Resummation of double-differential cross sections

based on M. Procura, W. J. Waalewijn and L. Z., JHEP 1502 (2015) 117

Lisa Zeune University of Amsterdam

SCET 2015

Santa Fe, 26th March 2015

Universiteit van Amsterdam

Motivation

Why shall we study multi-differential cross sections?

- LHC analyses often involve several measurements/cuts → See talks by Andrew
- Correlations between different observables encoded in multi-differential cross sections

See talks by Andrew
 Larkoski (SCET 2014),
 Ian Moult and Piotr
 Pietrulewicz (both today)

Example:

 $Z\,+\,0$ jet: Global jet veto using beam thrust and measurement of the transverse momentum of the Z boson

- If the measurements lead to widely separated energy scales \rightarrow resummation required
- So far: resummed calculation (mostly) restricted to single variables
 Resummation of multi-differential cross sections have been studied but there the
 measurements concerned different regions of phase-space (e.g different jets).
 E.g. Ellis, Vermilion, Walsh, Hornig, Lee, '10; Stewart, Tackmann, Waalewijn,'10; Kelley, Schwartz, Schabinger,
 Zhu, '11; for a discussion of NGLs, see talk by Duff Neill

Page 2 | Lisa Zeune | Resummation of double-differential cross sections

Motivation

 Another important reason to study the resummation of multi/double differential cross sections: Jet substructure

 \rightarrow One goal: Discriminate QCD jets from heavy boosted particles (W, Z, H, t)

 Most powerful discrimination observables are ratios of infrared and collinear (IRC) safe observables

Examples:

Ratios of N-subjettiness, energy correlation functions or planar flow / Ratio of two angularities

 Resummation of this ratio observable was studied in JHEP 1409 (2014) 046 (Larkoski, Moult, Neill), which inspired our work

• These observables are not IRC safe (cannot be computed order-by-oder in α_S), but can calculated in a well-defined way by marginalising over the **resummed** double differential cross section. Larkoski, Thaler, '13

Outline

In this talk I will present an extension of SCET which enables the resummation of a class of double-differential measurements

- Application 1: Z + 0 jet production
 - Introduction to SCET+
 - Factorization formula
- Application 2: Measurement of two angularities on a jet
 - NLL cross section
 - Comparison to JHEP 1409 (2014) 046 (Larkoski, Moult, Neill)

Outline

In this talk I will present an extension of SCET which enables the resummation of a class of double-differential measurements

- Application 1: Z + 0 jet production
 - Introduction to SCET+
 - Factorization formula

- Consider Z + 0 jet production: Transverse momentum of Z measured and global jet veto imposed using beam thrust ${\cal T}$

Stewart, Tackmann, Waalewijn, '09

Hierarchy between ${\cal T}$ and p_T determines the appropriate SCET version:

Hierarchy between \mathcal{T} and p_T determines the appropriate SCET version:

SCET I: $p_T \sim Q^{1/2} \mathcal{T}^{1/2}$

SCET+: $p_T \sim Q^{1-r} \mathcal{T}^r$ with 1/2 < r < 1 SCET II:

Mode	Scaling $(-,+,\perp)$ Measurement
<i>n</i> -collinear	$Q(1,\lambda^2,\lambda) \longrightarrow p_T \sim Q\lambda$
soft	$Q(\lambda^2,\lambda^2,\lambda^2)$ $\mathcal{T} \sim Q\lambda^2$

Fully-unintegrated (FU) beam functions:

 $B_q(t, x, \vec{k_{\perp}})$ momentum fraction Soft function: $-t = k^- k^+$: transverse virtuality $S(k^+)$

Interactions removed by BPS field redefinition Bauer, Pirjol, Stewart, '02

Hierarchy between T and p_T determines the appropriate SCET version:

Page 8 | Lisa Zeune | Resummation of double-differential cross sections

Hierarchy between T and p_T determines the appropriate SCET version:

G

Page 9 | Lisa Zeune | Resummation of double-differential cross sections

Hierarchy between T and p_T determines the appropriate SCET version:

G

Page 10 | Lisa Zeune | Resummation of double-differential cross sections

Hierarchy between T and p_T determines the appropriate SCET version:

SCET I: $p_T \sim Q^{1/2} \mathcal{T}^{1/2}$

SCET+:

 $p_T \sim Q^{1-r} \mathcal{T}^r$

with 1/2 < r < 1

- $\operatorname{SCET}_{\mathrm{I}}$
- Collinear-soft modes were introduces first in a different context in Phys.Rev.D85 (2012) 074006 (Bauer, Tackmann, Walsh, Zuberi) and has led us to adopt their name SCET+

→ <u>Difference</u>: In their case collinear and collinear-soft modes are separated in virtuality (SCET I like) while in our case collinear and collinear-soft modes are separated in rapidity (SCET II like) SCET II:

 $p_T \sim \mathcal{T}$

Effective theory framework

I. Matching the QCD quark current onto SCET+

The ordering of the Wilson lines is fixed by gauge invariance of SCET+

Effective theory framework

II. <u>BPS field redefinition</u>

- Performing an analog to the BPS field $p^2 \sim T^2$ redefinition: Bauer, Pirjol, Stewart, '02 T Q

$$\begin{array}{c} p^{-} \\ Q \\ \hline \\ p_{T}^{2} \\ \hline \\ \hline \\ \mathcal{T} \\ \hline \\ p^{2} \sim \mathcal{T}^{2} \\ \hline \\ p^{2} \sim \mathcal{T}^{2} \\ \hline \\ p^{2} \sim \mathcal{T}^{2} \\ \hline \\ p^{2} \\ \mathcal{T} \\ p^{2} \\ \mathcal{T} \\ p^{2} \\ \mathcal{T} \\ p^{2} \\ \mathcal{T} \\ Q \end{array}$$

$$V_n \to S_n V_n S_n^{\dagger}, \qquad X_n \to S_n X_n S_n^{\dagger},$$

$$V_{\bar{n}} \to S_{\bar{n}} V_{\bar{n}} S_{\bar{n}}^{\dagger}, \qquad X_{\bar{n}} \to S_{\bar{n}} X_{\bar{n}} S_{\bar{n}}^{\dagger}$$

• Finally:

 $\bar{\Psi}\,\Gamma\,\Psi = C(Q^2,\mu)\,\bar{\xi}_{\bar{n}}W_{\bar{n}}X_{\bar{n}}^{\dagger}V_{\bar{n}}\,S_{\bar{n}}^{\dagger}\Gamma\,S_nV_n^{\dagger}X_nW_n^{\dagger}\xi_n$

 $p^2 \sim p_T^2 \sim \mathcal{T}Q$

- No interaction between various modes anymore \rightarrow Derive factorisation theorems

Page 13 | Lisa Zeune | Resummation of double-differential cross sections

Factorisation theorems: SCET I

$$\frac{d^{4}\sigma}{dQ^{2} dY dp_{T}^{2} d\mathcal{T}} = \sum_{q} \hat{\sigma}_{q}^{0} H(Q^{2}) \int dt_{1} dt_{2} \int d^{2}\vec{k}_{1\perp} d^{2}\vec{k}_{2\perp} \int dk^{+} S(k^{+})$$

$$\times \left[B_{q}(t_{1}, x_{1}, \vec{k}_{1\perp}) B_{\bar{q}}(t_{2}, x_{2}, \vec{k}_{2\perp}) + (q \leftrightarrow \bar{q}) \right]$$

$$\times \delta \left(\mathcal{T} - \frac{e^{-Y}t_{1} + e^{Y}t_{2}}{Q} - k^{+} \right) \delta \left(p_{T}^{2} - |\vec{k}_{1\perp} + \vec{k}_{2\perp}|^{2} \right)$$
• Ingredients:
FU beam function
FU beam function

$$B_{q}(t, x, \vec{k}_{\perp}) = \left\langle p_{n}(p^{-}) \middle| \bar{\chi}_{n}(0) \frac{\vec{p}}{2} \left[\delta(k^{-} - p^{-} + \mathbf{P}^{-}) \right] \\ \delta(t - k^{-}\mathbf{P}^{+}) \delta^{2}(\vec{k}_{\perp} - \vec{\mathbf{P}}_{\perp}) \chi_{n}(0) \right] \left| p_{n}(p^{-}) \right\rangle$$

Page 14 | Lisa Zeune | Resummation of double-differential cross sections

 $\hat{\sigma}_{q}^{0} : \text{Born cross section}$ $H(Q^{2}, \mu) = |C(Q^{2}, \mu)|^{2} : \text{Hard function}$ $-t_{i} = k_{i}^{-}k_{i}^{+} (i = 1, 2) : \text{Transverse virtuality}$ $x_{i} = Q/E_{\text{cm}} e^{\pm Y} (i = 1, 2) : \text{Momentum fraction},$ Y = rapidity

0

Factorisation theorems: SCET I

$$\begin{aligned}
\text{Stewart, Tackmann, Waalewijn, '09:} \\
\text{Jain, Procura, Waalewijn, '11} \\
\frac{d^4\sigma}{dQ^2 dY dp_T^2 d\mathcal{T}} &= \sum_q \hat{\sigma}_q^0 H(Q^2) \int dt_1 dt_2 \int d^2 \vec{k}_{1\perp} d^2 \vec{k}_{2\perp} \int dk^+ S(k^+) \\
&\times \left[B_q(t_1, x_1, \vec{k}_{1\perp}) B_q(t_2, x_2, \vec{k}_{2\perp}) + (q \leftrightarrow \bar{q}) \right] \\
&\times \delta \left(\mathcal{T} - \frac{e^{-Y} t_1 + e^Y t_2}{Q} - k^+ \right) \delta \left(p_T^2 - |\vec{k}_{1\perp} + \vec{k}_{2\perp}|^2 \right) \end{aligned}$$
end subscription for the ordering $S(k^+) = \frac{1}{N_c} \langle 0 | \text{Tr} \left[\overline{T}(S_n^{\dagger}(0)S_{\bar{n}}(0)) \delta(k^+ - \mathbf{P}_1^+ - \mathbf{P}_2^-) \mathbf{T}(S_n^{\dagger}(0)S_n(0)) \right] | 0 \rangle$
P₁ operator returns momentum of soft radiation in hemisphere 1 $(p^+ < p^-)$
 $R_1 = R_1 = R_1 R_2 \left(2 R_1 + R_2 R_2 + R_$

č

Factorisation theorems: SCET II

$$\frac{\mathrm{d}^{4}\sigma}{\mathrm{d}Q^{2}\,\mathrm{d}Y\,\mathrm{d}p_{T}^{2}\,\mathrm{d}\mathcal{T}} = \sum_{q} \hat{\sigma}_{q}^{0} H(Q^{2}) \int \mathrm{d}^{2}\vec{k}_{1\perp}\,\mathrm{d}^{2}\vec{k}_{2\perp}\,\mathrm{d}^{2}\vec{k}_{\perp} \int \mathrm{d}k^{+}\,\delta\left(p_{T}^{2} - |\vec{k}_{1\perp} + \vec{k}_{2\perp} + \vec{k}_{\perp}|^{2}\right) \\ \times \delta\left(\mathcal{T} - k^{+}\right) \left[B_{q}(x_{1},\vec{k}_{1\perp})\,B_{\bar{q}}(x_{2},\vec{k}_{2\perp}) + (q\leftrightarrow\bar{q})\right] S(k^{+},\vec{k}_{\perp})$$
Extension of: Chiu, Jain, Neill, Rothstein, '12

Extension of: Chiu, Jain, Neill, Rothsteir See also: Becher, Neubert, '10

Ingredients:

TMD beam function

$$B_q(x, \vec{k}_{\perp}) = \left\langle p_n(p^-) \left| \bar{\chi}_n(0) \, \frac{\vec{\eta}}{2} \left[\delta(k^- - p^- + \mathbf{P}^-) \, \delta^2(\vec{k}_{\perp} - \vec{\mathbf{P}}_{\perp}) \, \chi_n(0) \right] \left| p_n(p^-) \right\rangle \right.$$

FU soft function

$$S(k^+, \vec{k}_\perp) = \frac{1}{N_c} \langle 0 | \operatorname{Tr} \left[\overline{\mathbf{T}} (S_n^{\dagger}(0) S_{\bar{n}}(0)) \,\delta(k^+ - \mathbf{P}_1^+ - \mathbf{P}_2^-) \right. \\ \left. \delta^2 (\vec{k}_\perp - \vec{\mathbf{P}}_\perp) \,\mathbf{T} (S_{\bar{n}}^{\dagger}(0) S_n(0)) \right] | 0 \rangle$$

Factorisation theorems: SCET+

$$\frac{\mathrm{d}^{4}\sigma}{\mathrm{d}Q^{2}\,\mathrm{d}Y\,\mathrm{d}p_{T}^{2}\,\mathrm{d}\mathcal{T}} = \sum_{q} \hat{\sigma}_{q}^{0}\,H(Q^{2})\int \mathrm{d}^{2}\vec{k}_{1\perp}\,\mathrm{d}^{2}\vec{k}_{2\perp}\,\mathrm{d}^{2}\vec{k}_{1\perp}^{\mathrm{cs}}\,\mathrm{d}^{2}\vec{k}_{2\perp}^{\mathrm{cs}}\int \mathrm{d}k_{1}^{+}\,\mathrm{d}k_{2}^{+}\,\mathrm{d}k^{+} \\ \times \,S(k^{+})\,B_{q}(x_{1},\vec{k}_{1\perp})\,B_{\bar{q}}(x_{2},\vec{k}_{2\perp}) \\ \times \,\mathcal{S}(k_{1}^{+},\vec{k}_{1\perp}^{\mathrm{cs}})\,\mathcal{S}(k_{2}^{+},\vec{k}_{2\perp}^{\mathrm{cs}})\,\delta(\mathcal{T}-k_{1}^{+}-k_{2}^{+}-k^{+}) \\ \times \,\delta(p_{T}^{2}-|\vec{k}_{1\perp}+\vec{k}_{2\perp}+\vec{k}_{1\perp}^{\mathrm{cs}}+\vec{k}_{2\perp}^{\mathrm{cs}}|^{2})+(q\leftrightarrow\bar{q})$$

- Ingredients: Soft function \rightarrow SCET I TMD beam function \rightarrow SCET II
- In SCET+ we have a TMD beam function without a TMD soft function

We cannot combine them as was done in Becher, Neubert, '11; Echevarria, Idilbi, Scimemi, '12

Factorisation theorems: SCET+

$$\frac{\mathrm{d}^{4}\sigma}{\mathrm{d}Q^{2}\,\mathrm{d}Y\,\mathrm{d}p_{T}^{2}\,\mathrm{d}\mathcal{T}} = \sum_{q} \hat{\sigma}_{q}^{0}\,H(Q^{2})\int \mathrm{d}^{2}\vec{k}_{1\perp}\,\mathrm{d}^{2}\vec{k}_{2\perp}\,\mathrm{d}^{2}\vec{k}_{1\perp}^{\mathrm{cs}}\,\mathrm{d}^{2}\vec{k}_{2\perp}^{\mathrm{cs}}\int \mathrm{d}k_{1}^{+}\,\mathrm{d}k_{2}^{+}\,\mathrm{d}k^{+} \\ \times \,S(k^{+})\,B_{q}(x_{1},\vec{k}_{1\perp})\,B_{\bar{q}}(x_{2},\vec{k}_{2\perp}) \\ \times \,\mathscr{S}(k_{1}^{+},\vec{k}_{1\perp}^{\mathrm{cs}})\,\mathscr{S}(k_{2}^{+},\vec{k}_{2\perp}^{\mathrm{cs}})\,\delta\big(\mathcal{T}-k_{1}^{+}-k_{2}^{+}-k^{+}\big) \\ \times \,\delta\big(p_{T}^{2}-|\vec{k}_{1\perp}+\vec{k}_{2\perp}+\vec{k}_{1\perp}^{\mathrm{cs}}+\vec{k}_{2\perp}^{\mathrm{cs}}|^{2}\big)+(q\leftrightarrow\bar{q})$$

Ingredients:

Collinear-soft functions (separately for n and \bar{n} directions)

$$\mathscr{S}(k^+, \vec{k}_{\perp}) = \frac{1}{N_c} \left\langle 0 | \operatorname{Tr} \left[\overline{\mathbf{T}}(X_n^{\dagger}(0)V_n(0)) \,\delta(k^+ - \mathbf{P}^+) \,\delta^2(\vec{k}_{\perp} - \vec{\mathbf{P}}_{\perp}) \mathbf{T}(V_n^{\dagger}(0)X_n(0)) \right] | 0 \right\rangle$$
$$= \frac{1}{N_c} \left\langle 0 | \operatorname{Tr} \left[\overline{\mathbf{T}}(V_{\bar{n}}^{\dagger}(0)X_{\bar{n}}(0)) \,\delta(k^+ - \mathbf{P}^-) \,\delta^2(\vec{k}_{\perp} - \vec{\mathbf{P}}_{\perp}) \mathbf{T}(X_{\bar{n}}^{\dagger}(0)V_{\bar{n}}(0)) \right] | 0 \right\rangle$$

 FU soft function and collinear-soft function look quite similar <u>Difference</u>: Collinear-soft radiation goes only into one hemisphere → Different treatment of the two hemispheres

Summary factorization theorems

 $d\sigma = H(Q^2)$ $\times S(k^+)$

 $d\sigma = H(Q^2)$ $\times B_q(t_1, \vec{k}_{1\perp}) B_{\bar{q}}(t_2, \vec{k}_{2\perp}) \qquad \times B_q(\vec{k}_{1\perp}) B_{\bar{q}}(\vec{k}_{2\perp}) \qquad \times B_q(\vec{k}_{1\perp}) B_{\bar{q}}(\vec{k}_{2\perp})$ $\times \mathscr{S}(k_1^+, \vec{k}_{1\perp}^{\rm cs}) \mathscr{S}(k_2^+, \vec{k}_{2\perp}^{\rm cs}) \qquad \times S(k^+, \vec{k}_{\perp})$ $\times S(k^+)$

 $d\sigma = H(Q^2)$

Matching of the effective theories

 The SCET I, SCET + and SCET II factorization theorems can be matched achieving a continuous cross section description

This holds for common scales: $\mu = \mu_B = \mu_{\mathscr{S}} = \mu_S$ and $\nu = \nu_B = \nu_{\mathscr{S}} = \nu_S$

- This follows from:
 - Switching off resummation, SCET I and SCET II produce fixed order cross section up to power corrections
 - SCET+ regime can be obtained by a further expansion of SCET I or SCET II

$${}^{k}B_{q}(x,\vec{k}_{\perp},\mu,\nu) = \sum_{j} \int_{x}^{1} \frac{\mathrm{d}x'}{x'} \mathcal{I}_{qj}\left(\frac{x}{x'},\vec{k}_{\perp},\mu,\nu\right) f_{j}(x',\mu) \left[1 + \mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{\vec{k}_{\perp}^{2}}\right)\right]$$

Page 20 | Lisa Zeune | Resummation of double-differential cross sections

NNLL resummation and consistency checks

 All ingredients entering the factorisation calculated to the accuracy needed for NNLL resummation

→ New pieces: FU soft function and collinear soft function, both calculated at one-loop

 \longrightarrow No more details here \rightarrow see paper

Checks of our framework

- Cancellation of anomalous dimensions between the various ingredients shown
- NLO cross section:
 - Full NLO cross section (differential in Q^2, Y, p_T and \mathcal{T}) calculated
 - Expanded in the SCET I, SCET + and SCET II regions of phase space
 - Agreement with the predictions from factorization theorems shown

Outline

In this talk I will present an extension of SCET which enables the resummation of a class of double-differential measurements

- Application 2: Measurement of two angularities on a jet
 - NLL cross section
 - Comparison to JHEP 1409 (2014) 046 (Larkoski, Moult, Neill)

Measuring two angularities on one jet

Jet energy

Almeida, Lee, Perez, Sterman, Sung, Virzi, '09; Ellis, Vermilion, Walsh, Hornig, Lee, '10;

 $\alpha > 0$

$$e_{\alpha} = \frac{1}{E_J} \sum_{i \in J} E_i \frac{\sin \theta_i \tan^{\alpha - 1} \frac{\theta_i}{2}}{\sin R \tan^{\alpha - 1} \frac{R}{2}} \approx \frac{1}{E_J} \sum_{i \in J} E_i \left(\frac{\theta_i}{R}\right)^{\alpha}$$

Approximation valid for $R \ll 1$

recoil free jet axis Larkoski, Neill, Thaler, '14; Bertolini, Chan, Thaler, '13

 $\alpha > \beta$

Berger, Kucs, Sterman, '03

for IRC safety

• Phase space for the measurement of two angularities e_{α} and e_{β} between:

Boundary B1: $e_{\alpha} = e_{\beta}$ (from jet radius requirement) Boundary B2: $e_{\alpha}^{\beta} = e_{\beta}^{\alpha}$ (from energy conservation)

Larkoski, Moult, Neill: NLL conjecture

- Two boundary theories for the measurement of two angularities on a single jet were identified
- Factorization of the double differential cross section proven at the phase space boundaries
- Interpolating function across the bulk region derived
 - requiring cumulative cross section to be continuous and have a continuous derivative at the boundaries

Page 24 | Lisa Zeune | Resummation of double-differential cross sections

Double angularities in SCET+

SCET+ can be used to describe bulk region

Mode	Scaling $(-,+,\perp)$	Measurement
<i>n</i> -collinear	$Q(1, \lambda^{2r/\beta}, \lambda^{r/\beta})$ —	e_{β}
<i>n</i> -collinear-soft	$\left Q\left(\lambda^{\frac{\alpha r-\beta}{\alpha-\beta}}, \lambda^{\frac{(\alpha-2)r-(\beta-2)}{\alpha-\beta}}, \lambda^{\frac{(\alpha-1)r-(\beta-1)}{\alpha-\beta}}\right) \right $	
soft	$Q(\lambda, \lambda, \lambda)$ —	e_{α}
	β/c	$\alpha < r < 1$

and $\lambda \sim e_{\alpha} \sim e_{\beta}^{1/r}$

• Factorization formula (valid to NLL)

(avoiding $\alpha=1 \text{ or } \beta=1$)

Page 25 | Lisa Zeune | Resummation of double-differential cross sections

RG equations

Hard function

$$\mu \frac{\mathrm{d}}{\mathrm{d}\mu} S(e_{\alpha}Q,\mu) = \int_{0}^{e_{\alpha}} \mathrm{d}e_{\alpha}'Q \gamma_{S}(e_{\alpha}Q - e_{\alpha}'Q,\mu) S(e_{\alpha}'Q,\mu) ,$$
$$\gamma_{S}(e_{\alpha}Q,\mu) = \frac{2}{\alpha-1} \Gamma_{\mathrm{cusp}}(\alpha_{s}) \frac{1}{\mu} \mathcal{L}_{0}\left(\frac{e_{\alpha}Q}{\mu}\right) + \gamma_{S}(\alpha_{s}) \,\delta(e_{\alpha}Q)$$

Collinear-soft function constrained by consistency

Page 26 | Lisa Zeune | Resummation of double-differential cross sections

NLL resummation

Tree level expressions

 $H(Q^{2},\mu) = 1, \qquad \qquad J(e_{\beta}Q^{\beta},\mu) = \delta(e_{\beta}Q^{\beta})$ $\mathscr{S}(e_{\alpha}Q,e_{\beta}Q^{\beta}) = \delta(e_{\alpha}Q)\,\delta(e_{\beta}Q^{\beta}), \qquad \qquad S(e_{\alpha}Q,\mu) = \delta(e_{\alpha}Q)$

• Evolve all to the collinear-soft scale $\mu_{\mathscr{S}}$: Double cumulative distribution

• Evolution kernels: $K_X(\mu_X, \mu_{\mathscr{S}})$ and $\eta_X(\mu_X, \mu_{\mathscr{S}}), X = H, J, S$

Comparison to Larkoski, Moult, Neill

• Their NLL conjecture:

$$\Sigma(e_{\alpha}, e_{\beta})^{\text{conjecture}} = \frac{e^{-\gamma_{E}\tilde{R}(e_{\alpha}, e_{\beta})}}{\Gamma(1 + \tilde{R}(e_{\alpha}, e_{\beta}))} e^{-R(e_{\alpha}, e_{\beta}) - \gamma_{i}T(e_{\alpha}, e_{\beta})}$$

This mostly agrees with our result with

$$R(e_{\alpha}, e_{\beta}) + \gamma T(e_{\alpha}, e_{\beta}) \stackrel{\text{NLL}}{=} -K_H(\mu_H, \mu_{\mathscr{S}}) - K_J(\mu_J, \mu_{\mathscr{S}}) - K_S(\mu_S, \mu_{\mathscr{S}}),$$
$$\tilde{R}(e_{\alpha}, e_{\beta}) \stackrel{\text{NLL}}{=} \eta_J(\mu_J, \mu_{\mathscr{S}}) + \eta_S(\mu_S, \mu_{\mathscr{S}})$$

• Difference in the denominator:

(ignoring power-suppressed terms and terms beyond NLL)

Our result: $\Gamma(1 + \eta_J)\Gamma(1 + \eta_S)$ JHEP 1409 (2014) 046: $\Gamma(1 + \eta_J + \eta_S)$ \int in the bulk

Scale choices

Boundary conditions

 $\Sigma(e_{\alpha}, e_{\beta} = e_{\alpha}^{\beta/\alpha}) = \Sigma(e_{\alpha})$ (e_{β} has been integrated over its entire range)

 $\Sigma(e_{\alpha} = e_{\beta}, e_{\beta}) = \Sigma(e_{\beta})$

(e_{α} has been integrated over its entire range)

derivative:

$$\frac{\partial}{\partial e_{\alpha}} \Sigma(e_{\alpha}, e_{\beta}) \Big|_{e_{\beta} = e_{\alpha}^{\beta/\alpha}} = \frac{d\sigma}{de_{\alpha}}$$
$$\frac{\partial}{\partial e_{\alpha}} \Sigma(e_{\alpha}, e_{\beta}) \Big|_{e_{\beta} = e_{\alpha}} = 0$$

and similarly for $\partial/\partial e_{\beta}$ with B1 \leftrightarrow B2

 Boundary conditions in JHEP 1409 (2014) 046 (Larkoski, Moult, Neill) fulfilled by adding power-suppressed

Page 29 | Lisa Zeune | Resummation of double-differential cross sections

Scale choices

Boundary conditions

$$\begin{split} \Sigma(e_{\alpha}, e_{\beta} = e_{\alpha}^{\beta/\alpha}) &= \Sigma(e_{\alpha}) \\ (e_{\beta} \text{ has been integrated over its entire range}) \end{split}$$

 $\Sigma(e_{\alpha} = e_{\beta}, e_{\beta}) = \Sigma(e_{\beta})$

(e_{α} has been integrated over its entire range)

derivative:

$$\frac{\partial}{\partial e_{\alpha}} \Sigma(e_{\alpha}, e_{\beta}) \bigg|_{e_{\beta} = e_{\alpha}^{\beta/\alpha}} = \frac{d\sigma}{de_{\alpha}}$$
$$\frac{\partial}{\partial e_{\alpha}} \Sigma(e_{\alpha}, e_{\beta}) \bigg|_{e_{\beta} = e_{\alpha}} = 0$$

and similarly for $\partial/\partial e_{\beta}$ with B1 \leftrightarrow B2

 Boundary conditions in JHEP 1409 (2014) 046 (Larkoski, Moult, Neill) fulfilled by adding power-suppressed

Page 30 | Lisa Zeune | Resummation of double-differential cross sections

• Profile scales

Boundary conditions can be fulfilled by appropriate scale choice:

$$\mu_{\mathscr{S}}(e_{\alpha}, e_{\beta})\Big|_{\mathsf{B1}} = \mu_{S}(e_{\alpha}, e_{\beta})\Big|_{\mathsf{B1}}$$
$$\mu_{\mathscr{S}}(e_{\alpha}, e_{\beta})\Big|_{\mathsf{B2}} = \mu_{J}(e_{\alpha}, e_{\beta})\Big|_{\mathsf{B2}}$$

 $\frac{\partial}{\partial e_{\alpha}} \mu_{J}(e_{\alpha}, e_{\beta})\Big|_{B2} = \frac{d}{de_{\alpha}} \mu_{J}(e_{\alpha}, e_{\alpha}^{\beta/\alpha})$ $\frac{\partial}{\partial e_{\alpha}} \mu_{\mathscr{S}}(e_{\alpha}, e_{\beta})\Big|_{B2} = \frac{d}{de_{\alpha}} \mu_{J}(e_{\alpha}, e_{\alpha}^{\beta/\alpha})$ $\frac{\partial}{\partial e_{\alpha}} \mu_{S}(e_{\alpha}, e_{\beta})\Big|_{B2} = \frac{d}{de_{\alpha}} \mu_{S}(e_{\alpha}, e_{\alpha}^{\beta/\alpha})$ $\frac{\partial}{\partial e_{\alpha}} \mu_{X}(e_{\alpha}, e_{\beta})\Big|_{B1} = 0 , X = J, \mathscr{S}, S$ and similarly for $\partial/\partial e_{\beta}$

Conclusions

- Resummation of double-differential measurements achieved via a new effective theory framework SCET+ containing collinear-soft modes
 - Factorization formula derived at the phase-space boundaries and in the intermediate regime. Continuous cross section description by matching factorization formula across different regions.
- Two applications we studied:
 - $\bullet\,pp \to Z\,+\,0$ jets: jet veto is imposed through the beam thrust and transverse momentum of the Z measured
 - Measurement of two angularities on a single jet

Thank you!

Page 31 | Lisa Zeune | Resummation of double-differential cross sections

Back-up slides

Effective theory framework

• *n*-collinear gauge transformation: Groups together $W_n^{\dagger}\xi_n$ ($W_n^{\dagger} \to W_n^{\dagger}U_n^{\dagger}$) $\xi_n \to U_n\xi_n$, $W_n \to U_nW_n$, $S_n \to S_n$, $V_n \to V_n$, $X_n \to X_n$

Similarly $\bar{\xi}_{\bar{n}}W_{\bar{n}}$ is grouped together by \bar{n} -collinear gauge transformation

• *n*-collinear-soft gauge transformation:

Groups together $V_n^{\dagger}X_n$

 $W_n^{\dagger}\xi_n \to W_n^{\dagger}\xi_n$, $S_n \to S_n$, $V_n \to U_{ncs}V_n$, $X_n \to U_{ncs}X_n$

Similarly $X_{\bar{n}}^{\dagger}V_{\bar{n}}$ is grouped together by \bar{n} -collinear-soft gauge transformation

soft gauge transformation:

$$\begin{split} W_n^{\dagger}\xi_n &\to W_n^{\dagger}\xi_n \,, \\ \bar{\xi}_{\bar{n}}W_{\bar{n}} &\to \bar{\xi}_{\bar{n}}W_{\bar{n}} \,, \end{split} \begin{array}{cc} S_n \to U_s S_n \,, & V_n \to U_s V_n U_s^{\dagger} \,, & X_n \to U_s X_n U_s^{\dagger} \\ S_{\bar{n}} \to U_s S_{\bar{n}} \,, & V_{\bar{n}} \to U_s V_{\bar{n}} U_s^{\dagger} \,, & X_{\bar{n}} \to U_s X_{\bar{n}} U_s^{\dagger} \,. \end{split}$$

Fixes the remaining ordering

Non-global logarithms

- To what extend can our framework be used to calculate non-global logarithms, arising when different restrictions are applied in different regions of phase space?
- Consider: Instead of measuring p_T of Z boson, measure p_T of ISR it recoils against (ISR in <u>one</u> hemisphere)
- Factorization theorem:

$$\frac{\mathrm{d}^{4}\sigma}{\mathrm{d}Q^{2}\,\mathrm{d}Y\,\mathrm{d}p_{T,\mathrm{ISR}}^{2}\,\mathrm{d}\mathcal{T}} = \sum_{q} \hat{\sigma}_{q}^{0}\,H(Q^{2},\mu)\int\mathrm{d}t_{2}\,\int\mathrm{d}^{2}\vec{k}_{1\perp}\,\mathrm{d}^{2}\vec{k}_{1\perp}^{\mathrm{cs}}\,\int\mathrm{d}k_{1}^{+}\,\mathrm{d}k^{+}\,S(k^{+},\mu)$$
$$\times B_{q}(x_{1},\vec{k}_{1\perp},\mu,\nu)\,B_{\bar{q}}(t_{2},x_{2},\mu)\,\mathscr{S}(k_{1}^{+},\vec{k}_{1\perp}^{\mathrm{cs}},\mu,\nu)$$
$$\times \delta\big(\mathcal{T}-k_{1}^{+}-\frac{e^{Y}t_{2}}{Q}-k^{+}\big)\,\delta\big(p_{T,\mathrm{ISR}}^{2}-|\vec{k}_{1\perp}+\vec{k}_{1\perp}^{\mathrm{cs}}|^{2}\big)+(q\leftrightarrow\bar{q})$$

 This does not address the problem arising when the soft function contains multiple scales (e.g. when beam thus measurement would be restricted to one hemisphere)

Matching of the effective theories

At NNLL one can show:

$$\begin{aligned} \mathcal{I}_{qq}^{(1)}(t,x,\vec{k}_{\perp}) &= \delta(t) \, \mathcal{I}_{qq}^{(1)}(x,\vec{k}_{\perp}) + \delta(1-x) \, \mathscr{S}^{(1)}(t/p^{-},\vec{k}_{\perp}) \\ \mathcal{I}_{qg}^{(1)}(t,x,\vec{k}_{\perp}) &= \delta(t) \, \mathcal{I}_{qg}^{(1)}(x,\vec{k}_{\perp}) \,, \\ S^{(1)}(k^{+},\vec{k}_{\perp}) &= \frac{1}{\pi} \, \delta(\vec{k}_{\perp}^{\,2}) S^{(1)}(k^{+}) + 2 \, \mathscr{S}^{(1)}(k^{+},\vec{k}_{\perp}) \end{aligned}$$

Patch together the NNLL cross section

$$\begin{split} \frac{\mathrm{d}^{4}\sigma}{\mathrm{d}Q^{2}\,\mathrm{d}Y\,\mathrm{d}p_{T}^{2}\,\mathrm{d}\mathcal{T}} &= \sum_{q} \,\hat{\sigma}_{q}^{0}\,H(Q^{2})\!\int\!\mathrm{d}t_{1}\,\mathrm{d}t_{2}\,\int\!\mathrm{d}^{2}\vec{k}_{1\perp}\,\mathrm{d}^{2}\vec{k}_{2\perp}\,\mathrm{d}^{2}\vec{k}_{1\perp}^{\mathrm{cs}}\,\mathrm{d}^{2}\vec{k}_{2\perp}^{\mathrm{cs}}\,\mathrm{d}^{2}\vec{k}_{\perp}\,\int\!\mathrm{d}k_{1}^{+}\,\mathrm{d}k_{2}^{+}\,\mathrm{d}k^{+} \\ &\times \left[B_{q}(t_{1},x_{1},\vec{k}_{1\perp}) - \mathscr{S}^{(1)}\left(t_{1}e^{-Y}\!/Q,\vec{k}_{1\perp}\right)\right]\mathscr{S}\left(k_{1}^{+},\vec{k}_{1\perp}^{\mathrm{cs}}\right) \\ &\times \left[B_{\bar{q}}(t_{2},x_{2},\vec{k}_{2\perp}) - \mathscr{S}^{(1)}\left(t_{2}e^{Y}\!/Q,\vec{k}_{2\perp}\right)\right]\mathscr{S}\left(k_{2}^{+},\vec{k}_{2\perp}^{\mathrm{cs}}\right) \\ &\times \left[S(k^{+},\vec{k}_{\perp}) - 2\mathscr{S}^{(1)}(k^{+},\vec{k}_{\perp})\right]\delta\left(\mathcal{T} - \frac{e^{-Y}t_{1} + e^{Y}t_{2}}{Q} - k_{1}^{+} - k_{2}^{+} - k^{+}\right) \\ &\times \delta\left(p_{T}^{2} - |\vec{k}_{1\perp} + \vec{k}_{2\perp} + \vec{k}_{1\perp}^{\mathrm{cs}} + \vec{k}_{2\perp}^{\mathrm{cs}} + \vec{k}_{\perp}|^{2}\right) + (q\leftrightarrow\bar{q}) \end{split}$$

Page 35 | Lisa Zeune | Resummation of double-differential cross sections