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Factorization of gauge-theory amplitudes

J A remarkable property of scattering amplitudes in gauge theory is factorization

H Regge factorization

H Collinear factorization

H soft factorization

J Many of our understanding of QCD rely on these factorization properties

H Evolution of parton distribution function at small and large x

H Resummation of various event shape and jet structures

H Building block for calculation in fixed order perturbation theory
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Single soft-gluon factorization

J QCD amplitudes in the single soft gluon limit factorize Berends, Giele, 89; Bern, Del Duca, Kilgore,

Schmidt, 99; Catani Grazzini, 00; Feige, Schwartz, 14

= Σi 6=j ⊗

+Σi 6=j ⊗

i

j

i

j

〈a|M(q, p1, . . . , pm)〉 ' εµ(q)Jaµ(q, ε)|M(p1, . . . , pm)〉

J Jaµ(q, ε) is called the one-gluon soft current

Jaµ(q, ε) = gSµ
ε[Ja(0)µ (q) + g2SJ

a(1)
µ (q, ε) + g4SJ

a(2)
µ (q, ε) + . . . ]
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Why study one-gluon soft current at two loops?

J Useful approximation of complicated loop amplitudes

J Essential ingredient of soft function calculation in SCET. Example: threshold soft

function Higgs production at N3LO.
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Why study one-gluon soft current at two loops?

J Useful approximation of complicated loop amplitudes

J Essential ingredient of soft function calculation in SCET. Example: threshold soft

function Higgs production at N3LO.

H

J Contribute to evolution kernel of non-global logarithms (BMS equation) at

NNLO Caron-Huot, 15; Larkoski, Moult, Neill, 15
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Some history

J Tree-level one-gluon soft current well-knwon,

Jµ(0)(q) =

n∑
i=1

T ai
pµi
pi·q

(T ai )αβ = (ta)αβ final-state quark

(T ai )αβ = (−ta)βα final-state anti-quark

(T ai )bc = −ifabc gluon

J Beyond tree level there are two methods to compute the soft current
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pµi
pi·q

(T ai )αβ = (ta)αβ final-state quark

(T ai )αβ = (−ta)βα final-state anti-quark

(T ai )bc = −ifabc gluon

J Beyond tree level there are two methods to compute the soft current

J Extraction from full theory amplitudes

H One loop massless Bern, Del Duca, Kilgore, Schmidt, 99

H Two loops massless large Nc Badger, Glover, 04; Duhr, Gehrmann, 13

J Direct calculation using Wilson lines

H One loop massless Catani, Grazzini, 00 , One loop massive Bierenbaum, Czakon, Mitov, 11

H Two loops massless large Nc Y. Li, HXZ, 13
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Type 3 RPI; gauge invariance; maximally non-Abelian

J The soft current are manifestly invariant under type 3 reparametrization (rescaling

invariance):

pµ

p·q ⇒ invariant under pµi → (1 + α)pµi

J Gauge invariance

qµJ
µ
a = 0

J Soft current non-vanishing only when it’s maximally non-Abelian. It is a variant

of non-Abelian exponentionation theorem Gatheral, 83; Frenkel, Taylor 84; Gardi, Smillie, White, 13

J The soft current calculates automatically the amplitude in the exponent
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Diagrams contributed to soft current at two loops

J One-loop diagrams: only dipole contribution

= + . . .

J Two-loop diagrams: both dipole and tripole contributions

= + . . . = + . . .
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Two-loops diagrams for dipole correlation

J Diagrams categorized according to the number of insertion on the Wilson lines

J Diagrams with four insertions on the Wilson lines are not color connected .
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Simplifying the color structure

+

+=

+=

T aT b = T bT a + ifabcT c

+

+= +
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Simplifying the color structure

k1
k2

k2
k1

pi pi

+

pj pj

1

[k1·pi] [(k1 + k2)·pi]
+

1

[k2·pi] [(k1 + k2)·pi]
=

1

[k1·pi] [k2·pi]∫
d4−2εk1

1
[k21] [k1·pi] [(−k1−k2+q)·pj]

= 0 because it depends only on (−k2 + q) ·pj
and pi·pj. Violate type 3 RPI.

J Only the color connected part survives
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Two-loop dipole correlation

J Two color structure from two-loop calculation for the dipole-like diagrams

J
µ(2)
a,ij =

(
pµi
pi·q
−

pµj
pj ·q

)(
sij
siqsjq

)2ε

e−2iπε(λij−λiq−λjq)

×
(
ifabcT

b
i T

c
j B1,ij(ε) + facefbdeT

b
[i,T

cd
j] B2,ij(ε)

)
T cd = T cT d

skl = 2|pk ·pl| λkl = 1 if both k, l are incoming or outgoing, otherwise 0

J Violation of “strict” collinear factorization made manifest
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Strict collinear factorization violation

J “strict” collnear factorization: collinear singular factor only depends on the

momenta and quantum number of the collinear partons

J Such “strict” collinear factorization is violated due to soft gluon effects Catani, de

Florian, Rodrigo, 11



Strict collinear factorization violation

J “strict” collnear factorization: collinear singular factor only depends on the

momenta and quantum number of the collinear partons

J Such “strict” collinear factorization is violated due to soft gluon effects Catani, de

Florian, Rodrigo, 11

J “Strict” collinear factorization violation is also transparent from one-gluon soft

current

lim
pi‖q

J
µ(2)
a,ij =

(
pµi
pi·q
−

�
�
�
�
�
�S

S
S
S
S
S

pµj
pj ·q

)(
sij
siqsjq

)2ε

e−2iπε(λij−λiq−λjq)
sij
sjq

=
1

w

×
(
ifabcT

b
i T

c
jB1,ij(ε) + facefbdeT

b
[i,T

cd
j] B2,ij(ε)

)
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Tripole correlated soft-current

+ permutation

pi

pj

pk

q

J
µ(2)
a,ijk =

∑
i 6=j 6=k

(
pµi
pi·q

C1(u, v) +
pµj
pj ·q

C2(u, v) +
pµk
pk ·q

C3(u, v)

)
× fabefcdeT bi T cj T dk

J Depends on dimensionless conformal cross ratio (consider Euclidean region only)

u =
siksjq
sijskq

v =
sjksiq
sijskq
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Kinematics of tripole correlation

J u and v are not free variables. Constrained by the equation

1− 2u− 2v + (u− v)2 < 0

J pi, pj, pk, q are lightlike momenta. Can be identified as points on two-sphere.

pµ = (1, sin θ sinφ, sin θ cosφ, cos θ)

J Stereographic projection help simplify the constraints

z = sin θ
1+cos θe

iφ
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Kinematics of tripole correlation

J Under the stereographic projection, the conformal cross ratios become

u =
|zi − zk|2|zj − zq|2
|zi − zj|2|zk − zq|2

v =
|zj − zk|2|zi − zq|2
|zi − zj|2|zk − zq|2
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Kinematics of tripole correlation

J Under the stereographic projection, the conformal cross ratios become

u =
|zi − zk|2|zj − zq|2
|zi − zj|2|zk − zq|2

v =
|zj − zk|2|zi − zq|2
|zi − zj|2|zk − zq|2

J u, v are invariant under SL(2, C) on the complex plane. Can map zi, zj, zk to

0, 1,∞. Let z = zq,

u = (1− z)(1− z∗) v = zz∗

J Besides being constraint-free variables, z, z∗ also simplify the calculation of

integrals

J Square root function appear in the integral calculation with u, v variables, becomes

rational function in z, z∗ parametrization√
1− 2u− 2v + (u− v)2 = z − z∗
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Integrals for tripole correlation

J The integrals are functions of external variables, z and z∗

J The method of differential equation is very suitable for calculating Feynman

integrals with multiple scales Kotikov, 91; Remiddi, 97; Gehrmann, Remiddi, 99
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J The method of differential equation is very suitable for calculating Feynman

integrals with multiple scales Kotikov, 91; Remiddi, 97; Gehrmann, Remiddi, 99

J Can cast the resulting system of differential equation into canonical form Henn, 13

d~f(z, z∗, ε) = ε
(∑

m

Amd lnαm(z, z
∗)
)
~f(z, z∗, ε)

J Am are constant matrices, independent of ε

J Alphabet of the differential equation αm(z, z
∗) ∈ {z, z∗, 1− z, 1− z∗, z − z∗}

J Expand the integrals in ε, ~f(z, z∗, ε) = f0(z, z
∗) + εf1(z, z

∗) + ε2f2(z, z
∗) + . . . ,

the differential can be solved immediately by integrating the right-hand-side, up

to some boundary constants
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Integrals for tripole correlation

J All the integrals can be expressed through multiple polylogarithm

G( w1 , . . . , wn;x) =

∫ x

0

dt

t− w1

G(w2, . . . , wn; t)
G(;x) = 1

G(0, . . . , 0︸ ︷︷ ︸
n

;x) = 1
n! ln

n x

J At each order in ε, the master integrals are multiple polylogarithms of uniform

weight
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∫ x

0

dt

t− w1

G(w2, . . . , wn; t)
G(;x) = 1

G(0, . . . , 0︸ ︷︷ ︸
n

;x) = 1
n! ln

n x

J At each order in ε, the master integrals are multiple polylogarithms of uniform

weight

J In Euclidean region, all the master integrals are real without branch cut. They

form a special class of multiple polylogarithms called single-valued multiple

polylogarithms. A famous example is Bloch-Wigner function

D(z) := Im(Li2(z)) + arg(1− z) ln(z)

J Very similar function appear in other context: three-mass triangle integral Chavez,

Duhr, 12 ; Four-point off-shell conformal integral Drummond, Duhr, Eden, Heslop, Pennington, Smirnov, 13
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Summary

J Gauge theory amplitudes factorized in the limit of single soft-gluon emission

J The one-gluon soft-current appears as building block in many places, including

fixed order, resummation, and evolution kernel calculation

J Two-loop one-gluon soft-current is computed with full color dependence

J Nontrivial structure for tripole correlation already appears at two loops
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Thank you for listening!
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