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• Why shall we study multi-differential cross sections? 

• LHC analyses often involve several measurements/cuts 

• Correlations between different observables encoded in  
multi-differential cross sections 

!

!

• If the measurements lead to widely separated energy scales  
→ resummation required 

• So far: resummed calculation (mostly) restricted to single variables

Example: 
Z + 0 jet: Global jet veto using beam thrust and measurement of the transverse  
momentum of the Z boson

Motivation

2

Resummation of multi-differential cross sections have been studied — but there the 
measurements concerned different regions of phase-space (e.g different jets).

See talks by Andrew 
Larkoski (SCET 2014), 
Ian Moult and Piotr 
Pietrulewicz (both today)

E.g. Ellis, Vermilion, Walsh, Hornig, Lee, ’10; Stewart, Tackmann, Waalewijn,’10; Kelley, Schwartz, Schabinger, 
Zhu, ’11; for a discussion of NGLs, see talk by Duff Neill
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• Another important reason to study the resummation of multi/double -
differential cross sections: Jet substructure 

One goal: Discriminate QCD jets from heavy boosted particles (W, Z, H, t) 

• Most powerful discrimination observables are ratios of infrared and 
collinear (IRC) safe observables 

!

!
!
!

!

• These observables are not IRC safe (cannot be computed order-by-oder 
in α S ), but can calculated in a well-defined way by marginalising over 
the resummed double differential cross section.

Motivation

3

Examples: 
Ratios of N-subjettiness, energy correlation functions or planar flow /  
Ratio of two angularities

Larkoski, Thaler, ‘13

Resummation of this ratio observable was studied  
in JHEP 1409 (2014) 046 (Larkoski, Moult, Neill),  
which inspired our work
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• Application 2: Measurement of two angularities on a jet 

• NLL cross section 

• Comparison to JHEP 1409 (2014) 046 (Larkoski, Moult, Neill)

Outline

• Application 1: Z + 0 jet production 

• Introduction to SCET+ 

• Factorization formula

4

In this talk I will present an extension of SCET which enables the  
resummation of a class of double-differential measurements
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• Application 1: Z + 0 jet production 

• Introduction to SCET+ 

• Factorization formula

Outline

5

In this talk I will present an extension of SCET which enables the  
resummation of a class of double-differential measurements

• Application 2: Measurement of two angularities on a jet 

• NLL cross section 

• Comparison to JHEP 1409 (2014) 046 (Larkoski, Moult, Neill)
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Introduction to SCET+
• Consider Z + 0 jet production: 

Transverse momentum of Z measured  
and global jet veto imposed using beam thrust  

• Hierarchy between T, pT      determines the appropriate SCET version: 

SCET I:  
$p_T \sim Q^{1/2} \Tau^{1/2}$  

SCET+:  
$p_T \sim Q^{1-r} \Tau^r$  
with $1/2<r<1$ 

SCET II: 

!

!
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• Hierarchy between T, pT    determines the appropriate SCET version: 
$p_T \sim \Tau$

Introduction to SCET+

7

T and pT

pT ⇠ Q1/2T 1/2 pT ⇠ Q1�rT r

with 1/2 < r < 1

pT ⇠ T

SCET+:SCET I: SCET II:

Mode Scaling (�,+,?) Measurement

n-collinear Q(1,�2,�) pT

soft Q(�2,�2,�2) T

Fully-unintegrated (FU) beam functions:

Soft function: �t = k�k+: transverse virtuality
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Bauer, Pirjol, Stewart, ‘02
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• Hierarchy between T, pT    determines the appropriate SCET version: 
$p_T \sim \Tau$

Introduction to SCET+

8

T and pT
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• Hierarchy between T, pT    determines the appropriate SCET version: 
$p_T \sim \Tau$

Introduction to SCET+

9

pT ⇠ Q1/2T 1/2 pT ⇠ Q1�rT r

with 1/2 < r < 1

pT ⇠ T

SCET+:SCET I: SCET II:

TMD beam functions:

Soft function:
S(k+)

Mode Scaling (�,+,?) Measurement

n-collinear Q(1,�2r,�r) pT

n-collinear-soft Q(�2r�1,�,�r)

soft Q(�,�,�) T
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with 1/2 < r < 1,

� ⇠ T /Q ⇠ (pT /Q)1/r

Collinear-soft function:
S (k+,~k?)

Modes need to be well  
separated for for power  
corrections to be small

T and pT
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Mode Scaling (�,+,?) Measurement

n-collinear (Q, p2T /Q, pT ) pT

n-collinear-soft (p2T /T , T , pT )

soft (T , T , T ) T

• Hierarchy between T, pT    determines the appropriate SCET version: 
$p_T \sim \Tau$

Introduction to SCET+

10

pT ⇠ Q1/2T 1/2 pT ⇠ Q1�rT r

with 1/2 < r < 1
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SCET+:SCET I: SCET II:

TMD beam functions:

Soft function:
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corrections to be small

T and pT
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• Hierarchy between T, pT    determines the appropriate SCET version: 

!

!

!

Introduction to SCET+

11
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T and pT

• Collinear-soft modes were introduces first in a  
different context in Phys.Rev.D85 (2012) 074006  
(Bauer, Tackmann, Walsh, Zuberi) and has  
led us to adopt their name SCET+ 

Difference: In their case collinear and  
collinear-soft modes are separated in virtuality  
(SCET I like) while in our case collinear and  
collinear-soft modes are separated in rapidity  
(SCET II like)
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Effective theory framework
I. Matching the QCD quark current onto SCET+ 
 
 
 
 
Wilson lines 
     :   collinear gluons emitted from   (             )              
     :                    gluons emitted from   (             )  
     : soft gluons emitted from   (             )  
     :                    gluons emitted from   (             )  

 
 
 
 

The ordering of the Wilson lines is fixed by gauge invariance  
of SCET+ 

12

QCD quark fields
Dirac structure

matching coefficient collinear quark moving in n  direction
collinear antiquark moving 
in n  direction

n-direction

n̄-direction

n-collinear n̄-collinear

n-collinear-soft n̄-collinear

Xn

n-collinear

n-collinear-soft n-collinear

 ̄

 

 ̄

 

 ̄ � = C(Q2, µ) ⇠̄n̄Wn̄S
†
n̄X

†
n̄Vn̄ �V

†
nXnSnW

†
n⇠n

Sn

W †
n

V †
n
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Effective theory framework
II. BPS field redefinition

13
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T• At this point the soft fields still interact 

with the collinear-soft fields 

• Performing an analog to the BPS field 
redefinition: 

!

!

• Finally: 

!

• No interaction between various modes anymore   
→ Derive factorisation theorems

Bauer, Pirjol, Stewart, ‘02
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†
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Factorisation theorems: SCET I

14

Stewart, Tackmann, Waalewijn, ’09; 
Jain, Procura, Waalewijn, ‘11
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P operator returns momentum  
of intermediate state �n = W †
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q : Born cross section

H(Q2, µ) = |C(Q2, µ)|2 : Hard function

�ti = k�i k
+
i (i = 1, 2) : Transverse virtuality

xi = Q/Ecm e±Y (i = 1, 2) : Momentum fraction,

Y = rapidity

• Ingredients: 
FU beam function
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Factorisation theorems: SCET I

• Ingredients: 
Soft function

15

Stewart, Tackmann, Waalewijn, ’09; 
Jain, Procura, Waalewijn, ‘11
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Factorisation theorems: SCET II

• Ingredients: 
TMD beam function 
 
 
 
 

FU soft function

16
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See also: Becher, Neubert, ‘10
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Factorisation theorems: SCET+

• Ingredients: 
Soft function → SCET I  
TMD beam function → SCET II 

• In SCET+ we have a TMD beam function without a TMD soft 
function 
 

17
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We cannot combine them as was done in Becher, Neubert, ’11; Echevarria, Idilbi, Scimemi, ‘12 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Factorisation theorems: SCET+

• Ingredients: 
Collinear-soft functions (separately for n and n directions) 

!

!

• FU soft function and collinear-soft function look quite similar  
Difference: Collinear-soft radiation goes only into one hemisphere 
→ Different treatment of the two hemispheres

18
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Summary factorization theorems

19
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Matching of the effective theories
• The SCET I, SCET+ and SCET II factorization theorems can be 

matched achieving a continuous cross section description 

!

!
!

!

!

• This follows from: 

• Switching off resummation, SCET I and SCET II produce fixed order cross 
section up to power corrections 

• SCET+ regime can be obtained by a further expansion of SCET I or SCET II

20

SCET I ← SCET+
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beam function matching coefficients*
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+ power corrections

+ power corrections

This holds for common scales: µ = µB = µS = µS and ⌫ = ⌫B = ⌫S = ⌫S
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NNLL resummation and consistency checks
• All ingredients entering the factorisation calculated to the accuracy 

needed for NNLL resummation 

New pieces: FU soft function and collinear soft function,  
both calculated at one-loop 

No more details here → see paper  

!

• Cancellation of anomalous dimensions between the various  
ingredients shown 

• NLO cross section: 
• Full NLO cross section (differential in                       ) calculated 

• Expanded in the SCET I, SCET+ and SCET II regions of phase space 

• Agreement with the predictions from factorization theorems shown 
21

Q2, Y, pT and T

Checks of our framework
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• Application 2: Measurement of two angularities on a jet 

• NLL cross section 

• Comparison to JHEP 1409 (2014) 046 (Larkoski, Moult, Neill) 

Outline

• Application 1: Z + 0 jet production 

• Introduction to SCET+ 

• Factorization formula

22

In this talk I will present an extension of SCET which enables the  
resummation of a class of double-differential measurements
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• Definition of angularities:

• Phase space for the measurement of two 
angularities     and     between: 
 

Boundary B1: 
(from jet radius requirement) 

 

Boundary B2: 
(from energy conservation) 

Measuring two angularities on one jet

23
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Larkoski, Moult, Neill: NLL conjecture 
• Two boundary theories for the  

measurement of two angularities on  
a single jet were identified 

• Factorization of the double differential  
cross section proven at the phase space  
boundaries 

• Interpolating function across the bulk  
region derived 

requiring cumulative cross section to be continuous and have a continuous 
derivative at the boundaries

24

Larkoski, Moult,  
Neill, ‘14
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Double angularities in SCET+
• SCET+ can be used to describe bulk region 

!

!

!

!

• Factorization formula (valid to NLL)

25
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RG equations

26

Hard function

Jet function

Soft function

Collinear-soft function constrained by consistency

µ
d

dµ
H(Q2, µ) = �H(Q2, µ)H(Q2, µ) ,

�H(Q2, µ) = �cusp(↵s) ln
Q2

µ2
+ �H(↵s)

µ
d

dµ
J(e�Q

� , µ) =

Z e�

0
de0� Q

� �J(e�Q
� � e0�Q

� , µ) J(e0�Q
� , µ) ,

�J(e�Q
� , µ) = � 2

� � 1
�cusp(↵s)

1

µ�
L0

⇣e�Q�

µ�

⌘
+ �J(↵s) �(e�Q

�)

µ
d

dµ
S(e↵Q,µ) =

Z e↵

0
de0↵Q �S(e↵Q� e0↵Q,µ)S(e0↵Q,µ) ,

�S(e↵Q,µ) =
2

↵� 1
�cusp(↵s)

1

µ
L0

⇣e↵Q
µ

⌘
+ �S(↵s) �(e↵Q)

cusp piece

non-cusp piece
�i
X(↵s) =

X

n

�i
X,n

⇣↵s

4⇡

⌘n+1
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NLL resummation
• Tree level expressions 

!

!

• Evolve all to the collinear-soft scale        : 
Double cumulative distribution 

!

!

!

!

• Evolution kernels: 
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H(Q2, µ) = 1 , J(e�Q
� , µ) = �(e�Q

�)

S (e↵Q, e�Q
�) = �(e↵Q) �(e�Q

�) , S(e↵Q,µ) = �(e↵Q)

⌃(e↵, e�) =

Z e↵

0
de0↵

Z e�

0
de0�

@2�

@e0↵@e
0
�

= �̂(0) e
KH+KJ+KS��E ⌘J��E ⌘S

�(1 + ⌘J)�(1 + ⌘S)

⇣ Q

µH

⌘2⌘H
⇣e1/�� Q

µJ

⌘� ⌘J
⇣e↵Q

µS

⌘⌘S

µS

KX(µX , µS ) and ⌘X(µX , µS ), X = H, J, S

Hard scale Jet scale Soft scale
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Comparison to Larkoski, Moult, Neill
• Their NLL conjecture:  
 

• This mostly agrees with our result with 

!

!

• Difference in the denominator:  
(ignoring power-suppressed terms and terms beyond NLL)

28

Our result: �(1 + ⌘J)�(1 + ⌘S)

JHEP 1409 (2014) 046: �(1 + ⌘J + ⌘S)

R(e↵, e�) + �T (e↵, e�)
NLL
= �KH(µH , µS )�KJ(µJ , µS )�KS(µS , µS ) ,

R̃(e↵, e�)
NLL
= ⌘J(µJ , µS ) + ⌘S(µS , µS )

⌃(e↵, e�)
conjecture =

e��E
˜R(e↵,e�)

�(1 + R̃(e↵, e�))
e�R(e↵,e�)��iT (e↵,e�)

} Di↵erence at O(↵2
s ln

2)

in the bulk
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• Boundary conditions 

!

!

• derivative: 
 
 
 
 
and similarly for         with B1 ↔ B2 

• Boundary conditions in JHEP 1409 
(2014) 046 (Larkoski, Moult, Neill) 
fulfilled by adding power-suppressed 

Scale choices

29

(    has been integrated over its entire range)
⌃(e↵ = e� , e�) = ⌃(e�)

⌃(e↵, e� = e�/↵↵ ) = ⌃(e↵)
(    has been integrated over its entire range)
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@e↵
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����
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Scale choices

30

• Profile scales 
Boundary conditions can be ful-
filled by appropriate scale choice:  
 
 
 
 
 
 
 
 
 
 
 
 
and similarly for

µS (e↵, e�)
���
B1

= µS(e↵, e�)
���
B1
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���
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���
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de↵
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���
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de↵
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�/↵
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µS(e↵, e�)

���
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d

de↵
µS(e↵, e

�/↵
↵ )

@

@e↵
µX(e↵, e�)

���
B1

= 0 , X = J,S , S

@/@e�

• Boundary conditions 

!

!

• derivative: 
 
 
 
 
and similarly for         with B1 ↔ B2 

• Boundary conditions in JHEP 1409 
(2014) 046 (Larkoski, Moult, Neill) 
fulfilled by adding power-suppressed 

(    has been integrated over its entire range)
⌃(e↵ = e� , e�) = ⌃(e�)

⌃(e↵, e� = e�/↵↵ ) = ⌃(e↵)
(    has been integrated over its entire range)

e↵
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@e↵
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↵
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de↵

@

@e↵
⌃(e↵, e�)

����
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Conclusions
• Resummation of double-differential measurements achieved via a new 

effective theory framework SCET+ containing collinear-soft modes 

Factorization formula derived at the phase-space boundaries and in the 
intermediate regime. Continuous cross section description by matching 
factorization formula across different regions. 

• Two applications we studied: 

• pp → Z + 0 jets: jet veto is imposed through the beam thrust and transverse 
momentum of the Z measured  

• Measurement of two angularities on a single jet

31

Thank you!
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Effective theory framework
•              gauge transformation: 

!

!

•                    gauge transformation: 

!

!

• soft gauge transformation:

33

n-collinear

n-collinear-soft

W †
n⇠n ! W †

n⇠n , Sn ! Sn , Vn ! UncsVn , Xn ! UncsXn ,

⇠̄n̄Wn̄ ! ⇠̄n̄Wn̄ , Sn̄ ! Sn̄ , Vn̄ ! Vn̄ , Xn̄ ! Xn̄ ,

W †
n⇠n ! W †

n⇠n , Sn ! UsSn , Vn ! UsVnU
†
s , Xn ! UsXnU

†
s ,

⇠̄n̄Wn̄ ! ⇠̄n̄Wn̄ , Sn̄ ! UsSn̄ , Vn̄ ! UsVn̄U
†
s , Xn̄ ! UsXn̄U

†
s .

Groups together          V †
nXn

⇠n ! Un⇠n , Wn ! UnWn , Sn ! Sn , Vn ! Vn , Xn ! Xn

Groups together         (                  )W †
n⇠n W †

n ! W †
nU

†
n

⇠̄n̄Wn̄Similarly         is grouped together by               gauge transformation          
n 

n̄-collinear

Similarly         is grouped together by              -soft gauge transformation          
n 

n̄-collinearX†
n̄Vn̄

Fixes the remaining ordering
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Non-global logarithms
• To what extend can our framework be used to calculate non-global 

logarithms, arising when different restrictions are applied in different 
regions of phase space? 

• Consider: Instead of measuring pT of Z boson, measure pT of ISR it 
recoils against (ISR in one hemisphere) 

• Factorization theorem: 

!

!

!

• This does not address the problem arising when the soft function 
contains multiple scales (e.g. when beam thus measurement would be 
restricted to one hemisphere)

34

pT pT

d4�

dQ2 dY dp 2
T,ISR dT =

X

q

�̂0
q H(Q2, µ)

Z
dt2

Z
d2~k1? d2~kcs1?

Z
dk+1 dk+ S(k+, µ)

⇥Bq(x1,~k1?, µ, ⌫)Bq̄(t2, x2, µ)S
�
k+1 ,

~kcs1?, µ, ⌫
�

⇥ �
�
T � k+1 � eY t2

Q
� k+

�
�
�
p 2
T,ISR � |~k1? + ~kcs1?|2

�
+(q $ q̄)
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Matching of the effective theories
• At NNLL one can show:  
 
 
 

• Patch together the NNLL cross section
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d4�

dQ2 dY dp 2
T dT =

X

q

�̂0
q H(Q2)
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⇥
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�
t1e

�Y/Q,~k1?
�i
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�

⇥
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�
t2e
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�i

S
�
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�

⇥
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p 2
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�
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qq (t, x,~k?) = �(t) I(1)

qq (x,~k?) + �(1� x)S (1)(t/p�,~k?)

I(1)
qg (t, x,~k?) = �(t) I(1)

qg (x,~k?) ,

S

(1)(k+,~k?) =
1

⇡

�(~k 2
?)S

(1)(k+) + 2S (1)(k+,~k?)


