a parton and it could have an internal structure

Many new objects: (incomplete list)

- ...; Butterworth, Cox, Forshaw,WW scattering, hep-ph/020I098
- Butterworth, Davison, Rubin, Salam, boosted Higgs, 0802.2470
- Thaler and Wang, boosted top, 0806.0023
- Kaplan, Rehermann, Schwartz, Tweedie, boosted top, 0806.0848
- Almeida, Lee, Perez, Sterman, Sung, boosted top, 0807.0234;...

Many new variables or procedures:

- mass drop, N -subjettiness, pull, dipolarity, without trees, ...
- Jet grooming: filtering, trimming, pruning ...

Jet substructure: an example

Boosted Higgs for measuring the $h \rightarrow b \bar{b}$ decay
Two steps:
(I) start from a jet-finding algorithm (C/A) to cover a wider area
(2) mass-drop: (the QCD quark is massless) some subset of particles inside a Higgs-jet can have a much smaller mass.
Filter: (reduce underlying events) introduce a finer angular scale

Our motivation

Can we combine this two-step procedure into a single one?

- Hope: keep more hard process information and less underlying event contamination
- Method: define a new jet-finding algorithm suitable for a boosted heavy object

To proceed, let's start with traditional jet-finding algorithms for QCD jets

A brief review of jet-finding algorithms

\star Cone algorithm

- Started by Sterman and Weinberg in 70's
- CDF SearchCone, Mid point, SISCone ...
- Used at UAI, Tevatron
\star Sequential recombination algorithm
- Started by the JADE collaboration in 80's
- k_{t}, Cambridge/Aachen, anti- k_{t}
- Extensively used at the LHC

Cone algorithm

Iterative process:

- choose particle with highest transverse momentum as the seed particle
- draw a cone of radius R around the seed particle
- sum the momenta of all particles in the cone as the jet axis
- if the jet axis does not agree with the original one, continue; otherwise find a stable cone and stop

Colinear safety?

SISCone

(split-merge)

Anti- k_{t} algorithm

$$
d_{i j}=\min \left(p_{t i}^{-2}, p_{t j}^{-2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}} \quad d_{i B}=p_{t i}^{-2} \quad \Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2}
$$

Iterative process:

- Find the minimum of the $d_{i j}$ and $d_{i B}$
- If it is a $d_{i j}$, recombine i and j into a single new particle, and repeat
- otherwise, if it is a $d_{i B}$, declare ito be a jet, and remove it from the list of particles
- stop when no particles remain

Infrared and collinear safe!

Behaviors of different algorithms

Salam, 0906.I833

Quantify the goodness of algorithms

Back-reaction: how much adding soft background particles changes the original particles in a jet

Can one has a more intuitive way to define a jet-finding algorithm?

events with
N particles

a jet with subset particles

Can one has a more intuitive way to define a jet-finding algorithm?

events with
N particles

a jet with subset particles

Can one has a more intuitive way to define a jet-finding algorithm?

events with
N particles
a jet with subset particles

Look for a simple jet definition function

Start with a QCD jet

\star QCD partons are massless
\star The jet function should

- prefer increasing jet energy
- disfavor increasing jet mass

Start with a QCD jet

QCD partons are massless
\star The jet function should

- prefer increasing jet energy
- disfavor increasing jet mass
\star The simple option at a lepton collider:

$$
\begin{equation*}
J\left(P^{\mu}\right)=E-\beta \frac{m^{2}}{E} \tag{H.Georgi,I408.II6I}
\end{equation*}
$$

Start with a QCD jet

\star QCD partons are massless

* The jet function should
- prefer increasing jet energy
- disfavor increasing jet mass
\star The simple option at a lepton collider:

$$
\begin{equation*}
J\left(P^{\mu}\right)=E-\beta \frac{m^{2}}{E} \tag{H.Georgi,I408.II6I}
\end{equation*}
$$

For N particles and 2^{N} possibilities, find the one maximizing this jet function. One does this iteratively to find all jets in one event.

Special cases

$$
\begin{aligned}
& J\left(P^{\mu}\right)=E-\beta \frac{m^{2}}{E} \\
& \cdot \beta=0: J=E \\
& \text { include all particles in one jet }
\end{aligned}
$$

Special cases

$$
\begin{aligned}
& J\left(P^{\mu}\right)=E-\beta \frac{m^{2}}{E} \\
& \cdot \beta=0: J=E
\end{aligned}
$$

include all particles in one jet

$$
\text { - } \beta=1: J=|\vec{P}|
$$

hemisphere way for two jets

General cases

* A group of particles will have a boost factor from its rest frame and has a jet function bigger than a soft particle

$$
\begin{gathered}
J=\frac{\left(E^{2}-\beta m^{2}\right)}{E}=\left(\gamma^{2}-\beta\right) \frac{m^{2}}{E} \geq 0 \\
\gamma \geq \sqrt{\beta}
\end{gathered}
$$

\star Relativistic beaming effect

\star The particles are inside a jet cone
A larger value of β means a smaller cone size

Extension to hadron colliders

\star The center-of-mass frame is likely to be highly boosted in the beam direction
\star The simplest way to extend the jet definition is

$$
J_{E_{T}}\left(P_{J}^{\mu}\right) \equiv E_{T}-\beta \frac{m^{2}}{E_{T}}
$$

\star One could also try other powers

$$
J_{E_{T}}\left(P_{J}^{\mu}\right) \equiv E_{T}^{\alpha}\left(1-\beta \frac{m^{2}}{E_{T}^{2}}\right)
$$

\star Does this new function has a similar cone geometry?

Try an "easier" function

\star For $\alpha=2$,

$$
J_{E_{T}^{2}}=E_{T}^{2}-\beta m^{2}=E^{2}-P_{z}^{2}-\beta m^{2}
$$

\star Requiring $J_{E_{T}^{2}}\left(P_{J}^{\mu}\right)>J_{E_{T}^{2}}\left(P_{J}^{\mu}-p_{j}^{\mu}\right)$, the boundary satisfies

$$
\frac{1}{|p||P|}\left(P_{x} p_{x}+P_{y} p_{y}+\left(1-\frac{1}{\beta}\right) P_{z} p_{z}\right)=\frac{1}{v}\left(1-\frac{1}{\beta}\right)
$$

Try an "easier" function

\star For $\alpha=2$,

$$
J_{E_{T}^{2}}=E_{T}^{2}-\beta m^{2}=E^{2}-P_{z}^{2}-\beta m^{2}
$$

\star Requiring $J_{E_{T}^{2}}\left(P_{J}^{\mu}\right)>J_{E_{T}^{2}}\left(P_{J}^{\mu}-p_{j}^{\mu}\right)$, the boundary satisfies

$$
\frac{1}{|p \| P|}\left(P_{x} p_{x}+P_{y} p_{y}+\left(1-\frac{1}{\beta}\right) P_{z} p_{z}\right)=\frac{1}{v}\left(1-\frac{1}{\beta}\right)
$$

$$
\left\{\begin{array}{l}
p_{x}^{2}+p_{y}^{2}+p_{z}^{2}=C_{1}(P) \\
\left(p_{x}-P_{x}\right)^{2}+\left(p_{y}-P_{y}\right)^{2}+\left(p_{z}-\left(1-\frac{1}{\beta}\right) P_{z}\right)^{2}=C_{2}(P)
\end{array}\right.
$$

\star Can be interpreted as intersection of two spheres

Still a cone jet

\star For a general α, the boundary is

$$
\frac{1}{|p \| P|}\left(P_{x} p_{x}+P_{y} p_{y}+\kappa P_{z} p_{z}\right)=\frac{\kappa}{v} \quad \kappa=1-\frac{\alpha}{2 \beta}+\frac{\alpha-2}{2} \frac{m^{2}}{E_{T}^{2}}
$$

the center is shifted from the jet momentum towards the central region

$$
\vec{P}_{c}=\frac{1}{\sqrt{1-\left(1-\kappa^{2}\right) \hat{P}_{J}^{z}}}\left(\hat{P}_{J}^{\hat{p}}, \hat{P}_{J}^{y}, \kappa \hat{P}_{J}^{z}\right) \quad \kappa<1
$$

particles belong to the jet is within a cone from the center

$$
z_{c} \geq \frac{\kappa}{v_{J} \sqrt{1-\left(1-\kappa^{2}\right) \cos ^{2} \theta_{J}}}
$$

Still a cone jet

\star For a general α, the boundary is

$$
\frac{1}{|p||P|}\left(P_{x} p_{x}+P_{y} p_{y}+\kappa P_{z} p_{z}\right)=\frac{\kappa}{v} \quad \kappa=1-\frac{\alpha}{2 \beta}+\frac{\alpha-2}{2} \frac{m^{2}}{E_{T}^{2}}
$$

the center is shifted from the jet momentum towards the central region

$$
\overrightarrow{\hat{P}}_{c}=\frac{1}{\sqrt{1-\left(1-\kappa^{2}\right) \hat{P}_{J}^{z}}}\left(\hat{P}_{J}^{\hat{x}}, \hat{P}_{J}^{y}, \kappa \hat{P}_{J J}^{z}\right) \quad \kappa<1
$$

particles belong to the jet is within a cone from the center

$$
z_{c} \geq \frac{\kappa}{v_{J} \sqrt{1-\left(1-\kappa^{2}\right) \cos ^{2} \theta_{J}}}
$$

\star The beam direction always stays away from the jet and does not need any special treatment

Cone identification

physical boundary

Cone identification

physical
boundary
one can use three particles to identify a cone

Alternative boundaries

Numerical implementation

\star In general, we need to check all 2^{N} possible subsets of particles for a general function, which is not possible
\star Knowing the geometrical shape of jets, one only need to check all possible cones and choose the one maximizing the jet function - "global"
\star For each particle, one can also determine its fiducial region such that one only needs to check " $n \ll N$ " nearby particles as a neighbor
\star For each particle, the physically distinct cones is $O\left(n^{3}\right)$, the total operation time is $O\left(N n^{3}\right)$
https://github.com/LHCJet/JET

Comparison: shape

$J_{E_{T}} \quad$ with $\beta=1.4$

anti- $k_{T} \quad$ with $R=1.0$

Comparison: size

match anti-kt results very well for a QCD jet

Comparison: back-reaction

again, similar to the anti-kt results

Comparison: dijet Z' mass

again, similar to the anti-kt results

A naive comparison for W-jet

our jet-finding algorithm is designed for QCD jets so far

Design a W-jet-finding function

- A boosted W-jet contains a two-prong structure
- Need to incorporate a jet shape in the function
- The existing part of $J_{E_{T}}$ may be kept

Design a W-jet-finding function

$$
J_{E_{T}}^{W}\left(P_{J}^{\mu}\right)=E_{T}^{\alpha}\left[1-\beta \frac{m^{2}}{E_{T}^{2}}+\gamma \bar{H}_{2, J}\right]
$$

- The new function need to prefer two-prong

Design a W-jet-finding function

$$
J_{E_{T}}^{W}\left(P_{J}^{\mu}\right)=E_{T}^{\alpha}\left[1-\beta \frac{m^{2}}{E_{T}^{2}}+\gamma \bar{H}_{2, J}\right]
$$

- The new function need to prefer two-prong
- try the jet energy correlation functions:

$$
\sum_{i \neq k} \frac{\left|\vec{p}_{i}\right|\left|\vec{p}_{k}\right|}{E_{J}^{2}}\left|\sin \varphi_{i k}\right|^{a}\left(1-\left|\cos \varphi_{i k}\right|\right)^{1-a}
$$

$$
\operatorname{ECF}(N, \beta)=\sum_{i_{1}<i_{2}<\ldots<i_{N} \in J}\left(\prod_{a=1}^{N} p_{T i_{a}}\right)\left(\prod_{b=1}^{N-1} \prod_{c=b+1}^{N} R_{i_{b} i_{c}}\right)^{\beta} \quad \text { Larkoski, Salam, Thaler, }
$$

A working function

$$
\bar{H}_{2, J} \equiv \frac{H_{2, J}}{E_{T}^{2}}=\frac{1}{E_{T}^{2}} \sum_{i, k} \frac{\left[m_{J}^{2} p_{i} \cdot p_{k}-\left(P_{J} \cdot p_{i}\right)\left(P_{J} \cdot p_{k}\right)\right]^{2}}{m_{J}^{2}\left(P_{J} \cdot p_{i}\right)\left(P_{J} \cdot p_{k}\right)}
$$

- It is Lorentz invariant except the overall factor
- It becomes transparent in the jet rest frame

$$
\bar{H}_{2, J}=\left(\sum_{i, k} \frac{\left|\vec{p}_{i}\right|\left|\vec{p}_{k}\right|}{E_{T}^{2}} \cos ^{2} \varphi_{i k}\right)_{\text {rest }}=\left(\sum_{i, k} \frac{\left(\vec{p}_{p} \cdot \vec{p}_{k}\right)^{2}}{E_{T}^{2}\left|\overrightarrow{p_{i}}\right|\left|\vec{p}_{k}\right|}\right)_{\text {rest }}
$$

- One can easily show that this function reaches its maximum for a two-prong structure

A working function

$$
\bar{H}_{2, J} \equiv \frac{H_{2, J}}{E_{T}^{2}}=\frac{1}{E_{T}^{2}} \sum_{i, k} \frac{\left[m_{J}^{2} p_{i} \cdot p_{k}-\left(P_{J} \cdot p_{i}\right)\left(P_{J} \cdot p_{k}\right)\right]^{2}}{m_{J}^{2}\left(P_{J} \cdot p_{i}\right)\left(P_{J} \cdot p_{k}\right)}
$$

- It is Lorentz invariant except the overall factor
- It becomes transparent in the jet rest frame

$$
\bar{H}_{2, J}=\left(\sum_{i, k} \frac{\left|\vec{p}_{i}\right|\left|\vec{p}_{k}\right|}{E_{T}^{2}} \cos ^{2} \varphi_{i k}\right)_{\text {rest }}=\left(\sum_{i, k} \frac{\left(\vec{p}_{i} \cdot \vec{p}_{k}\right)^{2}}{E_{T}^{2}\left|\overrightarrow{p_{i}}\right|\left|\vec{p}_{k}\right|}\right)_{\text {rest }}
$$

- One can easily show that this function reaches its maximum for a two-prong structure
- The function in rest frame is the Fox-Wolfram moment, introduced as an event shape at lepton colliders

Double-cone shape

$$
J_{E_{T}}^{W}\left(P_{J}^{\mu}\right)=E_{T}^{\alpha}\left[1-\beta \frac{m^{2}}{E_{T}^{2}}+\gamma \bar{H}_{2, J}\right]
$$

in the rest frame

in the lab frame

- a double-cone structure with the subjet size determined dynamically

Double-cone shape

$$
J_{E_{T}}^{W}\left(P_{J}^{\mu}\right)=E_{T}^{\alpha}\left[1-\beta \frac{m^{2}}{E_{T}^{2}}+\gamma \bar{H}_{2, J}\right]
$$

in the rest frame

in the lab frame

- a double-cone structure with the subjet size determined dynamically
- $1 / \sqrt{\beta}$ controls the subjet size and $1 /(\beta-\gamma)$ controls the fat jet size

$J_{E_{T}^{2}}^{W}$ results

pruning jet: S. Ellis, Vermilion,Walsh; 09|2.0033
no pile-up included yet

Variables used in CMS

CMS; I4I0.4227

N-subjettiness:Thaler and Tilburg; IO | I. 2268
Q-jets: Ellis, Hornig, Roy, Krohn, Schwartz; I201.I914

Performance w. Jet-sub. Variables

A better jet-finding algorithm makes some improvement

Byproduct: A New Event Shape Variable

Conclusions

* A global jet-finding algorithm for maximizing a jet function works for a QCD jet
* Our preliminary results show that our W-jet function can tag a W-jet very well
\star We are finalizing the numerical code with a trade-off between finding a global maximum and running speed
\star Other jet functions to tag top quark, black-hole multijets and new conformal gauge sector signatures are also interesting to explore

Thanks

Real proof for a cone jet

\star Check the angular distance of a soft particle from the jet momentum

$$
z=\cos \theta=\frac{p_{x} P_{x}+p_{y} P_{y}+p_{z} P_{z}}{|p||P|}
$$

\star For a soft particle j belongs to the jet:

$$
\begin{aligned}
& J(P)>J\left(P-p_{j}\right) \\
& 1-\beta\left(1-v_{\alpha}^{2}\right)>1-r_{j}-\beta \frac{1-v_{\alpha}^{2}-2 r_{j}\left(1-z v_{\alpha}\right)}{1-r_{j}} \\
& z>\frac{\beta\left(1+v_{\alpha}^{2}\right)-\left(1-r_{j}\right)}{2 \beta v_{\alpha}}>\frac{\beta\left(1+v_{\alpha}^{2}\right)-1}{2 \beta v_{\alpha}}=\frac{1}{v_{\alpha}}\left(1-\frac{1}{2 \beta}\left(1+\beta \frac{m^{2}}{E^{2}}\right)\right)
\end{aligned}
$$

Real proof for a cone jet

\star For a soft particle j belongs to the jet:

$$
z>\frac{\beta\left(1+v_{\alpha}^{2}\right)-\left(1-r_{j}\right)}{2 \beta v_{\alpha}}>\frac{\beta\left(1+v_{\alpha}^{2}\right)-1}{2 \beta v_{\alpha}}=\frac{1}{v_{\alpha}}\left(1-\frac{1}{2 \beta}\left(1+\beta \frac{m^{2}}{E^{2}}\right)\right)
$$

\star For a soft particle k not belongs to the jet:

$$
z<\frac{\beta\left(1+v_{\alpha}^{2}\right)-\left(1+r_{k}\right)}{2 \beta v_{\alpha}}<\frac{\beta\left(1+v_{\alpha}^{2}\right)-1}{2 \beta v_{\alpha}}=\frac{1}{v_{\alpha}}\left(1-\frac{1}{2 \beta}\left(1+\beta \frac{m^{2}}{E^{2}}\right)\right)
$$

\star So, a cone-like boundary for individual jets
\star Soft particles are on the boundary; very IR safe

