Removing Overlapping Phase-space Singularities

Kai Yan Harvard University SCET 2015

Based on arXiv:1502.05411 with Ilya Feige, Matthew Schwartz

Overview

Soft-collinear overlapping hard c_n \bar{n} -collinear $Q\lambda$ $(1,\lambda^2,\lambda)$ $Q\lambda$ $c_{\overline{n}}$ **us** S oft $(\lambda^2, \lambda^2, \lambda^2)$ $Q\lambda^2$ Λ_{QCD}

• Operator-only SCET (Luke-Freeman, Feige-Schwartz)

 $\Lambda_{\text{QCD}} Q \lambda^2$

 $Q\lambda$

No sum over labels, any regulators; Overlap not yet addressed.

n-collinear $(\lambda^2,1,\lambda)$

 $Q\lambda^0$

[Lee,Sterman,Mehen,Idibi] shown equivalent

• Traditional QCD approach:

 soft collinear subtracted from the soft function with the eikonal jet function

• Label SCET

 excluding zero-bin from collinear integral: diagram by diagram subtraction.

• Method of regions

when regulating via analytic continuation soft-collinear region does not contribute

Overview

• **Effective Theory Formulation**

Operator-level matching in EFT at leading power in N-jet limit Lagrangian is just multiple copies of QCD Lagrangian : $\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{soft}} + \sum_{i=1} L_i$

$$
\langle X_1 X_2; X_s | \bar{\psi} \gamma^{\mu} \psi | 0 \rangle \cong C_2 \langle X_1 X_2; X_s | \frac{\bar{\psi}_1 W_1}{\text{tr} \langle 0 | Y_1^{\dagger} W_1 | 0 \rangle / N_c} Y_1^{\dagger} \gamma^{\mu} Y_2 \frac{W_2^{\dagger} \psi_2}{\text{tr} \langle 0 | W_2^{\dagger} Y_2 | 0 \rangle / N_c} | 0 \rangle_{\mathcal{L}_{\text{eff}}}
$$
\nmatched use

\n
$$
\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{soft}} + \mathcal{L}_1 + \mathcal{L}_2
$$

The validity regime of matching is the N-jet regime.

Can we do inclusive phase-space integrals in each sector?

Amplitude-level factorization

Factorization with designated final state

Factorization with designated final state

- Soft-collinear particles can be included in either soft or collinear sector. Factorization still works at leading power.
- subtraction is needed when phase space of different sectors overlap

Amplitude-level subtractions

• Construct an amplitude where q can go into arbitrary sectors

$$
\mathcal{M}_{sub}(p_1, p_2, q) \equiv \begin{cases} \frac{\langle p_1 | q | \bar{\psi} W_1 | 0 \rangle}{\langle 0 | Y_1^{\dagger} W_1 | 0 \rangle} - \frac{\langle p_1 | \bar{\psi} W_1 | 0 \rangle}{\langle 0 | Y_1^{\dagger} W_1 | 0 \rangle} \frac{\langle q | Y_1^{\dagger} W_1 | 0 \rangle}{\langle 0 | Y_1^{\dagger} W_1 | 0 \rangle} \end{cases} \frac{\langle p_2 | W_2^{\dagger} \psi | 0 \rangle}{\langle 0 | W_2^{\dagger} Y_2 | 0 \rangle} \langle 0 | Y_1^{\dagger} Y_2 | 0 \rangle + \frac{\langle p_1 | \bar{\psi} W_1 | 0 \rangle}{\langle 0 | Y_1^{\dagger} W_1 | 0 \rangle} \begin{cases} \frac{\langle p_2 | q | \bar{\psi} W_2 | 0 \rangle}{\langle 0 | Y_2^{\dagger} W_2 | 0 \rangle} - \frac{\langle p_2 | \bar{\psi} W_2 | 0 \rangle}{\langle 0 | Y_2^{\dagger} W_2 | 0 \rangle} \frac{\langle q | Y_2^{\dagger} W_2 | 0 \rangle}{\langle 0 | Y_2^{\dagger} W_2 | 0 \rangle} \end{cases} \langle 0 | Y_1^{\dagger} Y_2 | 0 \rangle + \frac{\langle p_1 | \bar{\psi} W_1 | 0 \rangle}{\langle 0 | Y_1^{\dagger} W_1 | 0 \rangle} \frac{\langle p_2 | W_2^{\dagger} \psi | 0 \rangle}{\langle 0 | W_2^{\dagger} Y_2 | 0 \rangle} \langle q | Y_1^{\dagger} Y_2 | 0 \rangle + \frac{\langle p_1 | \bar{\psi} W_1 | 0 \rangle}{\langle 0 | Y_1^{\dagger} W_1 | 0 \rangle} \frac{\langle p_2 | W_2^{\dagger} \psi | 0 \rangle}{\langle 0 | W_2^{\dagger} Y_2 | 0 \rangle} \langle q | Y_1^{\dagger} Y_2 | 0 \rangle
$$

$$
\frac{\langle p_1; q | \bar{\psi} W_1 | 0 \rangle}{\langle 0 | Y_1^{\dagger} W_1 | 0 \rangle} \stackrel{q \text{ soft}}{\cong} \frac{\langle p_1 | \bar{\psi} W_1 | 0 \rangle \langle q | Y_1^{\dagger} W_1 | 0 \rangle}{\langle 0 | Y_1^{\dagger} W_1 | 0 \rangle \langle 0 | Y_1^{\dagger} W_1 | 0 \rangle}
$$
\ncancel with the subtraction term in the top line

\n
$$
\langle q | Y_1^{\dagger} Y_2 | 0 \rangle \stackrel{q \parallel p_1}{\cong} \frac{\langle q | Y_1^{\dagger} W_1 | 0 \rangle}{\langle 0 | Y_1^{\dagger} W_1 | 0 \rangle} \times \langle 0 | Y_1^{\dagger} Y_2 | 0 \rangle
$$
\nagrees with

\n
$$
\begin{array}{rcl}\n & & \\
 & & \\
\hline\n\end{array}
$$

Amplitude-level subtractions

$$
\mathcal{M}_{sub}(X_{1},\cdots,X_{N},X_{s};q_{1},q_{2}) \equiv \frac{\langle X_{1}|\bar{\psi}W_{1}|0\rangle}{\langle 0|Y_{1}^{\dagger}W_{1}|0\rangle} \cdots \frac{\langle X_{N}|W_{N}^{\dagger}\psi|0\rangle}{\langle 0|W_{N}^{\dagger}Y_{N}|0\rangle} \langle X_{s},q_{1},q_{2}|Y_{1}^{\dagger}\cdots Y_{N}|0\rangle \n+ \sum_{i=1}^{N} \cdots \left\{ \frac{\langle X_{i},q_{1}|W_{i}^{\dagger}\psi|0\rangle}{\langle 0|W_{i}^{\dagger}Y_{i}|0\rangle} \right\}_{substack{g_{0} \\ sub}}^{q_{1}} \cdots \langle X_{s},q_{2}|Y_{1}^{\dagger}\cdots Y_{N}|0\rangle \n+ \sum_{i=1}^{N} \cdots \left\{ \frac{\langle X_{i},q_{2}|W_{i}^{\dagger}\psi|0\rangle}{\langle 0|W_{i}^{\dagger}Y_{i}|0\rangle} \right\}_{substack{g_{0} \\ sub}}^{q_{2}} \cdots \langle X_{s},q_{1}|Y_{1}^{\dagger}\cdots Y_{N}|0\rangle \n+ \sum_{i,j=1}^{N} \cdots \left\{ \frac{\langle X_{i},q_{1}|W_{i}^{\dagger}\psi|0\rangle}{\langle 0|W_{i}^{\dagger}Y_{i}|0\rangle} \right\}_{substack{g_{1} \\ sub}}^{q_{1}} \cdots \left\{ \frac{\langle X_{j},q_{2}|W_{j}^{\dagger}\psi|0\rangle}{\langle 0|W_{j}^{\dagger}Y_{j}|0\rangle} \right\}_{substack{g_{0} \\ sub}}^{q_{2}} \cdots \langle X_{s}|Y_{1}^{\dagger}\cdots Y_{N}|0\rangle
$$

 $\left\{\right\}_{\text{soft}}^q$: recursively defined operator-level soft subtraction

- agrees with full-QCD amplitude in any leading power IR limit
- can be integrated over all momentum region of q1, q2
- However, it is not a factorized formula!

Cross-section level factorization

• **Factorization with a hard-cutoff prescription** Λ : the size of the ball at the origin H $\Lambda \bar{R}$ $R = \tan^2 \frac{\theta}{2}$, with θ the opening angle of the cone. R_2 R_1 $\Lambda \bar{R}$ in cone out of cone, in ball $\langle X_1, X_2; X_s | \bar{\psi} \gamma^{\mu} \psi | 0 \rangle \cong C_2 \langle X_1, X_2; X_s | \frac{\bar{\psi} W_1}{\sqrt{\gamma W_1}} \rangle$ $W_2^\intercal \psi$ $Y_1^\dagger \gamma^\mu Y_2$ $|0\rangle$ $(1 + \mathcal{O}(\lambda_s, \lambda_c))$ $\langle 0|Y_j^\intercal W_j|0\rangle$ $\langle 0|W_2^{\dagger}Y_2|0\rangle$ up to $\mathcal{O}(R,\Lambda)$ $\sum_{X_1} \int d\Pi_{X_1} \left| \frac{\langle X_1 | \bar{\psi} W_1 | 0 \rangle}{\langle 0 | Y_1^{\dagger} W_1 | 0 \rangle} \right|^2 \delta(\tau - p_{X_1}^+)$
 $\sum_{X_2} \int d\Pi_{X_3} \left| \langle X_s | Y_1^{\dagger} \cdots Y_N | 0 \rangle \right|^2 \delta(\tau - \frac{1}{2Q} \Omega_{\tau}(p_{X_s}))$

• **Problems with hard-cutoff prescription**

$$
S^{\Lambda \overline{R}}(\tau) = \delta(\tau) + C_F \frac{\alpha_s}{\pi} \left(\frac{\mu^2}{Q^2}\right)^{\varepsilon} \left\{ \delta(\tau) \left(-\frac{1}{\varepsilon^2} - \frac{7\pi^2}{12} + \frac{2}{\varepsilon} \ln \omega + 2 \ln \omega \ln R - 2 \ln^2 \omega + \mathcal{O}(R)\right) \right\}
$$

$$
C_F \frac{\left[\frac{2}{\tau} \ln R\right]}{\pi} \theta \left(\Lambda - \frac{\tau}{R}\right)
$$

$$
+ C_F \frac{\alpha_s}{\pi} \left(\frac{\mu^2}{Q^2}\right)^{\varepsilon} \left\{ \delta(\tau) \left[-\frac{1}{\varepsilon^2} - \frac{\pi^2}{4} - 2 \left(-\frac{1}{\varepsilon} \ln \omega + \ln \omega \ln \frac{\Lambda}{Q} + \frac{1}{2} \ln^2 \omega\right)\right] - \left[\frac{2}{\tau} \ln \frac{\tau Q}{\Lambda}\right]_+\right\} \theta \left(\frac{\tau}{R} - \Lambda\right)
$$
leading power dependence on
the cut-offs

• Regularization scheme: offshellness (ω) + Δ regulator for IR + DR for UV

$$
\frac{n_j^{\mu}}{n_j \cdot k} \to \frac{p_j^{\mu}}{p_j \cdot k + \frac{Q^2 \omega}{2}}
$$
\n
$$
\frac{1}{t_j \cdot k} \to \frac{1}{t_j \cdot k + \frac{\Delta}{t_j \cdot p_j}} \equiv \frac{1}{t_j \cdot k + \delta_j(t_j \cdot p_j)}
$$

$$
\text{UV-IR poles} \qquad \text{leading power dependence on} \\ \text{the cut-offs} \\ \overbrace{\left(J^{R_j}(\tau) \cong \delta(\tau) + \frac{\alpha_s C_F}{2\pi} \left(\frac{\mu^2}{Q^2} \right)^s \left\{ \delta(\tau) \left(\frac{2}{\varepsilon^2} + \frac{3}{2\varepsilon} + \frac{7}{2} + \frac{\pi^2}{6} \right) \right\}}^{\text{leading power dependence on}} + \delta(\tau) \left(-\frac{2}{\varepsilon} \ln \omega - 2 \ln \omega \ln R + 2 \ln^2 \omega + \mathcal{O}(R) \right) - \left(\frac{3}{2} - \left(2 \ln R \right) \left[\frac{1}{\tau} \right]_+ \right) \left. 2 \left[\frac{\ln \tau}{\tau} \right]_+ \right\}
$$

$$
\frac{\sqrt{S^{\Lambda \overline{R}} \otimes J^{R_1} \otimes J^{R_2}}}{\approx \delta(\tau) + C_F \frac{\alpha_s}{\pi} \left(\frac{\mu^2}{Q^2}\right)^{\epsilon} \left\{\delta(\tau) \left(\frac{1}{\varepsilon^2} + \frac{3}{2\varepsilon} + \frac{7}{2} - \frac{5\pi^2}{12} + \mathcal{O}(R)\right) - \frac{3}{2} \left[\frac{1}{\tau}\right]_+ - 2 \left[\frac{\ln \tau}{\tau}\right]_+\right\}}{\varepsilon^2 \left[\frac{\ln \tau}{\tau}\right]_+\right\}}
$$
\nR dependence do not exactly cancel between sectors

• **The hard-cutoff prescription obscures factorization**

 cannot define factorized sectors that are both IR safe and independent on physical cut-offs.

does not hold exactly at leading power of \tau

• Steps to remove the cut-offs

1.
$$
\frac{d\sigma}{d\tau} \cong H \times S^{\Lambda \overline{R}} \otimes J^{R_1} \otimes J^{R_2}
$$

\n2.
$$
\frac{d\sigma}{d\tau} \cong H \times S^{\overline{R}} \otimes J^{R_1} \otimes J^{R_2}
$$

\n3.
$$
\frac{d\sigma}{d\tau} \otimes J^{R_1}_{\text{eik}} \otimes J^{R_2}_{\text{eik}} \cong H \times S \otimes J^{R_1} \otimes J^{R_2}
$$

\n4.
$$
\frac{d\sigma}{d\tau} \otimes J^{1}_{\text{eik}} \otimes J^{2}_{\text{eik}} \cong H \times S \otimes J^{1} \otimes J^{2}
$$

\n5.
$$
\int d\tau \frac{d\sigma}{d\tau} e^{-\nu\tau} \cong H \frac{\widetilde{S}(\nu) \widetilde{J}^{1}(\nu) \widetilde{J}^{2}(\nu)}{\widetilde{J}^{1}_{\text{eik}}(\nu) \widetilde{J}^{2}_{\text{eik}}(\nu)}
$$

 $-$ Step 1, remove Λ .

taking lambda to infinity will not introduce new types of singularities

$$
S^{\overline{R}}(\tau) = \delta(\tau) + C_F \frac{\alpha_s}{\pi} \left(\frac{\mu^2}{Q^2}\right)^{\varepsilon} \left\{ \delta(\tau) \left[-\frac{1}{\varepsilon^2} - \frac{7\pi^2}{12} \right] -2\delta(\tau) \left[-\frac{1}{\varepsilon} \ln \omega - \ln \omega \ln R + \ln^2 \omega + \mathcal{O}(R) \right] - \left[\frac{2}{\tau} \ln R \right]_+ \right\}
$$

- **Removing cut-offs**
	- Step 2 , remove R in the soft sector
	- removing R introduces new IR singularities, which requires subtraction

Applying factorization theorem, take $O = Y_1^{\dagger} Y_2$

$$
\langle X_1, X_2; X_s | Y_1^{\dagger} Y_2 | 0 \rangle \cong \langle X_1, X_2; X_s | \frac{Y_1^{\dagger} W_1}{\langle 0 | Y_j^{\dagger} W_j | 0 \rangle} Y_1^{\dagger} Y_2 \frac{W_2^{\dagger} Y_2}{\langle 0 | W_2^{\dagger} Y_2 | 0 \rangle} | 0 \rangle \quad (1 + \mathcal{O}(\lambda_c))
$$

$$
\mathcal{C}_{Y_1^{\dagger} Y_2} = 1
$$

$$
S \cong S^{\overline{R}} \otimes J_{\text{eik}}^{R_1} \otimes J_{\text{eik}}^{R_2}
$$
\n
$$
\sum_{X_1} \int d\Pi_{X_1} \left| \frac{\langle X_1 | Y_1^{\dagger} W_1 | 0 \rangle}{\langle 0 | Y_1^{\dagger} W_1 | 0 \rangle} \right|^2 \delta(\tau - p_{X_1}^+)
$$

— Step 2 , remove R in the soft sector

— Step 3 , remove R in the collinear sector

Applying factorization theorem, take

$$
\langle X_j; X_s | \bar{\psi} W_j | 0 \rangle \cong \langle X_j; X_s | \frac{\bar{\psi} W_j}{\langle 0 | Y_j^{\dagger} W_j | 0 \rangle} Y_j^{\dagger} W_j | 0 \rangle \quad (1 + \lambda_s)
$$

$$
\left(\mathcal{C}_{\bar{\psi} W} = 1\right)
$$

— Step 3 , remove R in the collinear sector

$$
\frac{d\sigma}{d\tau} \otimes J_{\text{eik}}^{R_1} \otimes J_{\text{eik}}^{R_2} \cong H \times S \otimes J^{R_1} \otimes J^{R_2}
$$

convolve with $J_{\text{eik}}^{\overline{R_j}}$:

$$
J^j \cong J^{R_j} \otimes J_{\text{eik}}^{\overline{R_j}}
$$

$$
\frac{d\sigma}{d\tau} \otimes J_{\text{eik}}^1 \otimes J_{\text{eik}}^2 \cong H \times S \otimes J^1 \otimes J^2
$$

 $\int d\tau \frac{d\sigma}{d\tau} e^{-\nu\tau} \cong H \frac{\widetilde{S}(\nu) \widetilde{J}^1(\nu) \widetilde{J}^2(\nu)}{\widetilde{J}^1(\nu) \widetilde{J}^2(\nu)}$

Laplace transform

• Steps to remove the cut-offs

1.
$$
\frac{d\sigma}{d\tau} \cong H \times S^{\Lambda \overline{R}} \otimes J^{R_1} \otimes J^{R_2}
$$

\n2.
$$
\frac{d\sigma}{d\tau} \cong H \times S^{\overline{R}} \otimes J^{R_1} \otimes J^{R_2}
$$

\n3.
$$
\frac{d\sigma}{d\tau} \otimes J^{R_1}_{\text{eik}} \otimes J^{R_2}_{\text{eik}} \cong H \times S \otimes J^{R_1} \otimes J^{R_2}
$$

\n4.
$$
\frac{d\sigma}{d\tau} \otimes J^{1}_{\text{eik}} \otimes J^{2}_{\text{eik}} \cong H \times S \otimes J^{1} \otimes J^{2}
$$

\n5.
$$
\int d\tau \frac{d\sigma}{d\tau} e^{-\nu\tau} \cong H \frac{\widetilde{S}(\nu) \widetilde{J}^{1}(\nu) \widetilde{J}^{2}(\nu)}{\widetilde{J}^{1}_{\text{eik}}(\nu) \widetilde{J}^{2}_{\text{eik}}(\nu)}
$$

$$
J^{j}(\tau) = \delta(\tau) + \frac{\alpha_{s}C_{F}}{2\pi} \left(\frac{\mu^{2}}{Q^{2}}\right)^{\epsilon} \left\{\delta(\tau) \left(\frac{2}{\varepsilon^{2}} + \frac{3}{2\varepsilon} + \frac{7}{2} - \frac{\pi^{2}}{6}\right) + \delta(\tau) \left(\frac{2}{\varepsilon} \ln \omega + 2 \ln \omega \ln \delta_{j} + \ln^{2} \omega\right) - \left(2 \ln \delta_{j} + \frac{3}{2}\right) \left[\frac{1}{\tau}\right]_{+}\right\}
$$

$$
UV - IR pole \qquad \text{overlapping soft-collinear singularity}
$$

$$
J^{j}_{\text{eik}}(\tau) = \delta(\tau) + \frac{\alpha_{s}C_{F}}{2\pi} \left(\frac{\mu^{2}}{Q^{2}}\right)^{\varepsilon} \left\{\delta(\tau) \left[\frac{\pi^{2}}{3} + \frac{2}{\varepsilon} \ln \omega + 2 \ln \omega \ln \delta_{j} + \ln^{2} \omega\right] + \left(\frac{2}{\varepsilon} - 2 \ln \delta_{j}\right) \left[\frac{1}{\tau}\right]_{+} - 2 \left[\frac{\ln \tau}{\tau}\right]_{+}\right\}
$$

- Factorization with naive inclusive jet and soft functions over-counts the softcollinear region and adds UV divergences to the phase-space integrals.
- The over-counting can be completely compensated by the eikonal jet functions.

Generalization to other observables

our derivation is not restricted to observables whose measurement function is linear in each sector. For observables that do not satisfies linearity, integrals will not be a simple convolution.

Since the did not require $\lambda_s = \lambda_c$, if instead one take can be generalized to SCET II observables.

• **R dependence / rapidity divergence**

• **R dependence / rapidity divergence**

$$
\frac{d\sigma}{d\tau} \otimes J_{\text{eik}}^{R_1} \otimes J_{\text{eik}}^{R_2} \cong H \times S \otimes J^{R_1} \otimes J^{R_2}
$$
\n
$$
S \cong S^{\overline{R}} \otimes J_{\text{eik}}^{R_1} \otimes J_{\text{eik}}^{R_2}
$$
\n
$$
\text{R dependence match at leading } \tau \text{ , up to } \mathcal{O}(R)
$$
\n
$$
\frac{d\sigma}{d\tau} \otimes J_{\text{eik}}^1 \otimes J_{\text{eik}}^2 \cong H \times S \otimes J^1 \otimes J^2
$$

Thank you

