The 3-loop QCD cusp anomalous dimension

Johannes M. Henn

Institute for Advanced Study

supported in part by the Department of Energy grant DE-SC0009988 Marvin L. Goldberger Member

SCET 2015

The 3-loop QCD cusp anomalous dimension

based on PoS LL2014 (2014) 016 Phys.Rev.Lett. 114 (2015) 6,062006

with

A. Grozin (Novosibirsk)

G. Korchemsky (Saclay)

P. Marquard (DESY)

Outline

(1) Infrared divergences in gauge theories and Wilson lines

(2) Calculation of 3-loop integrals

(3) 3-loop result

(4) Conjectures

Reminder Wilson loops

$$\mathcal{L} = \frac{1}{4} \operatorname{Tr} \int F_{\mu\nu} F^{\mu\nu} , \qquad F^{\mu\nu} = \partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu} + ig[A^{\mu}, A^{\nu}]$$
$$A^{\mu} = \sum_{a=1}^{N^2 - 1} A^{\mu}_a t^a_{ij} \qquad \text{gauge group SU(N)}$$

Wilson loops:

required for gauge invariance of non-local objects

 $\mathcal{O} = \Psi(x_1) W_C[x_1, x_2] \overline{\Psi}(x_2)$ $W_C[x_1, x_2] = P e^{\int_C dx_\mu A^\mu}$

P: path ordering

contain local operators

$$\int \int \sim 1 + \sigma^{\mu\nu} F_{\mu\nu} + \dots$$

gauge dynamics - Wilson loops of arbitrary shapes

Physical relevance of Γ_{cusp}

Describes infrared structure of scattering amplitudes

• predicts form of IR divergences of a generic 3-loop scattering amplitude

 can be used for resummation to increase theoretical precision, e.g. in top quark physics
 [see e.g. Czakon, Mitov, Sterman (2009)]

Limits and relations of $\Gamma_{cusp}(\phi)$

 vanishes at zero angle (straight line)

$$\Gamma_{\rm cusp}(\phi=0,\lambda)=0$$

• quark-antiquark potential $\delta = \pi - \phi$ $\delta \ll 1$ $\Gamma_{\text{cusp}} \sim \frac{C}{\delta}$ δ

[Kilian, Mannel, Ohl (1993)]

up to terms proportional to beta function

• light-like limit $x = e^{i\phi}$ $x \to 0$

 $\lim_{x \to 0} \Gamma_{\text{cusp}} = -K \log x + \mathcal{O}(x^0)$

[Korchemsky (1989); Korchemsky, Marchesini (1993)]

K light-like cusp anomalous dimension

also governs anomalous dimension of large spin operators

Master integrals

• abelian eikonal exponentiation: need only planar integrals

- **71** master integrals $\vec{f}(x;\epsilon)$ $D = 4 2\epsilon$ $x = e^{i\phi}$
- differential equations in suitable basis

$$\partial_x \vec{f}(x;\epsilon) = \epsilon \left[\frac{a}{x} + \frac{b}{x-1} + \frac{c}{x+1}\right] \vec{f}(x;\epsilon)$$

a, b, c constant 71x71 matrices

- boundary conditions trivially from x = 1
- solution in terms of harmonic polylogarithms

[method: see JMH, PRL 110 (1013) 25]

one integral: [Chetyrkin, Grozin, NP B666 (2003)]

Example

$$f_{44} = \epsilon^4 \left[-\frac{1}{6} \pi^2 H_{0,0}(x) - \frac{2}{3} \pi^2 H_{1,0}(x) - 4H_{0,-1,0,0}(x) + 2H_{0,0,-1,0}(x) + 2H_{0,0,0}(x) - 4H_{1,0,0,0}(x) + 4\zeta_3 H_0(x) - \frac{17\pi^4}{360} \right] + \mathcal{O}(\epsilon^5)$$

- all basis integrals are pure functions of uniform weight
- numerical checks with FIESTA
- confirmed previously known `N=4 SYM` result

Calculation at three loops

(I) compute proper vertex function

(2) take into account renormalization of Lagrangian

(3) compute vertex renormalization

(4) extract Gamma cusp $\Gamma_{\text{cusp}} = \frac{\partial}{\partial \log \mu} \log Z$

Checks:

• expected divergence structure

$$\log Z = -\frac{1}{2\epsilon} \left(\frac{\alpha_s}{\pi}\right) \Gamma^{(1)} + \left(\frac{\alpha_s}{\pi}\right)^2 \left[\frac{\beta_0}{16\epsilon^2} \Gamma^{(1)} - \frac{1}{4\epsilon} \Gamma^{(2)}\right] + \left(\frac{\alpha_s}{\pi}\right)^3 \left[-\frac{\beta_0^2 \Gamma^{(1)}}{96\epsilon^3} + \frac{\beta_1 \Gamma^{(1)} + 4\beta_0 \Gamma^{(2)}}{96\epsilon^2} - \frac{\Gamma^{(3)}}{6\epsilon}\right]$$

• reproduce HQET wavefunction renormalization

[Grozin (2001), Chetyrkin, Grozin (2003)]

 \bullet dependence of gauge parameter disappears from $~\Gamma_{cusp}$

$\operatorname{\mathsf{Result}}(\mathbf{I})$ $\Gamma_{\operatorname{cusp}}(\alpha_s, x) = \sum_{k \ge 1} \left(\frac{\alpha_s}{\pi}\right)^k \Gamma_{\operatorname{cusp}}^{(k)}(x) \qquad \alpha_s = \frac{g_{\operatorname{YM}}^2}{4\pi}$

One loop
$$\Gamma_{\mathrm{cusp}}^{(1)} = C_F \, \tilde{A}_1$$
 [Polyakov (1980)]

Two loops [Korchemsky, Radyushkin (1987)][nf: Braun, Beneke, 1995]

$$\Gamma_{\text{cusp}}^{(2)} = \frac{1}{2} C_F C_A \left[\tilde{A}_3 + \tilde{A}_2 \right] + \left(\frac{67}{36} C_F C_A - \frac{5}{9} C_F T_F n_f \right) \tilde{A}_1$$

with

$$A_{1}(x) = \xi \frac{1}{2} H_{1}(y), \qquad A_{2}(x) = \left[\frac{\pi^{2}}{3} + \frac{1}{2} H_{1,1}(y)\right] + \xi \left[-H_{0,1}(y) - \frac{1}{2} H_{1,1}(y)\right],$$
$$A_{3}(x) = \xi \left[-\frac{\pi^{2}}{6} H_{1}(y) - \frac{1}{4} H_{1,1,1}(y)\right] + \xi^{2} \left[\frac{1}{2} H_{1,0,1}(y) + \frac{1}{4} H_{1,1,1}(y)\right],$$

and
$$\xi = \frac{1+x^2}{1-x^2}$$
 $y = 1-x^2$ $\tilde{A} = A(x) - A(1)$

in agreement with the literature

Three-loop result

Result (3)

$$\begin{split} A_{1}(x) &= \xi \frac{1}{2} \mathcal{H}_{1}(y), \qquad A_{2}(x) = \left[\frac{\pi^{2}}{3} + \frac{1}{2} \mathcal{H}_{1,1}(y) \right] + \xi \left[-\mathcal{H}_{0,1}(y) - \frac{1}{2} \mathcal{H}_{1,1}(y) \right], \\ A_{3}(x) &= \xi \left[-\frac{\pi^{2}}{6} \mathcal{H}_{1}(y) - \frac{1}{4} \mathcal{H}_{1,1,1}(y) \right] + \xi^{2} \left[\frac{1}{2} \mathcal{H}_{1,0,1}(y) + \frac{1}{4} \mathcal{H}_{1,1,1}(y) \right], \\ A_{4}(x) &= \left[-\frac{\pi^{2}}{6} \mathcal{H}_{1,1}(y) - \frac{1}{4} \mathcal{H}_{1,1,1,1}(y) \right] + \\ &+ \xi \left[\frac{\pi^{2}}{3} \mathcal{H}_{0,1}(y) + \frac{\pi^{2}}{6} \mathcal{H}_{1,1}(y) + 2\mathcal{H}_{1,1,0,1}(y) + \frac{3}{2} \mathcal{H}_{0,1,1,1}(y) + \frac{7}{4} \mathcal{H}_{1,1,1,1}(y) + 3\zeta_{3}\mathcal{H}_{1}(y) \right] \\ &+ \xi^{2} \left[-2\mathcal{H}_{1,0,0,1}(y) - 2\mathcal{H}_{0,1,0,1}(y) - 2\mathcal{H}_{1,1,0,1}(y) - \mathcal{H}_{1,0,1,1}(y) - \mathcal{H}_{0,1,1,1}(y) - \frac{3}{2} \mathcal{H}_{1,1,1,1}(y) \right], \\ A_{5}(x) &= \xi \left[\frac{\pi^{4}}{12} \mathcal{H}_{1}(y) + \frac{\pi^{2}}{4} \mathcal{H}_{1,1,1}(y) + \frac{5}{8} \mathcal{H}_{1,1,1,1}(y) \right] + \xi^{2} \left[-\frac{\pi^{2}}{6} \mathcal{H}_{1,0,1}(y) - \frac{\pi^{2}}{3} \mathcal{H}_{0,1,1}(y) - \frac{\pi^{2}}{4} \mathcal{H}_{1,1,1}(y) \right] \\ &- \mathcal{H}_{1,1,1,0,1}(y) - \frac{3}{4} \mathcal{H}_{1,0,1,1,1}(y) - \mathcal{H}_{0,1,1,1,1}(y) - \frac{11}{8} \mathcal{H}_{1,1,1,1}(y) - \frac{3}{2} \zeta_{3}\mathcal{H}_{1,1}(y) \right] \\ &+ \xi^{3} \left[\mathcal{H}_{1,0,0,1}(y) + \mathcal{H}_{1,0,1,0,1}(y) + \mathcal{H}_{1,1,1,0}(y) + \frac{1}{2} \mathcal{H}_{1,0,0,1}(y) + \frac{1}{4} \mathcal{H}_{1,1,1}(y) \right], \\ B_{3}(x) &= \left[-\mathcal{H}_{1,0,1}(y) + \frac{1}{2} \mathcal{H}_{0,1,1}(y) - \frac{1}{4} \mathcal{H}_{1,1,1}(y) \right] + \xi \left[2\mathcal{H}_{0,0,1}(y) + \mathcal{H}_{0,1,1}(y) + \frac{1}{4} \mathcal{H}_{1,1,1}(y) \right], \\ B_{5}(x) &= \frac{x}{1 - x^{2}} \left[-\frac{\pi^{4}}{60} \mathcal{H}_{-1}(x) - \frac{\pi^{4}}{60} \mathcal{H}_{1}(x) - 4\mathcal{H}_{-1,0,-1,0,0}(x) + 4\mathcal{H}_{-1,0,0,0}(x) + 2\zeta_{3}\mathcal{H}_{-1,0}(x) + 2\zeta_{3}\mathcal{H}_{-1,0}(x) \right], \end{aligned}$$

Checks of result

• light-like limit $\Gamma_{\text{cusp}}(\alpha_s, x) \stackrel{x \to 0}{=} K(\alpha_s) \log(1/x) + \mathcal{O}(x^0)$

 $K^{(1)} = C_F ,$

$$K^{(2)} = C_A C_F \left(\frac{67}{36} - \frac{\pi^2}{12}\right) - \frac{5}{9} n_f T_f C_F,$$

$$K^{(3)} = C_A^2 C_F \left(\frac{245}{96} - \frac{67\pi^2}{216} + \frac{11\pi^4}{720} + \frac{11}{24}\zeta_3\right)$$

$$+ C_A C_F n_f T_f \left(-\frac{209}{216} + \frac{5\pi^2}{54} - \frac{7}{6}\zeta_3\right)$$

$$+ C_F^2 n_f T_f \left(\zeta_3 - \frac{55}{48}\right) - \frac{1}{27} C_F (n_f T_f)^2$$

in agreement with

[nf^2: Beneke, Braun (1995)] [Vogt (2001); Berger (2002)] [Moch, Vermeaseren, Vogt (2004)]

• quark-antiquark limit $\phi = \pi - \delta, \delta \to 0$

$$\Gamma_{\rm cusp} \sim \frac{V}{\delta} + \mathcal{O}(\beta)$$

in agreement with [Peter (1997), Schroeder (1999)]

A theory independent observable?

• define 'effective coupling' $a := \pi/C_F K(\alpha_s)$

$$\Omega(a, x) := \Gamma_{\text{cusp}}(\alpha_s, x)$$
$$\Omega(a, x) \stackrel{x \to 0}{=} \frac{a}{-} C_F \log(1/x) + \mathcal{O}(x^0)$$

$$\Omega(a, x) \stackrel{x \to 0}{=} \frac{\alpha}{\pi} C_F \log(1/x) + \mathcal{O}(x^0)$$

we find

$$\Omega(a,x) = \frac{a}{\pi} C_F \tilde{A}_1 + \left(\frac{a}{\pi}\right)^2 \frac{C_A C_F}{2} \left[\tilde{A}_3 + \tilde{A}_2 + \frac{\pi^2}{6} \tilde{A}_1\right] \\ + \left(\frac{a}{\pi}\right)^3 \frac{C_F C_A^2}{4} \left[\tilde{A}_5 + \tilde{A}_4 - \tilde{A}_2 + \tilde{B}_5 + \tilde{B}_3 \right] \\ + \frac{\pi^2}{3} \tilde{A}_3 + \frac{\pi^2}{3} \tilde{A}_2 - \frac{\pi^4}{180} \tilde{A}_1 + \mathcal{O}(a^4).$$

independent of nf to three loops!

Plot of 1,2,3-loop results

$$x = e^{-\theta}$$

nf-dependence enters only through effective coupling `a`

FIG. 2: θ dependence of the cusp anomalous dimension $\Omega(a, e^{-\theta})$ at one (solid), two (dashed), and three (dotted) loops.

slope at small angle

$$\Omega(a, e^{-\theta}) = C_F \left[\left(\frac{a}{\pi}\right) \frac{1}{3} + \left(\frac{a}{\pi}\right)^2 \frac{C_A}{4} \left(1 - \frac{\pi^2}{9}\right) \right]$$
(18)
+ $\left(\frac{a}{\pi}\right)^3 \frac{C_A^2}{12} \left(-\frac{5}{3} - \frac{\pi^2}{6} + \frac{\pi^4}{20} - \zeta_3\right) + \mathcal{O}(a^4) \right] \theta^2 + \mathcal{O}(\theta^4).$

Conjecture (1)

 assuming theory independence of Omega allows to predict cusp anomalous dimension in N=4 SYM

we predict (in DRED bar scheme):

$$\Gamma_{\mathcal{N}=4}(\alpha_s, x) = \frac{\alpha_s}{\pi} C_F \tilde{A}_1 + \frac{C_A C_F}{2} \left(\frac{\alpha_s}{\pi}\right)^2 \left[\tilde{A}_3 + \tilde{A}_2\right] + \frac{C_F C_A^2}{4} \left(\frac{\alpha_s}{\pi}\right)^3 \left[\tilde{A}_5 + \tilde{A}_4 - \tilde{A}_2 + \tilde{B}_5 + \tilde{B}_3\right] + \mathcal{O}(\alpha_s^4)$$

test quark-antiquark limit

$$\Gamma_{\mathcal{N}=4}(\alpha_s, x) \stackrel{\delta \to 0}{=} -\frac{C_F \alpha_s}{\delta} \left\{ 1 - \left(\frac{\alpha_s}{\pi}\right) C_A + \left(\frac{\alpha_s}{\pi}\right)^2 C_A^2 \left[\frac{5}{4} + \frac{\pi^2}{4} - \frac{\pi^4}{64}\right] + \mathcal{O}(\alpha_s^3) \right\} + \mathcal{O}(\delta^0)$$

agrees perfectly with result from

[Prausa, Steinhauser (2013)]

Conjecture (2)

• assume Omega stays nf-independent at four loops allows to predict e.g. first quartic Casimir terms

$$\Gamma_{\rm cusp}(\alpha_s, x) = \frac{1}{64} n_f \left(\frac{\alpha_s}{\pi}\right)^4 g(x) C_F C_4 + \dots$$

$$C_4 = d_F^{abcd} d_F^{abcd} / N_A = \frac{18 - 6N^2 + N^4}{96N^2}$$

- assumption implies
 - $g(x) = g_0 \tilde{A}_1$
- fix g_0 from known quark-antiquark limit [Smirnov^2, Steinhauser (2008)] $g_0 = -56.83(1)$

• implies non-zero value for corresponding color structure in light-like cusp anomalous dimension!

Summary QCD cusp anomalous dimension

- full analytic 3-loop result
- predicts infrared divergences of all planar 3-loop scattering amplitudes
- can be used for resummation to improve theoretical predictions e.g. in top quark physics

- nf-dependence very simple!
- leads to predictions/conjectures:
- -- e.g. N=4 SYM result (very similar to QCD answer!)
- -- quartic Casimir terms at 4 loops