Removing Overlapping Phase-space Singularities

Kai Yan Harvard University SCET 2015

Based on arXiv:1502.05411 with Ilya Feige, Matthew Schwartz

Overview

Soft-collinear overlapping

Operator-only SCET
 (Luke-Freeman, Feige-Schwartz)

No sum over labels, any regulators; Overlap not yet addressed. [Lee,Sterman,Mehen,Idibi] shown equivalent

Traditional QCD approach:

soft collinear subtracted from the soft function with the eikonal jet function

· Label SCET

excluding zero-bin from collinear integral: diagram by diagram subtraction.

Method of regions

when regulating via analytic continuation soft-collinear region does not contribute

Overview

•

Effective Theory Formulation

Lagrangian is just multiple copies of QCD Lagrangian : $\mathcal{L}_{eff} = \mathcal{L}_{soft} + \sum_{j=1}^{N} \mathcal{L}_{j}$ Operator-level matching in EFT at leading power in N-jet limit

$$\begin{split} \langle X_1 X_2; X_s | \, \bar{\psi} \gamma^{\mu} \psi \, | 0 \rangle &\cong \mathcal{C}_2 \, \langle X_1 X_2; X_s | \frac{\bar{\psi}_1 W_1}{\operatorname{tr} \langle 0 | \, Y_1^{\dagger} W_1 \, | 0 \rangle \, / N_c} Y_1^{\dagger} \gamma^{\mu} Y_2 \frac{W_2^{\dagger} \, \psi_2}{\operatorname{tr} \langle 0 | \, W_2^{\dagger} Y_2 \, | 0 \rangle \, / N_c} | 0 \rangle_{\mathcal{L}_{eff}} \\ & \text{matching coefficient} \\ & \text{provided use} \quad \mathcal{L}_{eff} = \mathcal{L}_{soft} + \mathcal{L}_1 + \mathcal{L}_2 \end{split}$$

The validity regime of matching is the N-jet regime.

Can we do inclusive phase-space integrals in each sector?

Amplitude-level factorization

Factorization with designated final state

Factorization with designated final state

- Soft-collinear particles can be included in either soft or collinear sector. Factorization still works at leading power.
- subtraction is needed when phase space of different sectors overlap

Amplitude-level subtractions

Construct an amplitude where q can go into arbitrary sectors

$$\begin{split} \mathcal{M}_{\rm sub}(p_{1},p_{2},q) &\equiv \left\{ \frac{\langle p_{1};q | \bar{\psi}W_{1} | 0 \rangle}{\langle 0 | Y_{1}^{\dagger}W_{1} | 0 \rangle} - \frac{\langle p_{1} | \bar{\psi}W_{1} | 0 \rangle}{\langle 0 | Y_{1}^{\dagger}W_{1} | 0 \rangle} \frac{\langle q | Y_{1}^{\dagger}W_{1} | 0 \rangle}{\langle 0 | Y_{1}^{\dagger}W_{1} | 0 \rangle} \right\} \frac{\langle p_{2} | W_{2}^{\dagger}\psi | 0 \rangle}{\langle 0 | W_{2}^{\dagger}Y_{2} | 0 \rangle} \langle 0 | Y_{1}^{\dagger}Y_{2} | 0 \rangle \\ &+ \frac{\langle p_{1} | \bar{\psi}W_{1} | 0 \rangle}{\langle 0 | Y_{1}^{\dagger}W_{1} | 0 \rangle} \left\{ \frac{\langle p_{2};q | \bar{\psi}W_{2} | 0 \rangle}{\langle 0 | Y_{2}^{\dagger}W_{2} | 0 \rangle} - \frac{\langle p_{2} | \bar{\psi}W_{2} | 0 \rangle}{\langle 0 | Y_{2}^{\dagger}W_{2} | 0 \rangle} \frac{\langle q | Y_{2}^{\dagger}W_{2} | 0 \rangle}{\langle 0 | Y_{2}^{\dagger}W_{2} | 0 \rangle} \right\} \langle 0 | Y_{1}^{\dagger}Y_{2} | 0 \rangle \\ &+ \frac{\langle p_{1} | \bar{\psi}W_{1} | 0 \rangle}{\langle 0 | Y_{1}^{\dagger}W_{1} | 0 \rangle} \frac{\langle p_{2} | W_{2}^{\dagger}\psi | 0 \rangle}{\langle 0 | W_{2}^{\dagger}Y_{2} | 0 \rangle} \left\langle q | Y_{1}^{\dagger}Y_{2} | 0 \rangle \end{split}$$

Amplitude-level subtractions

$$\mathcal{M}_{\rm sub}(X_1,\cdots,X_N,X_s;q_1,q_2) \equiv \frac{\langle X_1 | \,\overline{\psi}W_1 | 0 \rangle}{\langle 0 | \,Y_1^{\dagger}W_1 | 0 \rangle} \cdots \frac{\langle X_N | \,W_N^{\dagger}\psi | 0 \rangle}{\langle 0 | \,W_N^{\dagger}Y_N | 0 \rangle} \langle X_s,q_1,q_2 | \,Y_1^{\dagger}\cdots Y_N | 0 \rangle$$

$$+ \sum_{i=1}^N \cdots \left\{ \frac{\langle X_i,q_1 | \,W_i^{\dagger}\psi | 0 \rangle}{\langle 0 | \,W_i^{\dagger}Y_i | 0 \rangle} \right\}_{\substack{\text{soft}\\\text{sub}}} \cdots \langle X_s,q_2 | \,Y_1^{\dagger}\cdots Y_N | 0 \rangle$$

$$+ \sum_{i=1}^N \cdots \left\{ \frac{\langle X_i,q_2 | \,W_i^{\dagger}\psi | 0 \rangle}{\langle 0 | \,W_i^{\dagger}Y_i | 0 \rangle} \right\}_{\substack{\text{soft}\\\text{sub}}} \cdots \langle X_s,q_1 | \,Y_1^{\dagger}\cdots Y_N | 0 \rangle$$

$$+ \sum_{i,j=1}^N \cdots \left\{ \frac{\langle X_i,q_1 | \,W_i^{\dagger}\psi | 0 \rangle}{\langle 0 | \,W_i^{\dagger}Y_i | 0 \rangle} \right\}_{\substack{\text{soft}\\\text{sub}}} \cdots \left\{ \frac{\langle X_j,q_2 | \,W_j^{\dagger}\psi | 0 \rangle}{\langle 0 | \,W_j^{\dagger}Y_j | 0 \rangle} \right\}_{\substack{\text{soft}\\\text{sub}}} \cdots \langle X_s | \,Y_1^{\dagger}\cdots Y_N | 0 \rangle$$

{} soft subtraction subtraction

- · agrees with full-QCD amplitude in any leading power IR limit
- can be integrated over all momentum region of q1, q2
- However, it is not a factorized formula!

Cross-section level factorization

Factorization with a hard-cutoff prescription Λ : the size of the ball at the origin Η $\Lambda \bar{R}$ $R = \tan^2 \frac{\theta}{2}$, with θ the opening angle of the cone. R_2 R_1 $\begin{array}{c} \text{in cone out of cone, in ball} \\ \downarrow \\ \langle X_1, X_2; X_s | \ \bar{\psi} \gamma^{\mu} \psi | 0 \rangle \end{array} \cong \mathcal{C}_2 \langle X_1, X_2; X_s | \begin{array}{c} \overline{\psi} W_1 \\ \overline{\psi} W_1 \\ \overline{\langle 0 | Y_j^{\dagger} W_j | 0 \rangle} \end{array} Y_1^{\dagger} \gamma^{\mu} Y_2 \frac{W_2^{\dagger} \psi}{\langle 0 | W_2^{\dagger} Y_2 | 0 \rangle} | 0 \rangle \quad (1 + \mathcal{O}(\lambda_s, \lambda_c))$ $\frac{d\sigma}{d\tau} \cong H \times S^{\Lambda \overline{R}} \otimes J^{R_1} \otimes J^{R_2} \left| \begin{array}{c} \left| \begin{array}{c} \text{up to} \\ \mathcal{O}(R,\Lambda) \end{array} \right| \right| \\ \mathcal{O}(R,\Lambda) \\ \end{array} \right|$ $\sum_{X_{1}} \int d\Pi_{X_{1}} \left| \frac{\langle X_{1} | \bar{\psi}W_{1} | 0 \rangle}{\langle 0 | Y_{1}^{\dagger}W_{1} | 0 \rangle} \right|^{2} \delta(\tau - p_{X_{1}}^{+})$ $\sum_{X_{s}} \int d\Pi_{X_{s}} \left| \langle X_{s} | Y_{1}^{\dagger} \cdots Y_{N} | 0 \rangle \right|^{2} \delta\left(\tau - \frac{1}{2Q} \Omega_{\tau}(p_{X_{s}})\right)$

Problems with hard-cutoff prescription

$$\begin{split} S^{\Lambda \overline{R}}(\tau) &= \delta(\tau) + C_F \frac{\alpha_s}{\pi} \left(\frac{\mu^2}{Q^2} \right)^{\varepsilon} \left\{ \delta(\tau) \left(-\frac{1}{\varepsilon^2} - \frac{7\pi^2}{12} + \frac{2}{\varepsilon} \ln \omega + 2 \ln \omega \ln R - 2 \ln^2 \omega + \mathcal{O}(R) \right) \\ &- \left[\frac{2}{\tau} \ln R \right]_+ \right\} \theta \left(\Lambda - \frac{\tau}{R} \right) \\ &+ C_F \frac{\alpha_s}{\pi} \left(\frac{\mu^2}{Q^2} \right)^{\varepsilon} \left\{ \delta(\tau) \left[-\frac{1}{\varepsilon^2} - \frac{\pi^2}{4} - 2 \left(-\frac{1}{\varepsilon} \ln \omega + \ln \omega \ln \frac{\Lambda}{Q} + \frac{1}{2} \ln^2 \omega \right) \right] - \left[\frac{2}{\tau} \ln \frac{\tau Q}{\Lambda} \right]_+ \right\} \theta \left(\frac{\tau}{R} - \Lambda \right) \\ &\text{UV-IR poles} \end{split}$$

• Regularization scheme: offshellness (ω) + Δ regulator for IR + DR for UV

$$\frac{n_j^{\mu}}{n_j \cdot k} \to \frac{p_j^{\mu}}{p_j \cdot k + \frac{Q^2 \omega}{2}}$$
$$\frac{1}{t_j \cdot k} \to \frac{1}{t_j \cdot k + \frac{\Delta}{t_j \cdot p_j}} \equiv \frac{1}{t_j \cdot k + \delta_j (t_j \cdot p_j)}$$

$$\begin{array}{l} \text{UV-IR poles} \\ \hline \\ J^{R_{j}}(\tau) \cong \delta(\tau) + \frac{\alpha_{s}C_{F}}{2\pi} \left(\frac{\mu^{2}}{Q^{2}} \right)^{\varepsilon} \left\{ \delta(\tau) \left(\frac{2}{\varepsilon^{2}} + \frac{3}{2\varepsilon} + \frac{7}{2} + \frac{\pi^{2}}{6} \right) \\ + \delta(\tau) \left(-\frac{2}{\varepsilon} \ln \omega - 2 \ln \omega \ln R + 2 \ln^{2} \omega + \mathcal{O}(R) \right) - \left(\frac{3}{2} - 2 \ln R \right) \left[\frac{1}{\tau} \right]_{+} - 2 \left[\frac{\ln \tau}{\tau} \right]_{+} \right\} \end{array}$$

$$S^{\overline{AR}} \otimes J^{R_1} \otimes J^{R_2}$$

$$\cong \delta(\tau) + C_F \frac{\alpha_s}{\pi} \left(\frac{\mu^2}{Q^2}\right)^{\varepsilon} \left\{ \delta(\tau) \left(\frac{1}{\varepsilon^2} + \frac{3}{2\varepsilon} + \frac{7}{2} - \frac{5\pi^2}{12} + \mathcal{O}(R)\right) - \frac{3}{2} \left[\frac{1}{\tau}\right]_+ - 2 \left[\frac{\ln \tau}{\tau}\right]_+ \right\}$$

$$R \text{ dependence do not exactly cancel between sectors}$$

The hard-cutoff prescription obscures factorization

cannot define factorized sectors that are both IR safe and independent on physical cut-offs.

does not hold exactly at leading power of \tau

• Steps to remove the cut-offs

1.
$$\frac{d\sigma}{d\tau} \cong H \times S^{\Lambda \overline{R}} \otimes J^{R_1} \otimes J^{R_2}$$

2.
$$\frac{d\sigma}{d\tau} \cong H \times S^{\overline{R}} \otimes J^{R_1} \otimes J^{R_2}$$

3.
$$\frac{d\sigma}{d\tau} \otimes J^{R_1}_{\text{eik}} \otimes J^{R_2}_{\text{eik}} \cong H \times S \otimes J^{R_1} \otimes J^{R_2}$$

4.
$$\frac{d\sigma}{d\tau} \otimes J^1_{\text{eik}} \otimes J^2_{\text{eik}} \cong H \times S \otimes J^1 \otimes J^2$$

5.
$$\int d\tau \frac{d\sigma}{d\tau} e^{-\nu\tau} \cong H \frac{\widetilde{S}(\nu) \widetilde{J}^1(\nu) \widetilde{J}^2(\nu)}{\widetilde{J}^1_{\text{eik}}(\nu) \widetilde{J}^2_{\text{eik}}(\nu)}$$

Removing the cutoffs

٠

-Step 1, remove Λ .

taking lambda to infinity will not introduce new types of singularities

$$S^{\overline{R}}(\tau) = \delta(\tau) + C_F \frac{\alpha_s}{\pi} \left(\frac{\mu^2}{Q^2}\right)^{\varepsilon} \left\{ \delta(\tau) \left[-\frac{1}{\varepsilon^2} - \frac{7\pi^2}{12} \right] - 2\delta(\tau) \left[-\frac{1}{\varepsilon} \ln \omega - \ln \omega \ln R + \ln^2 \omega + \mathcal{O}(R) \right] - \left[\frac{2}{\tau} \ln R \right]_+ \right\}$$

Removing cut-offs

- Step 2 , remove R in the soft sector

removing R introduces new IR singularities, which requires subtraction

Applying factorization theorem, take $\mathcal{O} = Y_1^{\dagger}Y_2$

$$\langle X_1, X_2; X_s | Y_1^{\dagger} Y_2 | 0 \rangle \cong \langle X_1, X_2; X_s | \frac{Y_1^{\dagger} W_1}{\langle 0 | Y_j^{\dagger} W_j | 0 \rangle} Y_1^{\dagger} Y_2 \frac{W_2^{\dagger} Y_2}{\langle 0 | W_2^{\dagger} Y_2 | 0 \rangle} | 0 \rangle \quad (1 + \mathcal{O}(\lambda_c))$$

$$\mathcal{C}_{Y_1^{\dagger} Y_2} = 1$$

$$S \cong S^{\overline{R}} \otimes J_{\text{eik}}^{R_1} \otimes J_{\text{eik}}^{R_2} \quad \text{up to } \mathcal{O}(R)$$

$$\sum_{X_1} \int d\Pi_{X_1} \left| \frac{\langle X_1 | Y_1^{\dagger} W_1 | 0 \rangle}{\langle 0 | Y_1^{\dagger} W_1 | 0 \rangle} \right|^2 \delta(\tau - p_{X_1}^+)$$

Removing the cutoffs

- Step 2, remove R in the soft sector

• Removing the cutoffs

- Step 3 , remove R in the collinear sector

Applying factorization theorem, take

$$\langle X_{\boldsymbol{j}}; X_{\boldsymbol{s}} | \, \bar{\psi} W_{\boldsymbol{j}} \, | 0 \rangle \, \cong \, \langle X_{\boldsymbol{j}}; X_{\boldsymbol{s}} | \underbrace{\frac{\bar{\psi} W_{\boldsymbol{j}}}{\langle 0 | Y_{\boldsymbol{j}}^{\dagger} W_{\boldsymbol{j}} | 0 \rangle} Y_{\boldsymbol{j}}^{\dagger} W_{\boldsymbol{j}} \, | 0 \rangle \quad (1 + \lambda_{\boldsymbol{s}})$$

$$\left(\mathcal{C}_{\bar{\psi} W} = 1 \right)$$

$$J^{j} \cong J^{R_{j}} \otimes J^{\Lambda \overline{R}_{j}}_{\text{eik}} \quad \text{up to } \mathcal{O}(\Lambda)$$

$$I = \text{leading } \mathcal{T}$$

$$J^{j} \cong J^{R_{j}} \otimes J^{\overline{R_{j}}}_{\text{eik}}$$

• Removing the cutoffs

- Step 3, remove R in the collinear sector

$$\frac{d\sigma}{d\tau} \otimes J_{\text{eik}}^{R_1} \otimes J_{\text{eik}}^{R_2} \cong H \times S \otimes J^{R_1} \otimes J^{R_2}$$
convolve with $J_{\text{eik}}^{\overline{R_j}}$:
$$J^j \cong J^{R_j} \otimes J_{\text{eik}}^{\overline{R_j}}$$

$$\frac{d\sigma}{d\tau} \otimes J_{\text{eik}}^1 \otimes J_{\text{eik}}^2 \cong H \times S \otimes J^1 \otimes J^2$$

Removing the cutoffs

•

 $\int d\tau \frac{d\sigma}{d\tau} e^{-\nu\tau} \cong H \frac{\widetilde{S}(\nu)\widetilde{J}^1(\nu)\widetilde{J}^2(\nu)}{\widetilde{J}^1_{\rm cit}(\nu)\widetilde{J}^2_{\rm cit}(\nu)}$

Laplace transform

• Steps to remove the cut-offs

1.
$$\frac{d\sigma}{d\tau} \cong H \times S^{\Lambda \overline{R}} \otimes J^{R_1} \otimes J^{R_2}$$

2.
$$\frac{d\sigma}{d\tau} \cong H \times S^{\overline{R}} \otimes J^{R_1} \otimes J^{R_2}$$

3.
$$\frac{d\sigma}{d\tau} \otimes J^{R_1}_{\text{eik}} \otimes J^{R_2}_{\text{eik}} \cong H \times S \otimes J^{R_1} \otimes J^{R_2}$$

4.
$$\frac{d\sigma}{d\tau} \otimes J^1_{\text{eik}} \otimes J^2_{\text{eik}} \cong H \times S \otimes J^1 \otimes J^2$$

5.
$$\int d\tau \frac{d\sigma}{d\tau} e^{-\nu\tau} \cong H \frac{\widetilde{S}(\nu) \widetilde{J}^1(\nu) \widetilde{J}^2(\nu)}{\widetilde{J}^1_{\text{eik}}(\nu) \widetilde{J}^2_{\text{eik}}(\nu)}$$

$$J^{j}(\tau) = \delta(\tau) + \frac{\alpha_{s}C_{F}}{2\pi} \left(\frac{\mu^{2}}{Q^{2}}\right)^{\varepsilon} \left\{\delta(\tau) \left(\frac{2}{\varepsilon^{2}} + \frac{3}{2\varepsilon} + \frac{7}{2} - \frac{\pi^{2}}{6}\right) + \delta(\tau) \left(-\frac{2}{\varepsilon}\ln\omega + 2\ln\omega\ln\delta_{j} + \ln^{2}\omega\right) - \left(2\ln\delta_{j} + \frac{3}{2}\right) \left[\frac{1}{\tau}\right]_{+}\right\}$$

$$UV\text{-IR pole} \qquad \text{overlapping soft-collinear singularity}$$

$$J^{j}_{\text{eik}}(\tau) = \delta(\tau) + \frac{\alpha_{s}C_{F}}{2\pi} \left(\frac{\mu^{2}}{Q^{2}}\right)^{\varepsilon} \left\{\delta(\tau) \left[\frac{\pi^{2}}{3} - \frac{2}{\varepsilon}\ln\omega + 2\ln\omega\ln\delta_{j} + \ln^{2}\omega\right] + \left(\frac{2}{\varepsilon} - 2\ln\delta_{j}\right) \left[\frac{1}{\tau}\right]_{+} - 2\left[\frac{\ln\tau}{\tau}\right]_{+}\right\}$$

- Factorization with naive inclusive jet and soft functions over-counts the softcollinear region and adds UV divergences to the phase-space integrals.
- The over-counting can be completely compensated by the eikonal jet functions.

Generalization to other observables

our derivation is not restricted to observables whose measurement function is linear in each sector. For observables that do not satisfies linearity, integrals will not be a simple convolution.

Since the did not require $\lambda_s = \lambda_c$, if instead one take $\lambda_s^2 = \lambda_c = \lambda$ can be generalized to SCET II observables.

R dependence / rapidity divergence

• R dependence / rapidity divergence

Thank you

