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Mo1va1on	  
•  Overwhelming	  

evidence	  of	  dark	  
ma+er	  presence	  in	  
the	  universe	  

•  All	  observa1on	  based	  
on	  gravita1onal	  
interac1ons	  only	  

⌦DM ⇡ 0.22



The	  “WIMP	  miracle”	  

(1) 	  A	  new	  heavy	  par1cle	  is	  in	  thermal	  	  
equilibrium	  
	  
(2)	  Universe	  cools	  down	  

	  
(3)	  Dark	  ma+er	  species	  freeze	  out	  
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THE “WIMP MIRACLE”

(1) Assume a new (heavy) 
particle F�is initially in 
thermal equilibrium: 
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(for	  weak	  scale	  interac1ons)	  

(1)	  
(2)	  
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2 ⇠ 3⇥ 10�26cm3/s
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Search	  for	  non-‐gravita1onal	  	  
DM	  interac1ons	  

•  Produce	  at	  LHC	  

•  Indirect	  detec1on	  
•  Direct	  detec1on	  
	  

��

f f

•  In	  this	  talk	  we	  focus	  on	  DM	  annihila1on	  to	  the	  
pair	  of	  SM	  gauge	  bosons	  



Indirect	  searches	  

•  Many	  different	  experiments	  
looking	  for	  access	  over	  the	  
astrophysical	  backgrounds	  of	  
photons,	  neutrinos,	  positrons,	  etc.	  
with	  the	  goal	  of	  observing	  DM	  in	  
our	  galaxy	  

•  	  High	  Energy	  Stereoscopic	  System	  
(H.E.S.S)	  

Victor	  Hess,	  	  
nobel	  laureate	  who	  
discovered	  cosmic	  rays	  

Located	  in	  Namibia	  
	  
Cosmic	  gamma	  rays	  in	  the	  range	  
~10	  GeV	  to	  ~100	  TeV	  	  
	  
So	  far	  only	  observa1ons	  consistent	  with	  
backgrounds.	  Limits	  on	  DM	  models	  
	  
Upcoming	  more	  sensi1ve	  instrument:	  
CTA	  (planned	  for	  2020)	  

��
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The	  model	  
1 Introduction

(TRS: Introduce DM model. Discuss problems with non-EFT fixed-order approach.)
We do not know what the non-gravitational interactions of Dark Matter (DM) are, so we need

to assume a model. In this paper we are interested in DM being an SU(2)
L

triplet fermion. This
scenario is currently under active investigation [1, 2, 3]. The DM triplet can be written as a 2-by-2
matrix [2]:

� =

 
�0/

p
2 �+

�� ��0/
p

2

!
, (1)

which transforms from left and right under SU(2)
L

gauge group of Standard Model (SM). We consider
the following extension of SM Lagrangian:

L = LSM +
1

2
Tr �̄ iD/ � � 1

2
Tr �̄M

�

�, (2)

where trace sums over the SU(2)
L

indexes and the covariant derivative couples the DM to SM gauge
bosons �, W, Z or equivalently B, W 1,2,3. In principle the mass mixing and splitting can be described
by arbitrary matrix M

�

however in the minimal scenario we can use M
�

to be a number times a unit
matrix.

2 The e↵ective Lagrangian

Section 2: physically motivate construction of EFT Lagrangian (SCET for DM physi-
cists), build up Lagrangian with di↵erent types of photons etc
Subsections:
-constructing SCET (light particles)
-constructing NRQCD (heavy particles)
-putting them together
Specify operators etc.

We are interested in the process where two heavy Majorana DM particles annihilate to two
(relatively) light final states �� ! ZZ, Z�, ��. The physical hierarchy of scales is MDM � MEW ⇠
M

Z

⇠ 90 GeV. For such scenario the non-relativistic DM particles annihilate into highly-boosted
gauge bosons, and it is well known that higher-order corrections from loops with gauge bosons are
enhances with Sudakov double logarithms. Thus, the expansion parameter is not ↵2/⇡ ⇠ 0.01 as one

might naively think, but in fact it is ↵2

�
ln s/M2

EW

�2
/⇡. For our case s = 4M2

DM. This expansion
parameter equals approximately 0.4 for 1 TeV DM and increases rapidly with increasing DM mass.

In the situations when the higher corrections contain large logarithms the perturbation theory
needs to be reorganized in a way that resums Sudakov logarithms to all order in perturbation theory
with a logarithmic counting usually defined as ↵L ⇠ 1. A convenient tool for such resummation
operationally is factorization and RG evolution in the e↵ective field theory. The e↵ective theory
in this context is defined by expanding the Lagrangian of the theory by keeping only the e↵ective

degrees of freedom that are responsible at leading order for the interactions.
Soft Collinear E↵ective Theory (SCET) [4, 5, 6, 7] is an e↵ective theory of highly energetic

fermions and gauge bosons. The degrees of freedom of SCET are collinear fermions and gauge
bosons and soft gauge bosons.
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2.3 Putting things together

The first step in describing the amplitude of the DM annihilation in NRQCD/SCET is matching at
the high scale µ ⇠

p
s = 2MDM. At this scale the full theory is matched on local operators in our

e↵ective theory. A typical operator dressed with appropriate gauge links looks like

�̄a

v

S†
v

� S
v

�b

v

⇣
Y Bµc

n

Y †
⌘ ⇣

Y B⌫d

n

Y †
⌘⇣

�ab�cd,
⌘

(16)

and the Wilson coe�cient of such operator is determined from the matching, as well as the explicit
form of the matrix �. This can be done order by order in the perturbation theory. We have made
explicit the presence of the ultrasoft and soft gauge links, while the collinear gauge links are contained
in the definition of B

n

, see Eq. (11).
Each of such Wilson coe�cients should be evolved to the electroweak scale (or arbitrary factoriza-

tion scale at which each operator needs to be evaluated). This evolution is described by anomalous
dimension matrix of local operators, which is found from Ultra-Violet (UV) counter terms in the
e↵ective theory.

3 Electroweak corrections in SCET

Section 3: display Feynman diagrams, show result for anomalous dimension
Master formula for solution of anomalous dimension equation?
Define variables needed to explain the bands in the plots
Define what LL and NLL mean, show what you?re improving when you go to NLL,
describe what ambiguities are present at LL (responsible for band) and corrected at
NLL

3.1 Electroweak corrections in SCET

The version of SCET designed to describe electroweak radiative corrections in the high-energy pro-
cesses involving weakly interacting particles, via exchanges of weak gauge bosons of the SM gauge
group was formulated in a series of recent papers, see Ref. [8, 9] and references therein. We use these
results to perform similar calculations in our process of wino DM annihilating to WW, ZZ, etc. The
calculation can be broken into various pieces: matching at the high scale, running from high scale to
low scale, matching at the low scale. These steps are described in what follows one by one.

= g ✏abc�µ

�b

�̄a

µc

Figure 1: Feynman rule of DM triplet interacting with a SM gauge boson.

3.1.1 Feynman rules

The Feynman rules needed for the high scale matching calculations are readily derived by plugging
in the field in terms of components of the triplet � = �k�k/

p
2, where in terms of �1,2,3 we have

4

Consider	  Majorana	  SU(2)	  triplet	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (wino-‐like	  DM)	  �1,2,3

Feynman	  rule	  of	  DM-‐SU(2)	  gauge	  boson	  interac1on:	  

We	  are	  interested	  in	  a	  few	  TeV	  DM	  par1cles	  to	  annihilate	  to	  a	  
pair	  of	  SM	  gauge	  bosons	  



Annihila1on	  at	  tree	  level	  

a) b) c) d)

p1

p2

p4

p3

Figure 2: Matching at the high scale. Graphs a), b), c) are in the full theory. Graph d) is the contact
interaction in the e↵ective theory. The matching determines the Wilson coe�cient of the e↵ective
operator.

�0 = �3 and �± = (�1 ⌥ i�2)/
p

2. As a result we get:

�L = Tr �̄ iD/ � � g

2
Tr �a�c�b �̄a�

µ

�b Wµc = �ig ✏abc �̄a �
µ

�b Wµc. (17)

This leads to the Feynman rule shown in the Figure 1. Note that the DM-DM-gauge boson vertex
has the color structure identical to triple SU(2)

L

gauge boson vertex. This is the footprint of DM
being in the adjoint representation of SU(2)

L

.

3.2 High scale matching

At the high scale we match the full theory above the µ
h

⇠
p

s on a set of 2 ! 2 local operators in
the e↵ective theory SCETEW. This is schematically shown in Figure 3.2.1. Because we are matching
onto the low energy e↵ective theory of SM, in this matching all infrared e↵ects cancel and the Wilson
coe�cients of local operators only contain ultraviolet divergencies. This allows to consider this
matching with MEW = M

W

= M
Z

= 0, i.e. in unbroken SM. The operators in the e↵ective theory
contain momentum label. For our problem of DM annihilating to pair of weak gauge bosons in our
model, we would get the following basis of operators with their high-scale Wilson coe�cients:

O1 = ✏
↵�µ⌫

q↵ �̄a

1 ���5 �b

2 Wµc

3 W ⌫d

4

⇣
�ab�cd

⌘
, C1 =

g2

M2
, (18)

O2 = ✏↵�µ⌫ q↵ �̄a

1 ���5 �b

2 Wµc

3 W ⌫d

4

⇣
�ac�bd

⌘
, C2 = � g2

2M2
, (19)

O3 = ✏
↵�µ⌫

q↵ �̄a

1 ���5 �b

2 Wµc

3 W ⌫d

4

⇣
�ad�bc

⌘
, C3 = � g2

2M2
. (20)

This basis set mixes under renormalization and the anomalous dimension matrix of this mixing is
calculated in the next subsection to next-to-leading-logarithmic order (NLL). The indexes 3, 4 refer
to label momenta p3, p4 on the gauge fields, the field � is that of HQET. We have assumed for
simplicity that all DM components have identical mass equal to M .

From the standard logarithmic counting, for next-to-leading (NLL) order resummation we would
need this high scale matching only at tree level. Because in our model DM has zero hypercharge
Y = 0 under U(1), we only considered operators involving gauge bosons of SU(2)

L

. However because
W 3 is a mixture of a photon and a Z� boson, the e↵ective Hamiltonian also describes DM decay to
photons and/or neutral gauge bosons.

3.2.1 Anomalous dimension matrix

Between the high scale µ
h

⇠
p

s and the low scale µ
l

⇠ MEW ⇠ M
W

the operators O1, O2, O3 run
and mix under the renormalization with some anomalous dimension matrix. Anomalous dimension

5

Sum	  of	  these	  graphs	  gives	  in	  the	  limit	  M>>MEW	  s-‐wave	  amplitudes,	  	  
all	  propor1onal	  to	  each	  other	  depending	  on	  the	  isospin	  structure	  

�vrel(�
0�0 ! W+W�) =

2⇡↵2

m2
�



Why	  loops	  are	  important?	  
Z, γ

W+

χ+
χ−

W+(Z, γ)

χ0(χ+)

W+W−

χ0(χ±)

W±(Z, γ)

W±(Z, γ)

χ±(χ0)

Z, γZ, γ
(W±) (W∓)

W±

γ

Z, γ χ+(χ0)

W−

(W+)

(Z, γ)

W+(Z, γ)

Figure 7: The diagrams for the one-loop corrections to χ+χ− → W+W− annihilation.

perturbative evaluation of the correction to σ0 looks like to be border-line-reliable up to

values of m of a few TeV.

This fact is not surprising: when m and therefore the overall scale of the process gets

large as compared to mW , the vector bosons resemble more and more to massless would-be

gluons of an unbroken SU(2), like an SU(2) version of QCD. There occur large Log’s of

the ratio m/mW , and powers of them, which are not related to the UV divergences (and

therefore cannot be included in a standard renormalization group treatment). Therefore,

for higher values of m, one would need to borrow from QCD sophisticate techniques of

re-summation of powers of large Log’s or semi-empirical formulae. All that is beyond the

scope of this work.

2.3 The radiative corrections to χ+χ− annihilation

Due to the Sommerfeld effect the χ+χ− annihilation gives a non-negligible contribution to

the χ0χ0 annihilation process, which in fact can be of the same order as the direct process.

Therefore, it is also important to compute the radiative correction to annihilation with

χ+χ− in the initial state. Because the computations are very similar to the χ0χ0 case, we

don’t discuss all the computations in detail, but rather stress the differences and present

the final results.

In this case, in the Feynman-’t Hooft gauge it occurs also the vertex of the charged

unphysical Higgs with the vector bosons. However, in the same way as for the physical

Higgs, its coupling is proportional to gmW and therefore the process involving it will be

suppressed by a factor m2
W /m2 and we neglect it.

2.3.1 One-loop corrections to χ+χ− → W+W−

In the case of the annihilation of χ+χ−, since they are charged, there are more diagrams

to be computed, see figure 7, the technique is however exactly the same.

– 14 –

χ+χ−

W−W+
W−W+

Z, γ

Z, γ

Z, γ

Z, γ

W+ W−

Figure 8: The diagrams the correction to the process χ+χ− → W+W− coming from the real
production of Z, γ.

Figure 9: The correction to the χ+χ− → W+W− amplitude (left plot) and dependence on the
photon mass (right plot). The notation is the same as in figure 6.

Note also that due to the difference in the normalizations of the initial states (Eqns.

(1.6) and (1.7)), at the tree level Atree
χ+χ−→W+W−

= 1√
2
Atree

χ0χ0→W+W−
.

2.3.2 The radiative correction due to the real production

Also in this case the computations goes in the same way, except that now the initial state

particles are coupled to Z and γ, which gives the initial state Bremsstrahlung process

(instead of internal one as in the χ0χ0 case). The diagrams to be computed are those on

figure 8.

2.3.3 The total result for the annihilation of χ+χ− → W+W−

On figure 9 we show the full radiative correction to the amplitude of the process χ+χ− →
W+W−. When compared to the case of nuetralino annihilations, one immediately sees

that although results are qualitatively similar, quantitatively are considerably smaller. In

fact, the full one-loop result without including the one-loop Sommerfeld effect is within

-10% range even up to 3 TeV.

– 15 –

Two	  reasons:	  

•  Sommerfeld	  enhancement	  (ini1al	  state)	  
•  Large	  Sudakov	  logarithms	  (final	  state)	  

	  



Sommerfeld	  enhancement	  
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FIG. 1: The χ0-pair annihilation cross sections to 2γ and W +W− when δm = 0.1 GeV (slid lines) and 1 GeV (dashed lines).
χ0 is the SU(2)L-triplet or doublet DM. Here, v/c = 10−3. The leading-order cross sections in the perturbation are also shown
for δm = 0 (dotted lines).

conditions at r = 0 are g<(r)|r→0 = 0, g′
<(r)|r→0 = 1,

and g>(r)|r→0 = 1. In the following, we assume E <
2δm so that a pair annihilation of χ0 does not produce
on-shell χ−χ+. As the result,

g>(r)|r→∞ =

(

0 0
d1eikr d2eikr

)

. (7)

In this case, the χ0-pair annihilation cross sections are
(σv)V V ′ = ci

∑

ab Γab|V V ′dad⋆
b , as expected. It is enough

to calculate d in order to evaluate the cross sections.
In Fig. (1) we show the annihilation cross sections of

the SU(2)L-triplet DM pair to 2γ and W+W− as func-
tions of m. We evaluated the cross section numerically.
Here, we take v/c = 10−3, which is the typical averaged

velocity of the DM in our galaxy, and δm = 0.1 GeV and
1 GeV. The perturbative cross sections are also plotted.
Large δm leads to unreliable numerical calculation for
large m, and then some curves are terminated at some
points. However, δm should be suppressed around the
regions.

When m is around 100 GeV, the cross sections to 2γ
and W+W− are almost the same as the perturbative
ones. The cross section to 2γ is suppressed by a loop fac-
tor there. However, when m >∼ 0.5 TeV, the cross sections
are significantly enhanced and have the resonance struc-
ture. Especially, the cross section to 2γ becomes com-
parable to that to W+W− around the resonance. This
suggests that the 2χ0 state is strongly mixed with χ+χ−.

The qualitative behavior of the cross sections around
the first resonance may be understood by approximating
the EW potential by a well potential. Taking cW = 1 for
simplicity, the EW potential is approximated as

V(r) =

(

2δm − b1α2mW −b1

√
2α2mW

−b1

√
2α2mW 0

)

, (8)

for r < R(≡ (b2mW )−1). Here, b1 and b2 are numerical
constants. By comparing the annihilation cross sections
to 2γ in this potential and in the perturbative calculation
for small m, we find b1 = 8/9 and b2 = 2/3. Under
this potential, two-body states 2χ0 and χ−χ+ have the
attractive and repulsive states, whose potential energies
are λ± = 1/2(V11 ±

√

V2
11 + 4V2

12) with Vij(i, j = 1, 2)
elements in V. The attractive state is − sin θφC+cos θφN

with tan2 θ = λ−/λ+.
When δm ≪ b1α2mW /2(∼ 1 GeV), θ is not suppressed

by δm and χ−χ+ and 2χ0 are mixed under the potential.
In this case, the cross section to 2γ is given as

(σv)2γ =
4πα2

9m2

(

1

cos(k−R)
−

1

cosh(k+R)

)2

, (9)

where k2
± = |λ±|m. Here, we neglect the Γ term contri-

bution to the wave function for simplicity and take E ≃ 0.

The cross section (9) is reduced to 4πα2α2
2/m2

W for
α2m <∼ mW . On the other hand, it is not suppressed by a
one-loop factor for α2m >∼ mW and has a correct behavior
as ∼ 1/m2 in a heavy m limit. When k−R = (2n−1)π/2
(n = 1, 2, · · · ), the zero energy resonance, whose binding
energy is zero, appears and the cross section is enhanced
significantly. In Fig. (1), the n-th zero energy resonance
appears at m = m(n) ∼ n2 × m(1), while the well poten-
tial predicts m(n) ∼ (2n− 1)2 ×m(1). We guess that the
Yukawa potential might be approximated better by the
Coulomb potential for the higher zero energy resonances.

When the zero energy resonance exits, the cross sec-
tions σv are proportional to v−2 for v ≪ 1. However,
this is not a signature for breakdown of the unitarity.
We find from study in the one-flavor system under the
well potential V that when v ≪ mV Γ, σv is saturated
by the finite width Γ and the unitarity is not broken.

We also show the annihilation cross sections for the
SU(2)L-doublet DM in Fig. (1). The SU(2)L-doublet DM
has the smaller gauge charges compared with the SU(2)L-
triplet DM. As the result, the cross section is smaller, and
the first zero energy resonance appears at 5 TeV.

The enhancement for the DM annihilation rates gives
significant impacts on the indirect searches for the DM

Sommerfeld	  enhancement	  is	  treated	  via	  NR	  Schrodinger	  
equa1on	  with	  a	  (Yukawa	  or	  Coulomb)	  poten1al	  

Hisano,	  Matsumoto,	  Nojiri,	  2003	  

2

A simple example for the EWIMP DM’s is a neutral
component of an SU(2)L-triplet fermion (T ) whose hy-
percharge is zero. This corresponds to the Wino-like
LSP in the SUSY models. It is accompanied with the
a charged fermion, χ±. While χ0 and χ± are almost
degenerate in mass in the SU(2)L symmetric limit, the
EW symmetry breaking by the Higgs field, h, generates
the mass splitting, δm. If δm comes from the radiative
correction, δm ≃ 1/2α2(mW − c2

W mZ) ∼ 0.18 MeV for
m ≫ mW and mZ . Here, mW and mZ are the W and Z
boson masses, respectively, and cW (≡ cos θW ) is for the
Weinberg angle. Effective higher-dimensional operators,
such as h4T 2/Λ3, also generate δm, however they are
suppressed by the new particle mass scale Λ. The ther-
mal relic density of the DM with mass around 1.7 TeV is
consistent to the WMAP data.

Another example for the EWIMP DM’s is a neutral
component of a pair of SU(2)L-doublet fermions (D and
D′) with the hypercharges ±1/2. This corresponds to
the Higgsino-like LSP in the SUSY models. The χ0 is
accompanied with a neutral Majorana fermion, χ′0, in
addition to a charged Dirac fermion, χ±. They are again
degenerated in mass in the SU(2)L symmetric limit. The
mass difference is generated by the effective operators,
such as h2D2/Λ, via the EW symmetry breaking. The
thermal relic density of the DM explains the WMAP data
when the mass is around 0.6 TeV.

In the current Universe the DM is expected to be
highly non-relativistic as mentioned before. In this case,
the perturbative pair annihilation cross sections of the
EWIMP DM may have bad behaviors if the DM mass is
heavier than the weak scale. One of the example is the
annihilation cross section to 2γ at the leading order. The
process is induced at one-loop level, and the cross section
is 4(1/4)πα2α2

2/m2
W for the SU(2)L-triplet (doublet) DM

in the SU(2)L symmetric limit. The cross section is not
suppressed by 1/m2, and the perturbative unitarity is
violated when m is heavy enough.

The NR effective theory is useful to evaluate the cross
sections in the NR limit. In Ref. [7] we studied the NR
effective theory for the EWIMP in a perturbative way
and found that the trouble in the cross section to 2γ is
related to the threshold singularity. In order to evaluate
the cross section quantitatively, we have to calculate the
cross section non-perturbatively using the NR effective
theory [12].

For evaluation of the annihilation cross sections for
heavy EWIMP, we need to solve the EWIMP wave func-
tion under the EW potential. In this paper, we show the
formulae for evaluating the cross sections in the SU(2)L-
triplet DM case. Those for the SU(2)L-doublet case will
be shown in the further publications [8].

The NR effective Lagrangian for two-body states,
φN (r)(≃ 1/2χ0χ0) and φC(r)(≃ χ−χ+), is given as

L =
1

2
ΦT (r)

((

E +
∇2

m

)

1− V(r) + 2iΓδ3(r)

)

Φ(r) ,

(1)

where Φ(r) = (φC(r), φN (r)), r is the relative coordinate
(r = |r|), and E is the internal energy of the two-body
state. The EW potential V(r) is

V(r) =

⎛

⎜

⎝

2δm −
α

r
− α2c2

W

e−mZr

r
−
√

2α2
e−mW r

r

−
√

2α2
e−mW r

r
0

⎞

⎟

⎠
.

(2)
In this equation we keep only 2δm in (1,1) components
in order to calculate the DM annihilation rate up to
O(
√

δm/m) [7]. Γ is the absorptive part of the two-point
functions. Note that a factor of 1/2 (1/

√
2) is multiplied

for V22 and Γ22 (V12 and Γ12) since φN is a two-body
state of identical particles. Thus, Γ22 (Γ11) is the tree-
level annihilation cross section multiplied by the relative
velocity v and 1/2(1). Since the SU(2)L-triplet DM is
assumed to be a Majorana fermion, the 1S-wave gauge
contribution to Γ is relevant to the NR annihilation, and
then,

Γ =
πα2

2

m2

(

3
2

1
2
√

2
1

2
√

2
1

)

. (3)

The annihilation cross section of χ−χ+ or 2χ0 to the
EW gauge boson pair can be expressed using the two-by-
two Green function, G(r, r′), which is given by

((

E +
∇2

m

)

1− V(r) + 2iΓδ3(r)

)

G(r, r′)

= δ3(r − r′)1 . (4)

Due to the optical theorem, the long-distance (wave func-
tion) and the short-distance (annihilation) effects can be
factorized [9]. The annihilation cross sections to V V ′

(V, V ′ = W, Z, γ) are written as

(σv)V V ′ = ci

∑

ab Γab|V V ′ ×AaA⋆
b , (5)

where i represents the initial state (i = 0 and ± for
2χ0 and χ−χ+ pair annihilation, respectively) and Aa =
∫

d3r e−ikr(E+∇2/M)Gai(r, 0) with k =
√

mE = mv/2.
Here c0 = 2 and c± = 1, where c0 is a factor needed to
compensate the symmetric factor for Γ and V. Γab|V V ′

is the contribution to Γab from the final states V V ′.
It is clear that if the long-distance effect is negligible,
(σv)V V ′ = ciΓii|V V ′ .

The S-wave annihilation is dominant in the NR annihi-
lation. Thus, the Green function is reduced to G(r, r′) =
g(r, r′)/rr′. Similar to the case in one-flavor system, we
find that g(r, r′)/rr′ is expressed by the independent so-
lutions of the homogeneous part of the Eq. (4), g>(r)/r
and g<(r)/r, as

g(r, r′) =
m

4π
g>(r)gT

<(r′)θ(r − r′)

+
m

4π
g<(r)gT

>(r′)θ(r′ − r) . (6)

The solutions g>(r) and g<(r) are also two-by-two matri-
ces since Φ(r) has two degrees of freedom. The boundary
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Formalism	  to	  resum	  electroweak	  Sudakov	  logarithms	  using	  SCET	  adapted	  for	  
SU(2)	  and	  U(1)	  gauge	  bosons	  (SCETEW)	  was	  developed	  in	  Chiu,	  Golf,	  Kelley,	  Manohar,	  2007-‐2010	  
Is	  up	  the	  order	  of	  40%	  correc1on	  to	  the	  LHC	  cross	  sec1on	  for	  WW	  produc1on	  



Our	  Goal	  

•  Factorize	  and	  resum	  electroweak	  correc1ons	  
using	  NRDM/SCET	  
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Figure 2: Matching at the high scale. The crossed graph is included in the definition of the left hand
side.

This leads to the Feynman rule shown in the Figure 1. Note that the DM-DM-gauge boson vertex
has the color structure identical to triple SU(2)L gauge boson vertex. This is the footprint of DM
being in the adjoint representation of SU(2)L.

2.2 High scale matching

At the high scale we match the full theory above the µh ⇠
p

s on a set of 2 ! 2 local operators in
the e↵ective theory SCETEW. This is schematically shown in Figure 2. Because we are matching
onto the low energy e↵ective theory of SM, in this matching all infrared e↵ects cancel and the Wilson
coe�cients of local operators only contain ultraviolet divergencies. This allows to consider this
matching with MEW = MW = MZ = 0, i.e. in unbroken SM. The operators in the e↵ective theory
contain momentum label. For our problem of DM annihilating to pair of weak gauge bosons in our
model, we would get the following basis of operators with their high-scale Wilson coe�cients:

O1 = ✏↵�µ⌫ q↵ �̄a
1 ���5 �b

2 Wµc
3 W ⌫d

4

⇣
�ab�cd

⌘
, C1 =

g2

M2
, (4)

O2 = ✏↵�µ⌫ q↵ �̄a
1 ���5 �b

2 Wµc
3 W ⌫d

4

⇣
�ac�bd

⌘
, C2 = � g2

2M2
, (5)

O3 = ✏↵�µ⌫ q↵ �̄a
1 ���5 �b

2 Wµc
3 W ⌫d

4

⇣
�ad�bc

⌘
, C3 = � g2

2M2
. (6)

This basis set mixes under renormalization and the anomalous dimension matrix of this mixing is
calculated in the next subsection to next-to-leading-logarithmic order (NLL). The indexes 3, 4 refer
to label momenta p3, p4 on the gauge fields, the field � is that of HQET. We have assumed for
simplicity that all DM components have identical mass equal to M .

From the standard logarithmic counting, for next-to-leading (NLL) order resummation we would
need this high scale matching only at tree level. Because in our model DM has zero hypercharge
Y = 0 under U(1), we only considered operators involving gauge bosons of SU(2)L. However because
W 3 is a mixture of a photon and a Z� boson, the e↵ective Hamiltonian also describes DM decay to
photons and/or neutral gauge bosons.

2.3 Anomalous dimension matrix

Between the high scale µh ⇠
p

s and the low scale µl ⇠ MEW ⇠ MW the operators O1, O2, O3 run
and mix under the renormalization with some anomalous dimension matrix. Anomalous dimension
matrix for an arbitrary operator containing any number of either massless SCET legs or massive

2
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next-‐to-‐leading	  logarithmic	  order	  
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• Integrate out hard modes at high scale

• Run with anomalous dimension of EFT 
to the low scale

• Integrate out W and Z bosons at the 
low scale

• Run to factorization scale

3

C

L, O

H γ SCETEW: QCD + EW

H γ SCETγ : QCD + QED

µl ∼ MZD

f f P⊗

ΛQCD

µh ∼
√

ŝ ∼ Q

γO SU(3) × SU(2) × U(1)

µf

µJ

J

µS

S

FIG. 1: Steps in the computation of a hadronic cross-section
at high energy. The effective theory can be used for everything
except the hard matching correction C, and the running γO

in the full theory.

scales such electroweak symmetry breaking and fermion
masses, and so can be computed in the unbroken theory
using gluons, W and B gauge bosons, without worrying
about electroweak gauge boson mixing, even for processes
such as Z production. All mass effects are included in the
EFT computation in steps (4)–(6).

All scattering amplitudes are independent of the choice
of µh. However, in perturbation theory, there is residual
µh dependence from higher order terms that are not in-
cluded in the computation. µh is chosen to be of order
the hard scale in the scattering problem so that there are
no parametrically large logarithms in C, and all large
logarithms are summed by renormalization group evolu-
tion. We will choose µh =

√
ŝ, the partonic center of

mass energy in the collision.
The high-scale matching for processes involving a small

number of external partons is known and is included in
the examples considered in Ref. [7] and in this paper.
The high scale matching, in general, does not obey the
factorization structure of the effective theory amplitude.

This is the only piece of the computation which cannot
be computed using the effective theory results.

(3) Run the amplitude from the high scale µh to a
low scale µl of order MZ using the SCET anomalous di-
mension computed in SCETEW. ( SCETEW is SCET
with dynamical SU(3) × SU(2) × U(1) gauge bosons).
The SCET anomalous dimension is linear in log Q2/µ2 to
all orders [56], and the renormalization group evolution
sums the Sudakov double-logarithms. For Q ∼ 1 TeV,
L2 = log2 Q2/M2

Z ∼ 21 so the Sudakov corrections can be
very large, and lead to a suppression of the cross-section.
It is well-known that the QCD Sudakov corrections can
have a huge effect on the cross-sections. The electroweak
Sudakov corrections are also significant, ranging from
10%–50% depending on the process at energies of a few
TeV, increasing rapidly with energy. The Sudakov double
logarithms which are summed by the LL series are two
powers of L more important than the high-scale matching
in step (1). The anomalous dimension is independent of
the electroweak scale, and like the high-scale matching,
can be computed in the unbroken theory.

(4) Compute the low-scale matching at µl by integrat-
ing out the W , Z, Higgs and t-quark, onto a theory con-
taining only QCD and electromagnetism, which we call
SCETγ . The new feature found in Ref. [5, 6, 7] is that
this low-scale matching in SCET contains a log Q2/µ2

l
term of order L. This term is related to the cusp anoma-
lous dimension. No higher powers of a log appear to all
orders in perturbation theory. For most processes, the
low-scale matching correction is purely electroweak, since
the gluon graphs are continuous through the electroweak
threshold. The low-scale matching D can be comparable
to or slightly larger than the QCD contribution to the
high scale matching C because of the log Q2/µ2

l enhance-
ment. There are low-scale QCD corrections for processes
involving external t-quarks, and here the corrections are
much larger, of order 35%. The low-scale matching is one
power of L more important than the high-scale matching.

(5) Run the amplitude to µf (the factorization scale)
using the anomalous dimension in SCETγ . ( SCETγ is
SCET with dynamical gluons and photons). This gives
the parton level scattering amplitude at the scale µf , i.e.
the hard amplitude at µ = µf , denoted by H in Fig. 1.

(6) The last step depends on the experimental ob-
servable being computed. To compute a hadronic cross-
section, one would first square the parton scattering am-
plitude and multiply by the partonic phase space to get
the hard partonic cross-section σ̂(µf ) ∝ |H(µf )|2. An
SCET amplitude with two incoming collinear fields and
n outgoing collinear fields can be used to compute the
cross-section for pp → n jets. This is an inclusive cross-
section at the level of partons, i.e. each jet can contain
any number of collinear partons, but it is exclusive at the
level of jets, i.e. one only includes exactly n jets, and no
additional hard radiation. For such exclusive jet rates,
one in general can have parton distribution functions
(PDFs) describing the parton distributions inside the
proton, as well as jet and soft functions [53]. These must
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Finally at the low scale µl = M one has to match
onto broken theory where gauge bosons have been re-
moved. As a result one gets the e�ective amplitude for
scattering of gauge bosons and quarks and leptons with
resummed large logarithms. The corresponding ampli-
tude in SCETEW gets the following factorized form[12]:

M = exp [D(�(µl))] P exp

�⌥ µl

µh

dµ

µ
�(�(µ))

⇥

⇥c

�
�(µh),

⇧
ln

pi ·pj
µ2
h

⌃⇥
, (1)

where c is the column vector of Wilson coe⇥cients ob-
tained from matching at high scale, ⇥ is the anomalous
dimension of e�ective operator, which is a matrix in the
color space, and finally D appears as a result of the low
scale matching. The anomalous dimension for a general
hard scattering process has the form � = ⇥C1 + �S ,
where collinear anomalous dimension is a sum of collinear
anomalous dimensions associated with each leg and soft
anomalous dimension has a non-trivial color structure
but is universal in the sense that it only depends on light-
cone directions and color flow.

III. LONGITUDINAL BOSONS SCATTERING
AT HIGH ENERGIES

We derive in this section electroweak radiative correc-
tion contribution to the amplitude of longitudinal gauge
and/or Higgs boson scattering amplitude. The corre-
sponding formalism has been developed in [8]�[14] and
was briefly reviewed in section II . Following these ref-
erences we use the equivalence theorem to relate gauge
boson amplitude to the corresponding unphysical scalar
amplitude in R⇥ gauge. This method was applied in
Refs. [8]�[14] to derive longitudinal gauge boson pro-
duction at LHC to next-to-next-to-leading logarithmic
order(NNLL), except for scalar contribution at two loops
that is missing for some parts. We work at next-to-
leading logarithmic order (NLL), which is a very good
approximation for the purpose of our analysis, as you
will see below.

A. High-scale matching

At the scale µh ⇤
⇧
s we integrate out hard modes and

leave only collinear modes, corresponding to four exter-
nal label momenta. For our purpose the Higgs quartic
coupling gives the biggest contribution to the matching.
We neglect the gauge boson mediated interactions be-
tween the scalars, since they are suppressed by the ratio
of weak coupling to Higgs self-coupling ⌅. The tree level
matching is given by Higgs quartic term in the SM La-
grangian, and is trivial:

O1 = ⌃†
4t

a⌃3 ⌃
†
2t

a⌃1, C1 = 0, (2)

O2 = ⌃†
4⌃3 ⌃

†
2⌃1, C2 = �⌅(µh). (3)

The Higgs quartic coupling has a familiar Landau pole
at higher energies, and is given at one loop order:

⌅(µ) =
⌅(mH)

1� 3�(mH)
2⇤2 ln(µ/mH)

, (4)

while ⌅(mH) = GFm2
H/

⇧
2. Formula 4 is valid approxi-

mation for mH > 200GeV. For lower masses one has to
include contribution of top quark Yukawa coupling and
the Landau pole disappears. We come back to this case
at the end of section IV.

B. Running from µh to µl

From high scale the Wilson coe⇥cients must be evolved
to the low scale µl which is of the order of the electroweak
scale µl ⇤ MW ,MZ . This is achieved by calculating the
anomalous dimension of the four particle operator in the
e�ective theory SCETEW[12]. The anomalous dimension
for such process can be written as sum of process depen-
dent collinear anomalous dimension, which is simply the
sum over the corresponding terms for each leg, and the
universal soft anomalous dimension [10, 12], which only
depends on kinematics and color structure, but is same
for say scalars or fermions. Thus the collinear part of
anomalous dimension we know from [8]�[14] and the soft
part of the anomalous dimension is same as in qq̄ ⌅ qq̄
for SU(2) and U(1). For SU(3) the soft anomalous di-
mension to one loop is known [20], It was derived for
SU(3), SU(2) and U(1) in Refs. [10, 12, 13]. Since our
e�ective operators are (SU(3))color singlets, the anoma-
lous dimension gets contribution only from SU(2) and
U(1) gauge bosons. The result for the total anomalous
dimension is:

⇥ = 4⇥⌅1+ ⇥S , (5)

⇥⌅ =

�
3

4

�2

4⇧
+

1

4

�1

4⇧

⇥�
2 ln

s

µ2
� 4

⇥
, (6)

⇥S =
�2

⇧

�
�3

2
i⇧1+

⇤
T + U 2(T � U)

3
8 (T � U) 0

⌅⇥

+
�1

⇧
2Y 2

⌅ ((T � U)� i⇧) , (7)

where the Mandelstam invariants are defined according
to s = (p1 + p2)2, t = (p1 � p4)2, u = (p1 � p3)2 and

T = ln
�t

s
+ i⇧ = ln

1� cos ⇤

2
+ i⇧, (8)

U = ln
�u

s
+ i⇧ = ln

1 + cos ⇤

2
+ i⇧, (9)

where cos ⇤ is the scattering angle in the center of mass
frame, defined as angle between momenta of p1 and
p4 in the CM frame. We will need the formula for
the anomalous dimension in the universal form in terms
of Mandelstam variables s, t, u, without assuming that

high scale

low scale

factorization 
scale

jet scale

soft scale
hadronization

scale
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FIG. 9: Plot of the ūLuL → c̄LcL cross-section normalized
to the tree-level rate, for t/s = −0.2 (dotted blue), −0.35
(dashed red), −0.5 (solid black), −0.65 (dashed magenta) and
−0.8 (dot-dashed cyan). The lower panel shows the rate with
QCD and electroweak corrections, and the upper panel with
only the electroweak corrections.

n̄j · pj ≈ 2Ej > 0 is still positive for outgoing particles,
because of our definition of nj for outgoing particles.

A massive particle such as the top quark is described
by a velocity four-vector vµ, with v · v = 1, where vµ =
γ (1, β), γ = 1/

√
1 − β · β. For energetic top-quarks,

it is sometimes convenient to use the four-vector βµ =
(1, β), with β2 = 1/γ2 → 0 in the high-energy limit.
This allows for a smooth transition in the high energy
limit to a massless description, with β → n.

The Sudakov form factor will play an important role
in this paper. The spacelike Sudakov form factor F (Q2)
is defined as the particle scattering amplitude by an ex-
ternal current, with momentum transfer Q2 = −q2 > 0.
It is convenient to compute the form factor in the Breit
frame (see Fig. 15), where the particle is back-scattered,
and the momentum transfer q has q0 = 0. The Sudakov
form factor is an r = 2 scattering amplitude, where the
incoming and outgoing particle are identical. In the Breit
frame, n1 = (1,n), n2 = −(1,−n) so that n̄1 = −n2 and
n̄2 = −n1.

FIG. 10: Plot of the ūLuL → W +
T W−

T cross-section normal-
ized to the tree-level rate. See Fig. 9 caption.

The labelling convention chosen for the Higgs doublet
is

φ =
1√
2

[
ϕ2 + iϕ1

v + H − iϕ3

]
, (2)

so that ϕa ∝ iT a ⟨φ⟩. The charged gauge and Goldstone
bosons are

W± =
1√
2

(
W 1 ∓ iW 2

)
,

ϕ± =
1√
2

(
ϕ1 ∓ iϕ2

)
, (3)

and the sign convention for the Z and photon fields is

Z = cos θW W 3 − sin θW B ,

A = sin θW W 3 + cos θW B . (4)

The SU(2) and U(1) fine structure constants are α2 and
α1 respectively, and the QED fine structure constant is
αem, with

1

αem
=

1

α2
+

1

α1
. (5)

uū ! dd̄ uLūL ! W+
T W�

T
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Electroweak 
Sudakov 

corrections to 
transverse WW 
production at 2 

TeV suppress cross 
section by 40%

Suppression rate 
rapidly grows with 

energy!

Necessary tool: Soft Collinear Effective Theory(SCET)



What	  needs	  to	  be	  calculated	  

•  We	  are	  aoer	  NLL	  resumma1on	  
•  Need	  high	  scale	  matching	  at	  tree	  level	  (our	  analysis)	  
•  Need	  the	  non-‐cusp	  anomalous	  dimension	  matrix	  at	  
one	  loop	  (our	  analysis)	  

•  Need	  the	  cusp	  anomalous	  dimension	  at	  2	  loops	  
(known	  	  	  	  	  	  	  	  	  )	  

•  Need	  the	  rapidity	  log	  part	  of	  the	  one-‐loop	  that	  
depends	  on	  MW,	  MZ	  (known	  	  	  	  	  	  	  	  	  )	  

	  



High	  Scale	  Matching	  
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Figure 2: Matching at the high scale. Graphs a), b), c) are in the full theory. Graph d) is the contact
interaction in the e↵ective theory. The matching determines the Wilson coe�cient of the e↵ective
operator.

�0 = �3 and �± = (�1 ⌥ i�2)/
p

2. As a result we get:

�L = Tr �̄ iD/ � � g

2
Tr �a�c�b �̄a�

µ

�b Wµc = �ig ✏abc �̄a �
µ

�b Wµc. (17)

This leads to the Feynman rule shown in the Figure 1. Note that the DM-DM-gauge boson vertex
has the color structure identical to triple SU(2)

L

gauge boson vertex. This is the footprint of DM
being in the adjoint representation of SU(2)

L

.

3.2 High scale matching

At the high scale we match the full theory above the µ
h

⇠
p

s on a set of 2 ! 2 local operators in
the e↵ective theory SCETEW. This is schematically shown in Figure 3.2.1. Because we are matching
onto the low energy e↵ective theory of SM, in this matching all infrared e↵ects cancel and the Wilson
coe�cients of local operators only contain ultraviolet divergencies. This allows to consider this
matching with MEW = M

W

= M
Z

= 0, i.e. in unbroken SM. The operators in the e↵ective theory
contain momentum label. For our problem of DM annihilating to pair of weak gauge bosons in our
model, we would get the following basis of operators with their high-scale Wilson coe�cients:

O1 = ✏
↵�µ⌫

q↵ �̄a

1 ���5 �b

2 Wµc

3 W ⌫d

4

⇣
�ab�cd

⌘
, C1 =

g2

M2
, (18)

O2 = ✏↵�µ⌫ q↵ �̄a

1 ���5 �b

2 Wµc

3 W ⌫d

4

⇣
�ac�bd

⌘
, C2 = � g2

2M2
, (19)

O3 = ✏
↵�µ⌫

q↵ �̄a

1 ���5 �b

2 Wµc

3 W ⌫d

4

⇣
�ad�bc

⌘
, C3 = � g2

2M2
. (20)

This basis set mixes under renormalization and the anomalous dimension matrix of this mixing is
calculated in the next subsection to next-to-leading-logarithmic order (NLL). The indexes 3, 4 refer
to label momenta p3, p4 on the gauge fields, the field � is that of HQET. We have assumed for
simplicity that all DM components have identical mass equal to M .

From the standard logarithmic counting, for next-to-leading (NLL) order resummation we would
need this high scale matching only at tree level. Because in our model DM has zero hypercharge
Y = 0 under U(1), we only considered operators involving gauge bosons of SU(2)

L

. However because
W 3 is a mixture of a photon and a Z� boson, the e↵ective Hamiltonian also describes DM decay to
photons and/or neutral gauge bosons.

3.2.1 Anomalous dimension matrix

Between the high scale µ
h

⇠
p

s and the low scale µ
l

⇠ MEW ⇠ M
W

the operators O1, O2, O3 run
and mix under the renormalization with some anomalous dimension matrix. Anomalous dimension
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interaction in the e↵ective theory. The matching determines the Wilson coe�cient of the e↵ective
operator.
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!
•  At	  the	  high	  scale	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  we	  match	  on	  a	  set	  of	  	  
local	  operators	  

	  
	  
	  
	  

•  For	  NLL	  resumma1on	  tree	  level	  matching	  needed	  
	  
	  
	   µh ⇠ 2m�

M1 +M2 +M3 =
g2

2m2
�

v̄���5u ✏↵�µ⌫ q
↵
�
2�ab�cd � �ac�bd � �ad�bc

�
✏µ✏⌫

�� in	  the	  spin	  singlet	   gauge	  bosons	  in	  the	  spin	  singlet	  

We	  need	  to	  match	  this	  amplitude	  on	  a	  tree	  level	  matrix	  elements	  of	  	  	  
gauge	  invariant	  SCET	  operators	  
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to label momenta p3, p4 on the gauge fields, the field � is that of HQET. We have assumed for
simplicity that all DM components have identical mass equal to M .
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the e↵ective theory SCETEW. This is schematically shown in Figure 3.2.1. Because we are matching
onto the low energy e↵ective theory of SM, in this matching all infrared e↵ects cancel and the Wilson
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This basis set mixes under renormalization and the anomalous dimension matrix of this mixing is
calculated in the next subsection to next-to-leading-logarithmic order (NLL). The indexes 3, 4 refer
to label momenta p3, p4 on the gauge fields, the field � is that of HQET. We have assumed for
simplicity that all DM components have identical mass equal to M .

From the standard logarithmic counting, for next-to-leading (NLL) order resummation we would
need this high scale matching only at tree level. Because in our model DM has zero hypercharge
Y = 0 under U(1), we only considered operators involving gauge bosons of SU(2)

L

. However because
W 3 is a mixture of a photon and a Z� boson, the e↵ective Hamiltonian also describes DM decay to
photons and/or neutral gauge bosons.

3.2.1 Anomalous dimension matrix

Between the high scale µ
h

⇠
p

s and the low scale µ
l

⇠ MEW ⇠ M
W

the operators O1, O2, O3 run
and mix under the renormalization with some anomalous dimension matrix. Anomalous dimension

5
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Sabcd
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jd
n̄?

⌘
i✏ijk(n� n̄)k
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Sabcd
1 = �ab

�
Sce
n Sde

n̄

�

Sabcd
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v Sce
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Sbf
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High-scale matching
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i
j i

j
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i, j

j, i

O1

O2

= �
⇡↵2(µm�)

m�

i, j, k = SU(2) gauge indices

C1(µm�) = �C2(µm�)

= �⇡
↵2(µm�)

m�
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Sudakov-‐Sommerfeld	  factoriza1on	  

•  	  	  	  	  	  	  	  	  	  	  	  	  	  contains	  no	  interac1ons	  with	  soo	  of	  
collinear	  gauge	  bosons	  

•  The	  leading	  SCET	  Lagrangian	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
contains	  no	  interac1ons	  with	  DM	  fields	  	  	  

L(0)
NRDM = �†

v

 
iv · @ +

~r2

2m�

!
�v + V̂

h
�(†)
v

i
(mW,Z)

L(0)
NRDM

L(0)
SCET(⇠n, An, As)

�v

2

the SM gauge group [18, 19]. We generalize this for-
malism to the case with heavy nonrelativistic dark mat-
ter (NRDM) in the initial state, and use it to calculate
�� ! ZZ, Z�, ��. The calculation can be broken into
pieces: constructing operators, matching at a high scale
µ ' 2m�, running down to µ ' mZ , and calculating
matrix elements at this low scale which include the Som-
merfeld enhancement.

EFT and High scale matching. At the high scale
µm� ' p

s = 2m� we match the annihilation process
in the full theory LSM +LDM onto a set of leading order
operators Or in our e↵ective theory NRDM-SCET:

L(0)
ann =

P2
r=1 Cr(m�, µ) Or(mW/Z , v, µ) . (2)

There are only two operators in the complete basis for
spin-singlet S-wave annihilation of DM:

Or =
�
�aT

v i�2�
b
v

� �
Sabcd

r Bic
n?Bjd

n̄?
�
i✏ijk(n � n̄)k ,

Sabcd
1 = �ab(Sce

n Sde
n̄ ) , Sabcd

2 = (Sae
v Sce

n )(Sbf
v Sdf

n̄ ) . (3)

Here v = (1, 0, 0, 0), n = (1, n̂), and n̄ = (1,�n̂) with n̂
the direction of an outgoing gauge boson. �a

v is a non-
relativistic two-component fermion DM field in the ad-
joint representation, Bn,n̄ contain the observed (collinear)
gauge bosons, and the S = S[ · As] are adjoint Wil-
son lines of soft gauge bosons along the  = n, n̄, v di-
rections. Without soft gauge bosons there are only two
possible contractions of gauge indices, �ab�cd and �ac�bd,
since (�aT

v i�2�
b
v) = �a↵

v �b�
v ✏↵� is symmetric in (ab). Due

to the factorization properties of soft gauge bosons for
heavy particles v, or collinear particles n, n̄, the addition
of the soft S Wilson lines does not change this, see [17].
The final state gauge bosons are also in a spin-singlet
with orthogonal polarizations so they must be contracted
with ✏ijk. The outgoing energetic gauge bosons appear
in the adjoint collinear gauge invariant building block

Bµa
n? = i/(in̄ · @n)n̄⌫G⌫µb

n Wba
n = Aµa

n? � kµ
?

n̄·k n̄ · Aa
n + . . .,

where Aµa
n is the n-collinear gauge boson field, G⌫µb

n is
the field strength, and Wba

n = Wba
n [n̄ · An] is a collinear

Wilson line in the adjoint representation. For the def-
inition of Bµa

n̄? simply swap n $ n̄. In addition to

the hard annihilation process encoded in L(0)
ann, we will

also use the leading order SCETII Lagrangian [17] L(0)
SCET

and leading order nonrelativistic Lagrangian for DM

L(0)
NRDM = �†

v(iv ·@+ ~r2/2m�)�v+ V̂ [�(†)
v ](mW,Z), where

V̂ is an operator giving the Yukawa and Coulombic po-
tentials from potential exchange of the W, Z, �.

To determine the Wilson coe�cients Cr at the high
scale we match from the full theory onto the e↵ective
theory. Since Cr only contain ultraviolet physics this
matching can be done in the unbroken SM with mW =
mZ = 0. At tree level we find C1(µm�) = �C2(µm�) =
�⇡↵2(µm�)/m�, where ↵2 = g2/4⇡ = ↵/ sin2 ✓̄W .

Sommerfeld-Sudakov Factorization Since L(0)
NRDM con-

tains no interactions with soft or collinear gauge bosons,

and L(0)
SCET contains no interactions with �vs, the matrix

element for the �0�0 evolution and annihilation factor-
izes from the matrix element involving the final state X:

CrhX|Or|�0�0i =⇥
Cr i✏ijk(n�n̄)khX|Sabcd

r Bic
n?Bjd

n̄?
�|0i⇤

⇥ h0|�aT
v i�2�

b
v|�0�0i. (4)

For the spin-singlet state |(�a�b)Si = ✏�↵|�a
↵�b

�i/
p
2, the

Sommerfeld enhancement factors are encoded in
⌦
0
���3T

v i�2�
3
v

��(�0�0)S
↵
= 4

p
2m�s00 , (5)

⌦
0
���+T

v i�2�
�
v

��(�0�0)S
↵
= 4m�s0± ,

where the matrix elements are evaluated using the po-
tential V̂ . For these channels the corresponding matrix
elements on the first line of (4) can be denoted FX

0 and
FX
± , thus giving an all-orders factorized result for the

spin-singlet annihilation amplitudes

M�0�0!X = 4m�

�p
2s00F

X
0 + s0±FX

±
�
, (6)

M�+��!X = 2
p
2m�

�p
2s±0F

X
0 + s±±FX

±
�
.

In the one-loop calculation of [5], the coe�cients s
[5]
0 =

s00 and s
[5]
± = s0± were also included as multiplica-

tive factors, which is consistent with this factorization.
We obtain the Sommerfeld coe�cients s00 and s0± by
solving the Schroedinger equation numerically (see e.g.
Appendix A of [6] for details). Note that at tree level
s00 = s±± = 1 and s0± = s±0 = 0.

With SU(2)L symmetry the gauge index structure of
the first line of (4) implies that the SCET perturbative
corrections at any order are encoded in just two Sudakov
form factors, ⌃1 and ⌃2. The gauge boson masses in-
duce symmetry breaking corrections at NLL which are
included by using ⌃W

1,2 for the W+W� final state, so

F ��
0 = P��(⌃1�⌃2) , F ��

± = 2P��⌃1 , (7)

FW+W�

0 = PW⌃W
1 , FW+W�

± = PW (2⌃W
1 �⌃W

2 ) ,

where the prefactors are P�� = �e2✏i
n?✏j

n̄?✏ijkn̂k/(2m�)

and PW = (g2/e2)P� . For F �Z
0 and FZZ

0 one simply
replaces P�� by P�Z = cot ✓̄W P�� or PZZ = cot2 ✓̄W P�� .
At tree level the form factors are all unity, ⌃1 = ⌃2 = 1.
For the �� and �Z final states there is no tree-level

annihilation from �0�0, so we normalize by writing

��0�0!X = �tree
�+��!X

��s00(⌃1 � ⌃2) +
p
2s0±⌃1

��2. (8)

Sudakov Resummation. We now calculate the Su-
dakov form factors ⌃1,2. For simplicity, in this calcula-
tion we take all DM components to have a common mass
m�. The operators O1,2 in (3) mix under renormalization
and the resummation of ↵2 ln

2,1(m2
�/m2

W ) corrections is
achieved by finding their SCET anomalous dimension
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Anomalous	  Dimension	  Matrix	  Running from high to low scale

• Anomalous dimension of 
four-scalar operator is equal 
to process dependent 
collinear part plus universal 
soft part

• Collinear known for scalars

• Soft same as in

3

s > 0, t, u < 0 as in Eq. (5) above. The corresponding
analytic continuation looks as follows:

⇥(µ, s, t, u) =
�1

⇧

⇧
1

2
ln

�s

µ2
� 1 +

1

2
Lt/u

⌃

+
�2

⇧

⇧
3

2

⇧
ln

�s

µ2
� 2

⌃
+

⌥
Ltu/s2 2Lt/u
3
8Lt/u 0

�⌃
, (10)

where Lt/u = ln(�t � i0+) � ln(�u � i0+), Ltu/s2 =
ln(�t� i0+) + ln(�u� i0+)� 2 ln(�s� i0+) [10].
It is useful to have an analytical formula for (matrix)

exponential of the integral from µh to µl of anomalous
dimension in Eq. (10) that appears in the resummed am-
plitude in Eq. (1):

� ⇥
⇧

�11 �12

�21 �22

⌃
= P exp

⇧✓ µl

µh

dµ

µ
�(�(µ))

⌃
. (11)

Evaluation of � requires standard tricks to switch inte-
gration from dµ to d� using the beta-function as well as

matrix exponentiation. The former has been analytically
performed in the Appendix A of Ref. [13] while the lat-
ter is a simple exercise for 2 by 2 matrices. Rewriting
the anomalous dimension in terms of cusp and non-cusp
part:

⇥ =
2⌘

k=1

�
ak A1k + a2k A2k

⇥
ln

µ

µh
+ ak B1k, (12)

where ak = �k/4⇧ and inex k = 1 corresponds to U(1)
and k = 2 to SU(2) parts of the SM gauge group and
values for cusp and non-cusp parts are summarized in
the table below. Note that the µh dependence in the
non-cusp part of the anomalous dimension is cancelled
exactly by same dependence in the log term in Eq. (12)
and is introduced in order to use master formula from
Appendix A of Ref. [13] for the integral of the anomalous
dimension. Finally we get for the exponential factor in
Eq. (1) a fully analytic expression:

�NLL(µh, µl, s, t, u) = e��wLut/s2/2

↵
coshw⇤ 1+

sinhw⇤

⇤

 
�Lut/s2

2 �2Lt/u

� 3
2Lt/u

Lut/s2

2

⌦�
, where (13)

⇥ =
2⌘

k=1

⇧A1k

◆
zk ln zk + 1� zk



b20k �k(µl)
+

A1kb1k
4b30k

⌥
ln zk � zk � 1

2
ln2 zk + 1

�
+

A2k

4b20k
[zk � ln zk � 1]� B̃1k

2b0k
ln zk, (14)

w =
2

b02
ln z2, ⇤ =

�
1

4
L2
tu/s2 +

3

4
L2
t/u. (15)

In the equation above we defined zk = �k(µl)/�k(µh),
b0k, b1k are the two lowest order beta-function coe⇤cients
for U(1) and SU(2) and A1k, A2k, B1k are the one and
two-loop cusp anomalous dimension coe⇤cients and one-
loop non-cusp anomalous dimension coe⇤cient. They are
all summarized in the table below. Note that B̃k is de-
fined in such a way that it is same as B1k for k = 1
and is equal to part of B12 which is proportional to unit
matrix, i.e. omitting term 4US , where US is the matrix
in the second term of the second line in Eq. (10), which
comes from soft anomalous dimension.
The leading-logarithm (LL) expression is significantly

simpler and is given by first term in the expression for ⇥
in Eq. (14):

�LL(µh, µl) = exp

�

✏
2⌘

k=1

⇧A1k

◆
zk ln zk + 1� zk



b20k �k(µl)

�

⇣ ,(16)

and unlike the NLL expression, the LL one is propor-
tional to unit matrix, has no angular dependance at
fixed scales µh, µl and does not depend on any momenta
(p1, p2, p3, p4) before setting the scale µh ⇤ s.

k=1 k=2

�k �em/cos2 ⌅W �em/sin
2 ⌅W

b0k �41/6 19/6

b1k �199/30 �35/6

A1k �4 �12

A2k (�4)·(�104)/9 �12
⇤

70
9 � 2⇥2

3

⌅

B1k 2
⇤
Lt/u � ln µ2

h
�s

⌅
� 4 �6

⇤
ln µ2

h
�s + 2

⌅
+ 4US

B̃1k 2
⇤
Lt/u � ln µ2

h
�s

⌅
� 4 �6

⇤
ln µ2

h
�s + 2

⌅

C. Low-scale matching

At the low scale µl ⇤ MW ,MZ we integrate out W
and Z bosons, and match onto SCET� with only pho-
tons (and of course gluons, but for our purpose they are
irrelevant). At tree level we simply rewrite each doublet
⌃i in our operator basis O1, O2 in terms of broken fields:

⌃ =

 
iw+

H�iz⇥
2

⌦
, (17)

µ d
dµ

p1 p2

p3 p4

�, Z

p1 p2

p3 p4

�, Z= �O⇥

µ d
dµC(µ) = ��T

OC(µ)

qq̄ ! qq̄

(massless)

Chiu, Golf, Kelley, Manohar (08)can be extracted from:

Used	  	  	  	  	  	  	  	  	  	  	  	  	  regulator	  for	  regularizing	  the	  Wilson	  lines	  �
	  Chiu,	  Golf,	  Kelley,	  Manohar,	  2007-‐2010	  

Previous	  formalism	  for	  resumming	  EW	  logs	  with	  SCETEW	  	  by	  Chiu	  et	  al	  	  
only	  considered	  boosted	  massive	  par1cles	  (bHQET),	  we	  extended	  their	  	  
formalism	  for	  the	  un-‐boosted	  scenario	  (HQET).	  

s1) s2) s3) s4) s5) s6)

c1) c2)

w1) w2) w3) w4) w5)

Figure 3: Feynman Graphs contributing to anomalous dimension matrix. Ultrasoft graphs s1 � s6;
Collinear graphs c1 � c4; wavefunction renormalization graphs w1 � w5.

matrix for an arbitrary operator containing any number of either massless SCET legs or massive
HQET legs is derived in Ref. [8]. It has the following form:

� = �
C

+ �
S

, (21)

where the collinear anomalous dimension is proportional to unit matrix and is equal to the sum over
each leg of a corresponding collinear anomalous dimension term (see Table III on page 32 of Ref. [8]).
On the other hand the soft anomalous dimension has non-trivial color structure and is universal in
the sense that it depends only on light-cone directions and color flow in the operator at hand. The
collinear anomalous dimension for our operators equals to:

�
C

= (2�
hv + 2�

WT ) ⇥ 1. (22)

In the equation above the transverse gauge boson collinear anomalous dimension matrix equals[8]:

�
WT =

↵2

4⇡
(4C

A

L
p

� b0) , (23)

where ↵2 = ↵em/sin2✓
W

L
p

= ln n̄ · p/µ; C
A

= 2 and b0 is the one-loop beta function of SU(2)
coupling in SM, i.e. b0 = 19/6. In fact it was found in Ref. [8] that transverse vector boson
pair production has the biggest electroweak radiative e↵ect out of all processes considered in that
reference. This is due to biggest Casimir factor value C

A

= 2, compared for example to C
F

= 3/4
for the SM gauge group.

The anomalous dimension matrix due to heavy fields h
v

is di↵erent from the heavy-field collinear
anomalous dimension found in Ref. [8]:

�bHQET
hv

= C
A

↵2

⇡

✓
ln 2� � 1

2

◆
, (24)

where � = E/M , where bHQET stands for boosted HQET. As opposed to this, in our case the
HQET fields are not boosted. So we provide our calculation with some details for this scenario in
the Appendix.

6

Collinear	  graphs	  universal	  and	  known	  (for	  example	  see	  Chiu	  et	  al).	  Soo	  
graphs	  need	  to	  be	  computed	  
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matrix, and running between the high scale µm� ' 2m�

and the low scale µZ ' mZ . For NLL order resumma-
tion we need the two-loop cusp and one-loop non-cusp
anomalous dimensions, plus the high scale matching at
tree level. The one-loop anomalous dimension matrix for
an operator with standard model quantum numbers and
any number of single collinear building blocks was de-
rived in Ref. [18], and we will make use of their results,
including the �-regulator [18, 20]. Our case di↵ers from
this general result because the incoming nonrelativistic
DM fields are in the same direction v, and hence we have
two soft Sv Wilson lines that can interact with each other
or self-interact.

The anomalous dimension matrix for (C1 C2)T is

�̂ = 2�WT + �̂S . (9)

Here �WT is the collinear anomalous dimension of Bia
n?

which only mixes into itself, and hence multiplies a diag-
onal matrix. Including the two-loop cusp and one-loop
non-cusp terms it is equal to [18]:

�NLL
WT

=
↵2

4⇡
�g
0 ln

2m�

µ
� ↵2

4⇡
b0 +

⇣↵2

4⇡

⌘2
�g
1 ln

2m�

µ
, (10)

where here and below ↵2(µ) is in the MS scheme, and
for SU(2) in the SM, CA = 2, b0 = 19/6 is the one-
loop �-function, the cusp anomalous dimensions are �g

0 =
4CA = 8 and �g

1 = 8
�
70
9 � 2

3⇡
2
�
. When integrating, we

will also need the two-loop �-function b1 = �35/6.
The soft anomalous dimension �̂S encodes the run-

ning and mixing of the soft factors Sabcd
1,2 and hence has

non-trivial structure. After canceling the regulator de-
pendent part with the zero-bin subtracted [21] collinear
graphs, the remaining non-zero one-loop contributions
come from: wavefunction renormalization from self con-
tracting a Sv, connecting the two Sv Wilson lines, and
connecting the Sn and Sn̄ Wilson lines. The wavefunc-
tion renormalization is the same as in Heavy Quark E↵ec-
tive Theory, �hv = �CA↵2/(2⇡). The full result needed
at NLL is

�̂NLL
S =

↵2

⇡
(1� i⇡)

✓
2 1

0 �1

◆
� 2↵2

⇡

✓
1 0

0 1

◆
. (11)

At the low scale µZ ' mZ the operators O1, O2

are matched onto operators with W, Z, �s, and ef-
fects associated with the gauge boson masses are in-
cluded from low scale matching (or using the rapid-
ity renormalization group [22, 23]). Here we are in-
terested in neutral transverse final state gauge bosons,
where the matching at NLL order reads [19] B3

? !
exp(D) (Z? cos ✓W + A? sin ✓W ) with

D(µZ) =
↵2(µZ)

2⇡
ln

4m2
�

µ2
Z

ln
m2

W

µ2
Z

. (12)

The Sommerfeld enhancement factors in (5) are low scale
matrix elements which are also calculated at µZ ' mZ

in the MS scheme.
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FIG. 1. Resummed leading and next-to-leading logarithmic
electroweak corrections for �+��,�0�0 ! ZZ,Z�, ��. Only
high scale variation by a factor of 2 from µm� = 2m� is shown.
Low scale variation has a 20% smaller error band for the top
plot and a 5% bigger error band for the bottom plot.

Analytical resummation formula at NLL order. The
resummed amplitude is


C1(µZ)

C2(µZ)

�
= eD(µZ)P exp

✓Z µZ

µm�

dµ

µ
�̂

◆
C1(µm�)

C2(µm�)

�
. (13)

This equation can be integrated analytically using
dµ/µ = d↵2/�2[↵2]. For X = ZZ, �Z, �� we find

⌃1 =
e⌦+D

3

⇣
2 z�

4 
b0 + z

2 
b0

⌘
, (14)

⌃1 � ⌃2 =
2 e⌦+D

3

⇣
z�

4 
b0 � z

2 
b0

⌘
,

where  = 1� i⇡, z = ↵2(µZ)/↵2(µm�), D is in Eq. (12),
and ⌦ at NLL order equals

⌦ =
�2⇡�g

0

�
z ln z+1�z

�

b20 ↵2(µZ)
� �g

0 b1
�
ln z�z� ln2 z

2 +1
�

2b30

� ln z

2b0


8
⇣
ln

4m2
�

µ2
m�

� 1
⌘
� 2b0

�
� �g

1

2b20
(z�ln z�1) . (15)
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rived in Ref. [18], and we will make use of their results,
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DM fields are in the same direction v, and hence we have
two soft Sv Wilson lines that can interact with each other
or self-interact.
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ning and mixing of the soft factors Sabcd
1,2 and hence has

non-trivial structure. After canceling the regulator de-
pendent part with the zero-bin subtracted [21] collinear
graphs, the remaining non-zero one-loop contributions
come from: wavefunction renormalization from self con-
tracting a Sv, connecting the two Sv Wilson lines, and
connecting the Sn and Sn̄ Wilson lines. The wavefunc-
tion renormalization is the same as in Heavy Quark E↵ec-
tive Theory, �hv = �CA↵2/(2⇡). The full result needed
at NLL is
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At the low scale µZ ' mZ the operators O1, O2

are matched onto operators with W, Z, �s, and ef-
fects associated with the gauge boson masses are in-
cluded from low scale matching (or using the rapid-
ity renormalization group [22, 23]). Here we are in-
terested in neutral transverse final state gauge bosons,
where the matching at NLL order reads [19] B3
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exp(D) (Z? cos ✓W + A? sin ✓W ) with

D(µZ) =
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matrix elements which are also calculated at µZ ' mZ

in the MS scheme.
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Analytical resummation formula at NLL order. The
resummed amplitude is


C1(µZ)

C2(µZ)

�
= eD(µZ)P exp

✓Z µZ

µm�

dµ

µ
�̂

◆
C1(µm�)

C2(µm�)

�
. (13)

This equation can be integrated analytically using
dµ/µ = d↵2/�2[↵2]. For X = ZZ, �Z, �� we find

⌃1 =
e⌦+D

3

⇣
2 z�

4 
b0 + z

2 
b0

⌘
, (14)

⌃1 � ⌃2 =
2 e⌦+D

3

⇣
z�

4 
b0 � z

2 
b0

⌘
,

where  = 1� i⇡, z = ↵2(µZ)/↵2(µm�), D is in Eq. (12),
and ⌦ at NLL order equals

⌦ =
�2⇡�g

0

�
z ln z+1�z

�

b20 ↵2(µZ)
� �g

0 b1
�
ln z�z� ln2 z

2 +1
�

2b30

� ln z

2b0


8
⇣
ln

4m2
�

µ2
m�

� 1
⌘
� 2b0

�
� �g

1

2b20
(z�ln z�1) . (15)

Collinear	  graphs	  depend	  on	  delta	  regulators:	  	   �3, �4

Adding	  the	  soo	  graphs	  cancels	  this	  regulator	  dependence	  



Low	  Scale	  Matching	  

Ô12 = �0
1 �+

2 W�
3 W 0

4 ,

Ô13 = �0
1 �+

2 W 0
3 W�

4 ,

Ô14 = �+
1 ��

2 W�
3 W+

4 ,

Ô15 = �+
1 ��

2 W 0
3 W 0

4 ,

Ô16 = �+
1 ��

2 W+
3 W�

4 ,

Ô17 = �+
1 �0

2 W�
3 W 0

4 ,

Ô18 = �+
1 �0

2 W 0
3 W�

4 ,

Ô19 = �+
1 �+

2 W�
3 W�

4 . (28)

The tree level matching is trivial, one would need to plug in directly the definition of operators
O1, O2, O3 in Eq. (18)-Eq. (20) the multiplets in terms of broken fields. For NLL resummation we
would need this matching at one loop order, and in Ref. [8] it is explained how to exponentiate this
matching. The low-scale matching looks like:

Ĉ
i

= R
ij

C
j

, (29)

At tree level we find the following matching matrix:

R(0) =

2

64
0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0

1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 1

1 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 1

3

75

T

. (30)

One should recall that the third component of the gauge triplet W 3 is a combination of a Z�boson
and of a photon:

Wµ0 ⌘ Wµ3 = Zµ cos ✓
W

+ Aµ sin ✓
W

, (31)

where ✓
W

is the Winberg’s angle. As a result the resummed e↵ective hamiltonian describes processes
�0�0 ! W+W�, ZZ and �+�� ! W+W�, ZZ all at once. At next-to-leading logarithmic order
we need to include the low-scale matching at one loop level. This matching as is known contains a
large logarithm between high and low scales [8, 9]. This logarithm is a single logarithm and it comes
from collinear low-scale matching. It appears only for massless fields. In Ref. [9] all such matching
coe�cients are calculated to order su�cient for NNLL calculation. Keeping only terms to NLL order
that we work to the answer becomes significantly simpler. We have only massless transverse gauge
fields in our operator W 1,2,3

? , for this field the matching the NLL order reads [9]:

W †W±
? = exp(D1) W±

? , W †W 3
? = exp(D2) (Z? cos ✓

W

+ A? sin ✓
W

) . (32)

D1(µ
l

) =
↵2(µ

l

) ln s

µ

2
l

4⇡

✓
ln

M2
W

µ2
l

+ c2
W

ln
M2

Z

µ2
l

◆
, D2(µ

l

) =
↵2(µ

l

) ln s

µ

2
l

2⇡
ln

M2
W

µ2
l

. (33)

For the heavy fields responsible for DM particle at NLL the low scale matching is trivial.

8

Matching at the low scale

• Below the low scale we match on 
the basis in terms of broken fields:

D
p1 p2

p3 p4

p1 p2

p3 p4

�, Z
(massive)

At the low scale integrate out massive gauge bosons:

µl = MZ

3

s > 0, t, u < 0 as in Eq. (5) above. The corresponding
analytic continuation looks as follows:

⇥(µ, s, t, u) =
�1

⇧

⇧
1

2
ln

�s

µ2
� 1 +

1

2
Lt/u

⌃

+
�2

⇧

⇧
3

2

⇧
ln

�s

µ2
� 2

⌃
+

⌥
Ltu/s2 2Lt/u
3
8Lt/u 0

�⌃
, (10)

where Lt/u = ln(�t � i0+) � ln(�u � i0+), Ltu/s2 =
ln(�t� i0+) + ln(�u� i0+)� 2 ln(�s� i0+) [10].

It is useful to have an analytical formula for (matrix)
exponential of the integral from µh to µl of anomalous
dimension in Eq. (10) that appears in the resummed am-
plitude in Eq. (1):

� ⇥
⇧

�11 �12

�21 �22

⌃
= P exp

⇧✓ µl

µh

dµ

µ
�(�(µ))

⌃
. (11)

Evaluation of � requires standard tricks to switch inte-
gration from dµ to d� using the beta-function as well as

matrix exponentiation. The former has been analytically
performed in the Appendix A of Ref. [13] while the lat-
ter is a simple exercise for 2 by 2 matrices. Rewriting
the anomalous dimension in terms of cusp and non-cusp
part:

⇥ =
2⌘

k=1

�
ak A1k + a2k A2k

⇥
ln

µ

µh
+ ak B1k, (12)

where ak = �k/4⇧ and inex k = 1 corresponds to U(1)
and k = 2 to SU(2) parts of the SM gauge group and
values for cusp and non-cusp parts are summarized in
the table below. Note that the µh dependence in the
non-cusp part of the anomalous dimension is cancelled
exactly by same dependence in the log term in Eq. (12)
and is introduced in order to use master formula from
Appendix A of Ref. [13] for the integral of the anomalous
dimension. Finally we get for the exponential factor in
Eq. (1) a fully analytic expression:

�NLL(µh, µl, s, t, u) = e��wLut/s2/2

↵
coshw⇤ 1+

sinhw⇤

⇤

 
�Lut/s2

2 �2Lt/u

� 3
2Lt/u

Lut/s2

2

⌦�
, where (13)

⇥ =
2⌘

k=1

⇧A1k

◆
zk ln zk + 1� zk



b20k �k(µl)
+

A1kb1k
4b30k

⌥
ln zk � zk � 1

2
ln2 zk + 1

�
+

A2k

4b20k
[zk � ln zk � 1]� B̃1k

2b0k
ln zk, (14)

w =
2

b02
ln z2, ⇤ =

�
1

4
L2
tu/s2 +

3

4
L2
t/u. (15)

In the equation above we defined zk = �k(µl)/�k(µh),
b0k, b1k are the two lowest order beta-function coe⇤cients
for U(1) and SU(2) and A1k, A2k, B1k are the one and
two-loop cusp anomalous dimension coe⇤cients and one-
loop non-cusp anomalous dimension coe⇤cient. They are
all summarized in the table below. Note that B̃k is de-
fined in such a way that it is same as B1k for k = 1
and is equal to part of B12 which is proportional to unit
matrix, i.e. omitting term 4US , where US is the matrix
in the second term of the second line in Eq. (10), which
comes from soft anomalous dimension.

The leading-logarithm (LL) expression is significantly
simpler and is given by first term in the expression for ⇥
in Eq. (14):

�LL(µh, µl) = exp

�

✏
2⌘

k=1

⇧A1k

◆
zk ln zk + 1� zk



b20k �k(µl)

�

⇣ ,(16)

and unlike the NLL expression, the LL one is propor-
tional to unit matrix, has no angular dependance at
fixed scales µh, µl and does not depend on any momenta
(p1, p2, p3, p4) before setting the scale µh ⇤ s.

k=1 k=2

�k �em/cos2 ⌅W �em/sin
2 ⌅W

b0k �41/6 19/6

b1k �199/30 �35/6

A1k �4 �12

A2k (�4)·(�104)/9 �12
⇤

70
9 � 2⇥2

3

⌅

B1k 2
⇤
Lt/u � ln µ2

h
�s

⌅
� 4 �6

⇤
ln µ2

h
�s + 2

⌅
+ 4US

B̃1k 2
⇤
Lt/u � ln µ2

h
�s

⌅
� 4 �6

⇤
ln µ2

h
�s + 2

⌅

C. Low-scale matching

At the low scale µl ⇤ MW ,MZ we integrate out W
and Z bosons, and match onto SCET� with only pho-
tons (and of course gluons, but for our purpose they are
irrelevant). At tree level we simply rewrite each doublet
⌃i in our operator basis O1, O2 in terms of broken fields:

⌃ =

 
iw+

H�iz⇥
2

⌦
, (17)

4

where w± = (⇧1 ⇤ i⇧2)/
⇧
2 and z = ⇧3 and we omit-

ted the Higgs vev since we are interested in four-particle
interactions only. Writing the operators O1 and O2 in
terms of four-particle operators involving fields w±, H, z
is straightforward but contains a great number of terms.
It is more convenient to work in the basis of fields
w±,⇥±, where ⇥± = (H ⇤ iz)/

⇧
2 since the number

of possible terms with such a choice in the e⇤ective La-
grangian is minimal. At the low scale µl the operators in
Eq. (2)-Eq. (3) match onto the following ones:

Ô1 = w�
4 w

+
3 w

�
2 w

+
1 ,

Ô2 = ⇥�
4 ⇥

+
3 w

�
2 w

+
1 ,

Ô3 = w�
4 w

+
3 ⇥

�
2 ⇥

+
1 ,

Ô4 = ⇥�
4 ⇥

+
3 ⇥

�
2 ⇥

+
1 ,

Ô5 = w�
4 ⇥

+
3 ⇥

�
2 w

+
1 ,

Ô6 = ⇥�
4 w

+
3 w

�
2 ⇥

+
1 (18)

with Wilson coe⌅cients Ĉi, where

Ĉi = RijCj . (19)

Coe⌅cients Cj at the high scale are given in Eq. (2)-
Eq. (3), while at the low scale they are equal to:

C1(µl) = �⇥(µh)�12, (20)

C2(µl) = �⇥(µh)�22. (21)

The matching matrix R at tree level is found simply
by substituting Eq. (17) into the definition of operators
O1, O2. The result is:

R(0) =

⇤

⌥⌥⌥⌥⌥⌥⌥⇧

1
4 1

� 1
4 1

� 1
4 1

1
4 1
1
2 0
1
2 0

⌅

�������⌃

. (22)

Finally for consistency if we stay at NLL order we
need to include the matching at low scale at one
loop, because this matching contains large logarithms
ln

⇧
s/MW , ln

⇧
s/MZ and due to finite di⇤erence MW �

MZ in SM, these large logarithm has to be included at
NLL order in SM [12, 13]. This calculation in SM is
tricky and has been performed consistently in Ref. [13].
The result is that the scalar doublet has to be matched
on physical states below µl, which are WL, ZL, H and
each component of the doublet gets di⇤erent matching
correction which can be found in [13] for general case
µl,MW ,MZ . For NLL order and setting µl = MZ , the
entire doublet gets the same matching correction. The
resummed matrix element gets multiplied as a result of
low scale matching by a factor exp(D), where D has sim-
ple expression for this case:

D(µl = MZ) = ��W (MZ)

⇤
ln

MZ

MW
ln

s

M2
Z

. (23)

By setting µl = MZ we get a simple expression, however
the price we pay is that we will not be able to evaluate
the low-scale variation consistently. We will only include
high-scale variation µh in our plots below. Including the
low scale matching, the tree level matrix R(0) gets mod-
ified:

R = R(0) · eD(µl=MZ). (24)

D. Lagrangian of EFT

Now that we have calculated the matrix element in-
cluding resummation of electroweak Sudakov logarithms,
it is straightforward to construct the Lagrangian of e⇤ec-
tive theory:

LEFT =
⌦

p1,p2,p3,p4

Ĉi(p1, p2, p3, p4) Ôi(p1, p2, p3, p4) (25)

Another simplification we will use is to rewrite the color-
octet operator as a combination of two color singlet op-
erators with di⇤erent contractions:

O1 =
1

2
⌅†
4⌅1 ⌅

†
2⌅3 �

1

2N
⌅†
4⌅3 ⌅

†
2⌅1, (26)

with N = 2 for SU(2). Thus, since momenta p1, p2, p3, p4
have to be summed over, and also the Lagrangian be-
fore low-scale matching looks like

 
pi
C1(pi)O1(pi) +

C2(pi)O2(pi), we can use identity in Eq. (26) and reshuf-
fle the momenta pi in the first term of Eq. (26) to
make it look like the second term (O2) with reshuf-
fled momenta in the argument of the Wilson coe⌅cient
C1(p1, p2, p3, p4) ⌅ C1(p3, p2, p1, p4). As a result we re-
duced our basis of operators to only one: O2 and La-
grangian takes form:

Le� = �⇥(µh)
⌦

p1,p2,p3,p4

f(µh, µl, s, t, u)⌅
†
4⌅3⌅

†
2⌅1

= �⇥(µh)
⌦

pj

f(µh, µl, pj)
4⌦

i=1

Ri2Ôi(pj). (27)

There is one subtlety at this point, which is whether we
set the hard scale µh =

⇧
s =

↵
(p1 + p2)2 before the

summation in the Lagrangian, or we set this scale after
taking the matrix element with external states. We chose
to do the later while the former would give a di⇤erent
numerical result. However the di⇤erence should be within
hard scale variation, thus of the higher order, i.e. NNLL.
At NLL order the function f is equal to:

fNLL(µh,MZ , s, t, u) = eD(µl=MZ ,s)

⇥
�
�22(s, t, u)�

1

4
�12(s, t, u) +

1

2
�12(t, s, u)

⇥
.

(28)

At LL it is independent of loop momenta completely:

fLL(µh, µl) = �LL(µh, µl), (29)

where �LL is given in Eq. (16).
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where w± = (⇧1 ⇤ i⇧2)/
⇧
2 and z = ⇧3 and we omit-

ted the Higgs vev since we are interested in four-particle
interactions only. Writing the operators O1 and O2 in
terms of four-particle operators involving fields w±, H, z
is straightforward but contains a great number of terms.
It is more convenient to work in the basis of fields
w±,⇥±, where ⇥± = (H ⇤ iz)/

⇧
2 since the number

of possible terms with such a choice in the e⇤ective La-
grangian is minimal. At the low scale µl the operators in
Eq. (2)-Eq. (3) match onto the following ones:

Ô1 = w�
4 w

+
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+
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+
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Ô5 = w�
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+
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+
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Ô6 = ⇥�
4 w

+
3 w

�
2 ⇥

+
1 (18)

with Wilson coe⌅cients Ĉi, where

Ĉi = RijCj . (19)

Coe⌅cients Cj at the high scale are given in Eq. (2)-
Eq. (3), while at the low scale they are equal to:

C1(µl) = �⇥(µh)�12, (20)

C2(µl) = �⇥(µh)�22. (21)

The matching matrix R at tree level is found simply
by substituting Eq. (17) into the definition of operators
O1, O2. The result is:

R(0) =

⇤

⌥⌥⌥⌥⌥⌥⌥⇧

1
4 1

� 1
4 1

� 1
4 1

1
4 1
1
2 0
1
2 0

⌅

�������⌃

. (22)

Finally for consistency if we stay at NLL order we
need to include the matching at low scale at one
loop, because this matching contains large logarithms
ln

⇧
s/MW , ln

⇧
s/MZ and due to finite di⇤erence MW �

MZ in SM, these large logarithm has to be included at
NLL order in SM [12, 13]. This calculation in SM is
tricky and has been performed consistently in Ref. [13].
The result is that the scalar doublet has to be matched
on physical states below µl, which are WL, ZL, H and
each component of the doublet gets di⇤erent matching
correction which can be found in [13] for general case
µl,MW ,MZ . For NLL order and setting µl = MZ , the
entire doublet gets the same matching correction. The
resummed matrix element gets multiplied as a result of
low scale matching by a factor exp(D), where D has sim-
ple expression for this case:

D(µl = MZ) = ��W (MZ)

⇤
ln

MZ

MW
ln

s

M2
Z

. (23)

By setting µl = MZ we get a simple expression, however
the price we pay is that we will not be able to evaluate
the low-scale variation consistently. We will only include
high-scale variation µh in our plots below. Including the
low scale matching, the tree level matrix R(0) gets mod-
ified:

R = R(0) · eD(µl=MZ). (24)

D. Lagrangian of EFT

Now that we have calculated the matrix element in-
cluding resummation of electroweak Sudakov logarithms,
it is straightforward to construct the Lagrangian of e⇤ec-
tive theory:

LEFT =
⌦

p1,p2,p3,p4

Ĉi(p1, p2, p3, p4) Ôi(p1, p2, p3, p4) (25)

Another simplification we will use is to rewrite the color-
octet operator as a combination of two color singlet op-
erators with di⇤erent contractions:

O1 =
1

2
⌅†
4⌅1 ⌅

†
2⌅3 �

1

2N
⌅†
4⌅3 ⌅

†
2⌅1, (26)

with N = 2 for SU(2). Thus, since momenta p1, p2, p3, p4
have to be summed over, and also the Lagrangian be-
fore low-scale matching looks like

 
pi
C1(pi)O1(pi) +

C2(pi)O2(pi), we can use identity in Eq. (26) and reshuf-
fle the momenta pi in the first term of Eq. (26) to
make it look like the second term (O2) with reshuf-
fled momenta in the argument of the Wilson coe⌅cient
C1(p1, p2, p3, p4) ⌅ C1(p3, p2, p1, p4). As a result we re-
duced our basis of operators to only one: O2 and La-
grangian takes form:

Le� = �⇥(µh)
⌦

p1,p2,p3,p4

f(µh, µl, s, t, u)⌅
†
4⌅3⌅

†
2⌅1

= �⇥(µh)
⌦

pj

f(µh, µl, pj)
4⌦

i=1

Ri2Ôi(pj). (27)

There is one subtlety at this point, which is whether we
set the hard scale µh =

⇧
s =

↵
(p1 + p2)2 before the

summation in the Lagrangian, or we set this scale after
taking the matrix element with external states. We chose
to do the later while the former would give a di⇤erent
numerical result. However the di⇤erence should be within
hard scale variation, thus of the higher order, i.e. NNLL.
At NLL order the function f is equal to:

fNLL(µh,MZ , s, t, u) = eD(µl=MZ ,s)

⇥
�
�22(s, t, u)�

1

4
�12(s, t, u) +
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2
�12(t, s, u)

⇥
.

(28)

At LL it is independent of loop momenta completely:

fLL(µh, µl) = �LL(µh, µl), (29)

where �LL is given in Eq. (16).
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where w± = (⇧1 ⇤ i⇧2)/
⇧
2 and z = ⇧3 and we omit-

ted the Higgs vev since we are interested in four-particle
interactions only. Writing the operators O1 and O2 in
terms of four-particle operators involving fields w±, H, z
is straightforward but contains a great number of terms.
It is more convenient to work in the basis of fields
w±,⇥±, where ⇥± = (H ⇤ iz)/

⇧
2 since the number

of possible terms with such a choice in the e⇤ective La-
grangian is minimal. At the low scale µl the operators in
Eq. (2)-Eq. (3) match onto the following ones:

Ô1 = w�
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with Wilson coe⌅cients Ĉi, where

Ĉi = RijCj . (19)

Coe⌅cients Cj at the high scale are given in Eq. (2)-
Eq. (3), while at the low scale they are equal to:

C1(µl) = �⇥(µh)�12, (20)

C2(µl) = �⇥(µh)�22. (21)

The matching matrix R at tree level is found simply
by substituting Eq. (17) into the definition of operators
O1, O2. The result is:

R(0) =

⇤

⌥⌥⌥⌥⌥⌥⌥⇧

1
4 1

� 1
4 1

� 1
4 1

1
4 1
1
2 0
1
2 0

⌅

�������⌃

. (22)

Finally for consistency if we stay at NLL order we
need to include the matching at low scale at one
loop, because this matching contains large logarithms
ln

⇧
s/MW , ln

⇧
s/MZ and due to finite di⇤erence MW �

MZ in SM, these large logarithm has to be included at
NLL order in SM [12, 13]. This calculation in SM is
tricky and has been performed consistently in Ref. [13].
The result is that the scalar doublet has to be matched
on physical states below µl, which are WL, ZL, H and
each component of the doublet gets di⇤erent matching
correction which can be found in [13] for general case
µl,MW ,MZ . For NLL order and setting µl = MZ , the
entire doublet gets the same matching correction. The
resummed matrix element gets multiplied as a result of
low scale matching by a factor exp(D), where D has sim-
ple expression for this case:

D(µl = MZ) = ��W (MZ)

⇤
ln

MZ

MW
ln

s

M2
Z

. (23)

By setting µl = MZ we get a simple expression, however
the price we pay is that we will not be able to evaluate
the low-scale variation consistently. We will only include
high-scale variation µh in our plots below. Including the
low scale matching, the tree level matrix R(0) gets mod-
ified:

R = R(0) · eD(µl=MZ). (24)

D. Lagrangian of EFT

Now that we have calculated the matrix element in-
cluding resummation of electroweak Sudakov logarithms,
it is straightforward to construct the Lagrangian of e⇤ec-
tive theory:

LEFT =
⌦

p1,p2,p3,p4

Ĉi(p1, p2, p3, p4) Ôi(p1, p2, p3, p4) (25)

Another simplification we will use is to rewrite the color-
octet operator as a combination of two color singlet op-
erators with di⇤erent contractions:

O1 =
1

2
⌅†
4⌅1 ⌅

†
2⌅3 �

1

2N
⌅†
4⌅3 ⌅

†
2⌅1, (26)

with N = 2 for SU(2). Thus, since momenta p1, p2, p3, p4
have to be summed over, and also the Lagrangian be-
fore low-scale matching looks like

 
pi
C1(pi)O1(pi) +

C2(pi)O2(pi), we can use identity in Eq. (26) and reshuf-
fle the momenta pi in the first term of Eq. (26) to
make it look like the second term (O2) with reshuf-
fled momenta in the argument of the Wilson coe⌅cient
C1(p1, p2, p3, p4) ⌅ C1(p3, p2, p1, p4). As a result we re-
duced our basis of operators to only one: O2 and La-
grangian takes form:

Le� = �⇥(µh)
⌦

p1,p2,p3,p4

f(µh, µl, s, t, u)⌅
†
4⌅3⌅

†
2⌅1

= �⇥(µh)
⌦

pj

f(µh, µl, pj)
4⌦

i=1

Ri2Ôi(pj). (27)

There is one subtlety at this point, which is whether we
set the hard scale µh =

⇧
s =

↵
(p1 + p2)2 before the

summation in the Lagrangian, or we set this scale after
taking the matrix element with external states. We chose
to do the later while the former would give a di⇤erent
numerical result. However the di⇤erence should be within
hard scale variation, thus of the higher order, i.e. NNLL.
At NLL order the function f is equal to:

fNLL(µh,MZ , s, t, u) = eD(µl=MZ ,s)

⇥
�
�22(s, t, u)�

1

4
�12(s, t, u) +

1

2
�12(t, s, u)

⇥
.

(28)

At LL it is independent of loop momenta completely:

fLL(µh, µl) = �LL(µh, µl), (29)

where �LL is given in Eq. (16).

This matching has been done in:

Chiu, Golf, Kelley, Manohar (08)
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where w± = (⇧1 ⇤ i⇧2)/
⇧
2 and z = ⇧3 and we omit-

ted the Higgs vev since we are interested in four-particle
interactions only. Writing the operators O1 and O2 in
terms of four-particle operators involving fields w±, H, z
is straightforward but contains a great number of terms.
It is more convenient to work in the basis of fields
w±,⇥±, where ⇥± = (H ⇤ iz)/

⇧
2 since the number

of possible terms with such a choice in the e⇤ective La-
grangian is minimal. At the low scale µl the operators in
Eq. (2)-Eq. (3) match onto the following ones:
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with Wilson coe⌅cients Ĉi, where

Ĉi = RijCj . (19)

Coe⌅cients Cj at the high scale are given in Eq. (2)-
Eq. (3), while at the low scale they are equal to:

C1(µl) = �⇥(µh)�12, (20)

C2(µl) = �⇥(µh)�22. (21)

The matching matrix R at tree level is found simply
by substituting Eq. (17) into the definition of operators
O1, O2. The result is:

R(0) =

⇤

⌥⌥⌥⌥⌥⌥⌥⇧

1
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Finally for consistency if we stay at NLL order we
need to include the matching at low scale at one
loop, because this matching contains large logarithms
ln

⇧
s/MW , ln

⇧
s/MZ and due to finite di⇤erence MW �

MZ in SM, these large logarithm has to be included at
NLL order in SM [12, 13]. This calculation in SM is
tricky and has been performed consistently in Ref. [13].
The result is that the scalar doublet has to be matched
on physical states below µl, which are WL, ZL, H and
each component of the doublet gets di⇤erent matching
correction which can be found in [13] for general case
µl,MW ,MZ . For NLL order and setting µl = MZ , the
entire doublet gets the same matching correction. The
resummed matrix element gets multiplied as a result of
low scale matching by a factor exp(D), where D has sim-
ple expression for this case:

D(µl = MZ) = ��W (MZ)

⇤
ln

MZ

MW
ln

s

M2
Z

. (23)

By setting µl = MZ we get a simple expression, however
the price we pay is that we will not be able to evaluate
the low-scale variation consistently. We will only include
high-scale variation µh in our plots below. Including the
low scale matching, the tree level matrix R(0) gets mod-
ified:

R = R(0) · eD(µl=MZ). (24)

D. Lagrangian of EFT

Now that we have calculated the matrix element in-
cluding resummation of electroweak Sudakov logarithms,
it is straightforward to construct the Lagrangian of e⇤ec-
tive theory:

LEFT =
⌦

p1,p2,p3,p4

Ĉi(p1, p2, p3, p4) Ôi(p1, p2, p3, p4) (25)

Another simplification we will use is to rewrite the color-
octet operator as a combination of two color singlet op-
erators with di⇤erent contractions:

O1 =
1

2
⌅†
4⌅1 ⌅

†
2⌅3 �

1

2N
⌅†
4⌅3 ⌅

†
2⌅1, (26)

with N = 2 for SU(2). Thus, since momenta p1, p2, p3, p4
have to be summed over, and also the Lagrangian be-
fore low-scale matching looks like

 
pi
C1(pi)O1(pi) +

C2(pi)O2(pi), we can use identity in Eq. (26) and reshuf-
fle the momenta pi in the first term of Eq. (26) to
make it look like the second term (O2) with reshuf-
fled momenta in the argument of the Wilson coe⌅cient
C1(p1, p2, p3, p4) ⌅ C1(p3, p2, p1, p4). As a result we re-
duced our basis of operators to only one: O2 and La-
grangian takes form:

Le� = �⇥(µh)
⌦

p1,p2,p3,p4

f(µh, µl, s, t, u)⌅
†
4⌅3⌅

†
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⌦
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f(µh, µl, pj)
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Ri2Ôi(pj). (27)

There is one subtlety at this point, which is whether we
set the hard scale µh =

⇧
s =

↵
(p1 + p2)2 before the

summation in the Lagrangian, or we set this scale after
taking the matrix element with external states. We chose
to do the later while the former would give a di⇤erent
numerical result. However the di⇤erence should be within
hard scale variation, thus of the higher order, i.e. NNLL.
At NLL order the function f is equal to:

fNLL(µh,MZ , s, t, u) = eD(µl=MZ ,s)

⇥
�
�22(s, t, u)�

1

4
�12(s, t, u) +

1

2
�12(t, s, u)

⇥
.

(28)

At LL it is independent of loop momenta completely:

fLL(µh, µl) = �LL(µh, µl), (29)

where �LL is given in Eq. (16).
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ted the Higgs vev since we are interested in four-particle
interactions only. Writing the operators O1 and O2 in
terms of four-particle operators involving fields w±, H, z
is straightforward but contains a great number of terms.
It is more convenient to work in the basis of fields
w±,⇥±, where ⇥± = (H ⇤ iz)/
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of possible terms with such a choice in the e⇤ective La-
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Ô1 = w�
4 w

+
3 w

�
2 w

+
1 ,
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Ô4 = ⇥�
4 ⇥

+
3 ⇥

�
2 ⇥

+
1 ,
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with Wilson coe⌅cients Ĉi, where

Ĉi = RijCj . (19)

Coe⌅cients Cj at the high scale are given in Eq. (2)-
Eq. (3), while at the low scale they are equal to:

C1(µl) = �⇥(µh)�12, (20)

C2(µl) = �⇥(µh)�22. (21)

The matching matrix R at tree level is found simply
by substituting Eq. (17) into the definition of operators
O1, O2. The result is:
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Finally for consistency if we stay at NLL order we
need to include the matching at low scale at one
loop, because this matching contains large logarithms
ln

⇧
s/MW , ln

⇧
s/MZ and due to finite di⇤erence MW �

MZ in SM, these large logarithm has to be included at
NLL order in SM [12, 13]. This calculation in SM is
tricky and has been performed consistently in Ref. [13].
The result is that the scalar doublet has to be matched
on physical states below µl, which are WL, ZL, H and
each component of the doublet gets di⇤erent matching
correction which can be found in [13] for general case
µl,MW ,MZ . For NLL order and setting µl = MZ , the
entire doublet gets the same matching correction. The
resummed matrix element gets multiplied as a result of
low scale matching by a factor exp(D), where D has sim-
ple expression for this case:

D(µl = MZ) = ��W (MZ)
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By setting µl = MZ we get a simple expression, however
the price we pay is that we will not be able to evaluate
the low-scale variation consistently. We will only include
high-scale variation µh in our plots below. Including the
low scale matching, the tree level matrix R(0) gets mod-
ified:

R = R(0) · eD(µl=MZ). (24)

D. Lagrangian of EFT

Now that we have calculated the matrix element in-
cluding resummation of electroweak Sudakov logarithms,
it is straightforward to construct the Lagrangian of e⇤ec-
tive theory:

LEFT =
⌦

p1,p2,p3,p4

Ĉi(p1, p2, p3, p4) Ôi(p1, p2, p3, p4) (25)

Another simplification we will use is to rewrite the color-
octet operator as a combination of two color singlet op-
erators with di⇤erent contractions:
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4⌅3 ⌅
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with N = 2 for SU(2). Thus, since momenta p1, p2, p3, p4
have to be summed over, and also the Lagrangian be-
fore low-scale matching looks like

 
pi
C1(pi)O1(pi) +

C2(pi)O2(pi), we can use identity in Eq. (26) and reshuf-
fle the momenta pi in the first term of Eq. (26) to
make it look like the second term (O2) with reshuf-
fled momenta in the argument of the Wilson coe⌅cient
C1(p1, p2, p3, p4) ⌅ C1(p3, p2, p1, p4). As a result we re-
duced our basis of operators to only one: O2 and La-
grangian takes form:
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There is one subtlety at this point, which is whether we
set the hard scale µh =
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s =

↵
(p1 + p2)2 before the

summation in the Lagrangian, or we set this scale after
taking the matrix element with external states. We chose
to do the later while the former would give a di⇤erent
numerical result. However the di⇤erence should be within
hard scale variation, thus of the higher order, i.e. NNLL.
At NLL order the function f is equal to:
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At LL it is independent of loop momenta completely:

fLL(µh, µl) = �LL(µh, µl), (29)

where �LL is given in Eq. (16).

Matching at the low scale

• Below the low scale we match on 
the basis in terms of broken fields:

D
p1 p2

p3 p4

p1 p2

p3 p4

�, Z
(massive)

At the low scale integrate out massive gauge bosons:

µl = MZ

3

s > 0, t, u < 0 as in Eq. (5) above. The corresponding
analytic continuation looks as follows:
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, (10)

where Lt/u = ln(�t � i0+) � ln(�u � i0+), Ltu/s2 =
ln(�t� i0+) + ln(�u� i0+)� 2 ln(�s� i0+) [10].

It is useful to have an analytical formula for (matrix)
exponential of the integral from µh to µl of anomalous
dimension in Eq. (10) that appears in the resummed am-
plitude in Eq. (1):

� ⇥
⇧

�11 �12

�21 �22

⌃
= P exp

⇧✓ µl

µh

dµ

µ
�(�(µ))

⌃
. (11)

Evaluation of � requires standard tricks to switch inte-
gration from dµ to d� using the beta-function as well as

matrix exponentiation. The former has been analytically
performed in the Appendix A of Ref. [13] while the lat-
ter is a simple exercise for 2 by 2 matrices. Rewriting
the anomalous dimension in terms of cusp and non-cusp
part:

⇥ =
2⌘

k=1

�
ak A1k + a2k A2k

⇥
ln

µ

µh
+ ak B1k, (12)

where ak = �k/4⇧ and inex k = 1 corresponds to U(1)
and k = 2 to SU(2) parts of the SM gauge group and
values for cusp and non-cusp parts are summarized in
the table below. Note that the µh dependence in the
non-cusp part of the anomalous dimension is cancelled
exactly by same dependence in the log term in Eq. (12)
and is introduced in order to use master formula from
Appendix A of Ref. [13] for the integral of the anomalous
dimension. Finally we get for the exponential factor in
Eq. (1) a fully analytic expression:

�NLL(µh, µl, s, t, u) = e��wLut/s2/2

↵
coshw⇤ 1+

sinhw⇤

⇤

 
�Lut/s2

2 �2Lt/u

� 3
2Lt/u

Lut/s2

2

⌦�
, where (13)

⇥ =
2⌘

k=1

⇧A1k

◆
zk ln zk + 1� zk



b20k �k(µl)
+

A1kb1k
4b30k

⌥
ln zk � zk � 1

2
ln2 zk + 1

�
+

A2k

4b20k
[zk � ln zk � 1]� B̃1k

2b0k
ln zk, (14)

w =
2

b02
ln z2, ⇤ =

�
1

4
L2
tu/s2 +

3

4
L2
t/u. (15)

In the equation above we defined zk = �k(µl)/�k(µh),
b0k, b1k are the two lowest order beta-function coe⇤cients
for U(1) and SU(2) and A1k, A2k, B1k are the one and
two-loop cusp anomalous dimension coe⇤cients and one-
loop non-cusp anomalous dimension coe⇤cient. They are
all summarized in the table below. Note that B̃k is de-
fined in such a way that it is same as B1k for k = 1
and is equal to part of B12 which is proportional to unit
matrix, i.e. omitting term 4US , where US is the matrix
in the second term of the second line in Eq. (10), which
comes from soft anomalous dimension.

The leading-logarithm (LL) expression is significantly
simpler and is given by first term in the expression for ⇥
in Eq. (14):

�LL(µh, µl) = exp

�

✏
2⌘

k=1

⇧A1k

◆
zk ln zk + 1� zk



b20k �k(µl)

�

⇣ ,(16)

and unlike the NLL expression, the LL one is propor-
tional to unit matrix, has no angular dependance at
fixed scales µh, µl and does not depend on any momenta
(p1, p2, p3, p4) before setting the scale µh ⇤ s.

k=1 k=2

�k �em/cos2 ⌅W �em/sin
2 ⌅W

b0k �41/6 19/6

b1k �199/30 �35/6

A1k �4 �12

A2k (�4)·(�104)/9 �12
⇤

70
9 � 2⇥2

3

⌅

B1k 2
⇤
Lt/u � ln µ2

h
�s

⌅
� 4 �6

⇤
ln µ2

h
�s + 2

⌅
+ 4US

B̃1k 2
⇤
Lt/u � ln µ2

h
�s

⌅
� 4 �6

⇤
ln µ2

h
�s + 2

⌅

C. Low-scale matching

At the low scale µl ⇤ MW ,MZ we integrate out W
and Z bosons, and match onto SCET� with only pho-
tons (and of course gluons, but for our purpose they are
irrelevant). At tree level we simply rewrite each doublet
⌃i in our operator basis O1, O2 in terms of broken fields:

⌃ =

 
iw+

H�iz⇥
2

⌦
, (17)

4

where w± = (⇧1 ⇤ i⇧2)/
⇧
2 and z = ⇧3 and we omit-

ted the Higgs vev since we are interested in four-particle
interactions only. Writing the operators O1 and O2 in
terms of four-particle operators involving fields w±, H, z
is straightforward but contains a great number of terms.
It is more convenient to work in the basis of fields
w±,⇥±, where ⇥± = (H ⇤ iz)/

⇧
2 since the number

of possible terms with such a choice in the e⇤ective La-
grangian is minimal. At the low scale µl the operators in
Eq. (2)-Eq. (3) match onto the following ones:

Ô1 = w�
4 w

+
3 w

�
2 w

+
1 ,

Ô2 = ⇥�
4 ⇥

+
3 w

�
2 w

+
1 ,

Ô3 = w�
4 w

+
3 ⇥

�
2 ⇥

+
1 ,

Ô4 = ⇥�
4 ⇥

+
3 ⇥

�
2 ⇥

+
1 ,

Ô5 = w�
4 ⇥

+
3 ⇥

�
2 w

+
1 ,

Ô6 = ⇥�
4 w

+
3 w

�
2 ⇥

+
1 (18)

with Wilson coe⌅cients Ĉi, where

Ĉi = RijCj . (19)

Coe⌅cients Cj at the high scale are given in Eq. (2)-
Eq. (3), while at the low scale they are equal to:

C1(µl) = �⇥(µh)�12, (20)

C2(µl) = �⇥(µh)�22. (21)

The matching matrix R at tree level is found simply
by substituting Eq. (17) into the definition of operators
O1, O2. The result is:

R(0) =

⇤

⌥⌥⌥⌥⌥⌥⌥⇧

1
4 1

� 1
4 1

� 1
4 1

1
4 1
1
2 0
1
2 0

⌅

�������⌃

. (22)

Finally for consistency if we stay at NLL order we
need to include the matching at low scale at one
loop, because this matching contains large logarithms
ln

⇧
s/MW , ln

⇧
s/MZ and due to finite di⇤erence MW �

MZ in SM, these large logarithm has to be included at
NLL order in SM [12, 13]. This calculation in SM is
tricky and has been performed consistently in Ref. [13].
The result is that the scalar doublet has to be matched
on physical states below µl, which are WL, ZL, H and
each component of the doublet gets di⇤erent matching
correction which can be found in [13] for general case
µl,MW ,MZ . For NLL order and setting µl = MZ , the
entire doublet gets the same matching correction. The
resummed matrix element gets multiplied as a result of
low scale matching by a factor exp(D), where D has sim-
ple expression for this case:

D(µl = MZ) = ��W (MZ)

⇤
ln

MZ

MW
ln

s

M2
Z

. (23)

By setting µl = MZ we get a simple expression, however
the price we pay is that we will not be able to evaluate
the low-scale variation consistently. We will only include
high-scale variation µh in our plots below. Including the
low scale matching, the tree level matrix R(0) gets mod-
ified:

R = R(0) · eD(µl=MZ). (24)

D. Lagrangian of EFT

Now that we have calculated the matrix element in-
cluding resummation of electroweak Sudakov logarithms,
it is straightforward to construct the Lagrangian of e⇤ec-
tive theory:

LEFT =
⌦

p1,p2,p3,p4

Ĉi(p1, p2, p3, p4) Ôi(p1, p2, p3, p4) (25)

Another simplification we will use is to rewrite the color-
octet operator as a combination of two color singlet op-
erators with di⇤erent contractions:

O1 =
1

2
⌅†
4⌅1 ⌅

†
2⌅3 �

1

2N
⌅†
4⌅3 ⌅

†
2⌅1, (26)

with N = 2 for SU(2). Thus, since momenta p1, p2, p3, p4
have to be summed over, and also the Lagrangian be-
fore low-scale matching looks like

 
pi
C1(pi)O1(pi) +

C2(pi)O2(pi), we can use identity in Eq. (26) and reshuf-
fle the momenta pi in the first term of Eq. (26) to
make it look like the second term (O2) with reshuf-
fled momenta in the argument of the Wilson coe⌅cient
C1(p1, p2, p3, p4) ⌅ C1(p3, p2, p1, p4). As a result we re-
duced our basis of operators to only one: O2 and La-
grangian takes form:

Le� = �⇥(µh)
⌦

p1,p2,p3,p4

f(µh, µl, s, t, u)⌅
†
4⌅3⌅

†
2⌅1

= �⇥(µh)
⌦

pj

f(µh, µl, pj)
4⌦

i=1

Ri2Ôi(pj). (27)

There is one subtlety at this point, which is whether we
set the hard scale µh =

⇧
s =

↵
(p1 + p2)2 before the

summation in the Lagrangian, or we set this scale after
taking the matrix element with external states. We chose
to do the later while the former would give a di⇤erent
numerical result. However the di⇤erence should be within
hard scale variation, thus of the higher order, i.e. NNLL.
At NLL order the function f is equal to:

fNLL(µh,MZ , s, t, u) = eD(µl=MZ ,s)

⇥
�
�22(s, t, u)�

1

4
�12(s, t, u) +

1

2
�12(t, s, u)

⇥
.

(28)

At LL it is independent of loop momenta completely:

fLL(µh, µl) = �LL(µh, µl), (29)

where �LL is given in Eq. (16).
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where w± = (⇧1 ⇤ i⇧2)/
⇧
2 and z = ⇧3 and we omit-

ted the Higgs vev since we are interested in four-particle
interactions only. Writing the operators O1 and O2 in
terms of four-particle operators involving fields w±, H, z
is straightforward but contains a great number of terms.
It is more convenient to work in the basis of fields
w±,⇥±, where ⇥± = (H ⇤ iz)/

⇧
2 since the number

of possible terms with such a choice in the e⇤ective La-
grangian is minimal. At the low scale µl the operators in
Eq. (2)-Eq. (3) match onto the following ones:

Ô1 = w�
4 w

+
3 w

�
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+
1 ,

Ô2 = ⇥�
4 ⇥

+
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+
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+
3 ⇥

�
2 ⇥

+
1 ,
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4 w
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with Wilson coe⌅cients Ĉi, where

Ĉi = RijCj . (19)

Coe⌅cients Cj at the high scale are given in Eq. (2)-
Eq. (3), while at the low scale they are equal to:

C1(µl) = �⇥(µh)�12, (20)

C2(µl) = �⇥(µh)�22. (21)

The matching matrix R at tree level is found simply
by substituting Eq. (17) into the definition of operators
O1, O2. The result is:

R(0) =

⇤

⌥⌥⌥⌥⌥⌥⌥⇧

1
4 1

� 1
4 1

� 1
4 1

1
4 1
1
2 0
1
2 0

⌅

�������⌃

. (22)

Finally for consistency if we stay at NLL order we
need to include the matching at low scale at one
loop, because this matching contains large logarithms
ln

⇧
s/MW , ln

⇧
s/MZ and due to finite di⇤erence MW �

MZ in SM, these large logarithm has to be included at
NLL order in SM [12, 13]. This calculation in SM is
tricky and has been performed consistently in Ref. [13].
The result is that the scalar doublet has to be matched
on physical states below µl, which are WL, ZL, H and
each component of the doublet gets di⇤erent matching
correction which can be found in [13] for general case
µl,MW ,MZ . For NLL order and setting µl = MZ , the
entire doublet gets the same matching correction. The
resummed matrix element gets multiplied as a result of
low scale matching by a factor exp(D), where D has sim-
ple expression for this case:

D(µl = MZ) = ��W (MZ)

⇤
ln

MZ

MW
ln

s

M2
Z

. (23)

By setting µl = MZ we get a simple expression, however
the price we pay is that we will not be able to evaluate
the low-scale variation consistently. We will only include
high-scale variation µh in our plots below. Including the
low scale matching, the tree level matrix R(0) gets mod-
ified:

R = R(0) · eD(µl=MZ). (24)

D. Lagrangian of EFT

Now that we have calculated the matrix element in-
cluding resummation of electroweak Sudakov logarithms,
it is straightforward to construct the Lagrangian of e⇤ec-
tive theory:

LEFT =
⌦

p1,p2,p3,p4

Ĉi(p1, p2, p3, p4) Ôi(p1, p2, p3, p4) (25)

Another simplification we will use is to rewrite the color-
octet operator as a combination of two color singlet op-
erators with di⇤erent contractions:

O1 =
1

2
⌅†
4⌅1 ⌅

†
2⌅3 �

1

2N
⌅†
4⌅3 ⌅

†
2⌅1, (26)

with N = 2 for SU(2). Thus, since momenta p1, p2, p3, p4
have to be summed over, and also the Lagrangian be-
fore low-scale matching looks like

 
pi
C1(pi)O1(pi) +

C2(pi)O2(pi), we can use identity in Eq. (26) and reshuf-
fle the momenta pi in the first term of Eq. (26) to
make it look like the second term (O2) with reshuf-
fled momenta in the argument of the Wilson coe⌅cient
C1(p1, p2, p3, p4) ⌅ C1(p3, p2, p1, p4). As a result we re-
duced our basis of operators to only one: O2 and La-
grangian takes form:

Le� = �⇥(µh)
⌦

p1,p2,p3,p4

f(µh, µl, s, t, u)⌅
†
4⌅3⌅

†
2⌅1

= �⇥(µh)
⌦

pj

f(µh, µl, pj)
4⌦

i=1

Ri2Ôi(pj). (27)

There is one subtlety at this point, which is whether we
set the hard scale µh =

⇧
s =

↵
(p1 + p2)2 before the

summation in the Lagrangian, or we set this scale after
taking the matrix element with external states. We chose
to do the later while the former would give a di⇤erent
numerical result. However the di⇤erence should be within
hard scale variation, thus of the higher order, i.e. NNLL.
At NLL order the function f is equal to:

fNLL(µh,MZ , s, t, u) = eD(µl=MZ ,s)

⇥
�
�22(s, t, u)�

1

4
�12(s, t, u) +

1

2
�12(t, s, u)

⇥
.

(28)

At LL it is independent of loop momenta completely:

fLL(µh, µl) = �LL(µh, µl), (29)

where �LL is given in Eq. (16).
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where w± = (⇧1 ⇤ i⇧2)/
⇧
2 and z = ⇧3 and we omit-

ted the Higgs vev since we are interested in four-particle
interactions only. Writing the operators O1 and O2 in
terms of four-particle operators involving fields w±, H, z
is straightforward but contains a great number of terms.
It is more convenient to work in the basis of fields
w±,⇥±, where ⇥± = (H ⇤ iz)/

⇧
2 since the number

of possible terms with such a choice in the e⇤ective La-
grangian is minimal. At the low scale µl the operators in
Eq. (2)-Eq. (3) match onto the following ones:

Ô1 = w�
4 w

+
3 w

�
2 w

+
1 ,

Ô2 = ⇥�
4 ⇥

+
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with Wilson coe⌅cients Ĉi, where

Ĉi = RijCj . (19)

Coe⌅cients Cj at the high scale are given in Eq. (2)-
Eq. (3), while at the low scale they are equal to:

C1(µl) = �⇥(µh)�12, (20)

C2(µl) = �⇥(µh)�22. (21)

The matching matrix R at tree level is found simply
by substituting Eq. (17) into the definition of operators
O1, O2. The result is:

R(0) =

⇤

⌥⌥⌥⌥⌥⌥⌥⇧

1
4 1

� 1
4 1

� 1
4 1

1
4 1
1
2 0
1
2 0

⌅

�������⌃

. (22)

Finally for consistency if we stay at NLL order we
need to include the matching at low scale at one
loop, because this matching contains large logarithms
ln

⇧
s/MW , ln

⇧
s/MZ and due to finite di⇤erence MW �

MZ in SM, these large logarithm has to be included at
NLL order in SM [12, 13]. This calculation in SM is
tricky and has been performed consistently in Ref. [13].
The result is that the scalar doublet has to be matched
on physical states below µl, which are WL, ZL, H and
each component of the doublet gets di⇤erent matching
correction which can be found in [13] for general case
µl,MW ,MZ . For NLL order and setting µl = MZ , the
entire doublet gets the same matching correction. The
resummed matrix element gets multiplied as a result of
low scale matching by a factor exp(D), where D has sim-
ple expression for this case:

D(µl = MZ) = ��W (MZ)

⇤
ln

MZ

MW
ln

s

M2
Z

. (23)

By setting µl = MZ we get a simple expression, however
the price we pay is that we will not be able to evaluate
the low-scale variation consistently. We will only include
high-scale variation µh in our plots below. Including the
low scale matching, the tree level matrix R(0) gets mod-
ified:

R = R(0) · eD(µl=MZ). (24)

D. Lagrangian of EFT

Now that we have calculated the matrix element in-
cluding resummation of electroweak Sudakov logarithms,
it is straightforward to construct the Lagrangian of e⇤ec-
tive theory:

LEFT =
⌦

p1,p2,p3,p4

Ĉi(p1, p2, p3, p4) Ôi(p1, p2, p3, p4) (25)

Another simplification we will use is to rewrite the color-
octet operator as a combination of two color singlet op-
erators with di⇤erent contractions:

O1 =
1

2
⌅†
4⌅1 ⌅

†
2⌅3 �

1

2N
⌅†
4⌅3 ⌅

†
2⌅1, (26)

with N = 2 for SU(2). Thus, since momenta p1, p2, p3, p4
have to be summed over, and also the Lagrangian be-
fore low-scale matching looks like

 
pi
C1(pi)O1(pi) +

C2(pi)O2(pi), we can use identity in Eq. (26) and reshuf-
fle the momenta pi in the first term of Eq. (26) to
make it look like the second term (O2) with reshuf-
fled momenta in the argument of the Wilson coe⌅cient
C1(p1, p2, p3, p4) ⌅ C1(p3, p2, p1, p4). As a result we re-
duced our basis of operators to only one: O2 and La-
grangian takes form:

Le� = �⇥(µh)
⌦

p1,p2,p3,p4

f(µh, µl, s, t, u)⌅
†
4⌅3⌅

†
2⌅1

= �⇥(µh)
⌦

pj

f(µh, µl, pj)
4⌦
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Ri2Ôi(pj). (27)

There is one subtlety at this point, which is whether we
set the hard scale µh =

⇧
s =

↵
(p1 + p2)2 before the

summation in the Lagrangian, or we set this scale after
taking the matrix element with external states. We chose
to do the later while the former would give a di⇤erent
numerical result. However the di⇤erence should be within
hard scale variation, thus of the higher order, i.e. NNLL.
At NLL order the function f is equal to:

fNLL(µh,MZ , s, t, u) = eD(µl=MZ ,s)

⇥
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4
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(28)

At LL it is independent of loop momenta completely:

fLL(µh, µl) = �LL(µh, µl), (29)

where �LL is given in Eq. (16).

This matching has been done in:

Chiu, Golf, Kelley, Manohar (08)

4

where w± = (⇧1 ⇤ i⇧2)/
⇧
2 and z = ⇧3 and we omit-

ted the Higgs vev since we are interested in four-particle
interactions only. Writing the operators O1 and O2 in
terms of four-particle operators involving fields w±, H, z
is straightforward but contains a great number of terms.
It is more convenient to work in the basis of fields
w±,⇥±, where ⇥± = (H ⇤ iz)/

⇧
2 since the number

of possible terms with such a choice in the e⇤ective La-
grangian is minimal. At the low scale µl the operators in
Eq. (2)-Eq. (3) match onto the following ones:
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with Wilson coe⌅cients Ĉi, where

Ĉi = RijCj . (19)

Coe⌅cients Cj at the high scale are given in Eq. (2)-
Eq. (3), while at the low scale they are equal to:

C1(µl) = �⇥(µh)�12, (20)

C2(µl) = �⇥(µh)�22. (21)

The matching matrix R at tree level is found simply
by substituting Eq. (17) into the definition of operators
O1, O2. The result is:
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Finally for consistency if we stay at NLL order we
need to include the matching at low scale at one
loop, because this matching contains large logarithms
ln

⇧
s/MW , ln

⇧
s/MZ and due to finite di⇤erence MW �

MZ in SM, these large logarithm has to be included at
NLL order in SM [12, 13]. This calculation in SM is
tricky and has been performed consistently in Ref. [13].
The result is that the scalar doublet has to be matched
on physical states below µl, which are WL, ZL, H and
each component of the doublet gets di⇤erent matching
correction which can be found in [13] for general case
µl,MW ,MZ . For NLL order and setting µl = MZ , the
entire doublet gets the same matching correction. The
resummed matrix element gets multiplied as a result of
low scale matching by a factor exp(D), where D has sim-
ple expression for this case:

D(µl = MZ) = ��W (MZ)

⇤
ln

MZ

MW
ln

s

M2
Z

. (23)

By setting µl = MZ we get a simple expression, however
the price we pay is that we will not be able to evaluate
the low-scale variation consistently. We will only include
high-scale variation µh in our plots below. Including the
low scale matching, the tree level matrix R(0) gets mod-
ified:

R = R(0) · eD(µl=MZ). (24)

D. Lagrangian of EFT

Now that we have calculated the matrix element in-
cluding resummation of electroweak Sudakov logarithms,
it is straightforward to construct the Lagrangian of e⇤ec-
tive theory:

LEFT =
⌦

p1,p2,p3,p4

Ĉi(p1, p2, p3, p4) Ôi(p1, p2, p3, p4) (25)

Another simplification we will use is to rewrite the color-
octet operator as a combination of two color singlet op-
erators with di⇤erent contractions:

O1 =
1

2
⌅†
4⌅1 ⌅

†
2⌅3 �

1

2N
⌅†
4⌅3 ⌅

†
2⌅1, (26)

with N = 2 for SU(2). Thus, since momenta p1, p2, p3, p4
have to be summed over, and also the Lagrangian be-
fore low-scale matching looks like

 
pi
C1(pi)O1(pi) +

C2(pi)O2(pi), we can use identity in Eq. (26) and reshuf-
fle the momenta pi in the first term of Eq. (26) to
make it look like the second term (O2) with reshuf-
fled momenta in the argument of the Wilson coe⌅cient
C1(p1, p2, p3, p4) ⌅ C1(p3, p2, p1, p4). As a result we re-
duced our basis of operators to only one: O2 and La-
grangian takes form:

Le� = �⇥(µh)
⌦

p1,p2,p3,p4

f(µh, µl, s, t, u)⌅
†
4⌅3⌅

†
2⌅1

= �⇥(µh)
⌦

pj

f(µh, µl, pj)
4⌦

i=1

Ri2Ôi(pj). (27)

There is one subtlety at this point, which is whether we
set the hard scale µh =

⇧
s =

↵
(p1 + p2)2 before the

summation in the Lagrangian, or we set this scale after
taking the matrix element with external states. We chose
to do the later while the former would give a di⇤erent
numerical result. However the di⇤erence should be within
hard scale variation, thus of the higher order, i.e. NNLL.
At NLL order the function f is equal to:

fNLL(µh,MZ , s, t, u) = eD(µl=MZ ,s)

⇥
�
�22(s, t, u)�

1

4
�12(s, t, u) +

1

2
�12(t, s, u)

⇥
.

(28)

At LL it is independent of loop momenta completely:

fLL(µh, µl) = �LL(µh, µl), (29)

where �LL is given in Eq. (16).

 ± = H⌥izp
2

4

where w± = (⇧1 ⇤ i⇧2)/
⇧
2 and z = ⇧3 and we omit-

ted the Higgs vev since we are interested in four-particle
interactions only. Writing the operators O1 and O2 in
terms of four-particle operators involving fields w±, H, z
is straightforward but contains a great number of terms.
It is more convenient to work in the basis of fields
w±,⇥±, where ⇥± = (H ⇤ iz)/

⇧
2 since the number

of possible terms with such a choice in the e⇤ective La-
grangian is minimal. At the low scale µl the operators in
Eq. (2)-Eq. (3) match onto the following ones:
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4 w

+
3 w

�
2 w
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1 ,

Ô2 = ⇥�
4 ⇥

+
3 w

�
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+
1 ,
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+
3 ⇥

�
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+
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4 ⇥

+
3 ⇥

�
2 ⇥

+
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4 ⇥

+
3 ⇥

�
2 w

+
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Ô6 = ⇥�
4 w

+
3 w

�
2 ⇥

+
1 (18)

with Wilson coe⌅cients Ĉi, where

Ĉi = RijCj . (19)

Coe⌅cients Cj at the high scale are given in Eq. (2)-
Eq. (3), while at the low scale they are equal to:

C1(µl) = �⇥(µh)�12, (20)

C2(µl) = �⇥(µh)�22. (21)

The matching matrix R at tree level is found simply
by substituting Eq. (17) into the definition of operators
O1, O2. The result is:

R(0) =

⇤

⌥⌥⌥⌥⌥⌥⌥⇧

1
4 1

� 1
4 1

� 1
4 1

1
4 1
1
2 0
1
2 0

⌅

�������⌃

. (22)

Finally for consistency if we stay at NLL order we
need to include the matching at low scale at one
loop, because this matching contains large logarithms
ln

⇧
s/MW , ln

⇧
s/MZ and due to finite di⇤erence MW �

MZ in SM, these large logarithm has to be included at
NLL order in SM [12, 13]. This calculation in SM is
tricky and has been performed consistently in Ref. [13].
The result is that the scalar doublet has to be matched
on physical states below µl, which are WL, ZL, H and
each component of the doublet gets di⇤erent matching
correction which can be found in [13] for general case
µl,MW ,MZ . For NLL order and setting µl = MZ , the
entire doublet gets the same matching correction. The
resummed matrix element gets multiplied as a result of
low scale matching by a factor exp(D), where D has sim-
ple expression for this case:

D(µl = MZ) = ��W (MZ)

⇤
ln

MZ

MW
ln

s

M2
Z

. (23)

By setting µl = MZ we get a simple expression, however
the price we pay is that we will not be able to evaluate
the low-scale variation consistently. We will only include
high-scale variation µh in our plots below. Including the
low scale matching, the tree level matrix R(0) gets mod-
ified:

R = R(0) · eD(µl=MZ). (24)

D. Lagrangian of EFT

Now that we have calculated the matrix element in-
cluding resummation of electroweak Sudakov logarithms,
it is straightforward to construct the Lagrangian of e⇤ec-
tive theory:
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p1,p2,p3,p4

Ĉi(p1, p2, p3, p4) Ôi(p1, p2, p3, p4) (25)

Another simplification we will use is to rewrite the color-
octet operator as a combination of two color singlet op-
erators with di⇤erent contractions:

O1 =
1
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⌅†
4⌅1 ⌅

†
2⌅3 �

1

2N
⌅†
4⌅3 ⌅

†
2⌅1, (26)

with N = 2 for SU(2). Thus, since momenta p1, p2, p3, p4
have to be summed over, and also the Lagrangian be-
fore low-scale matching looks like

 
pi
C1(pi)O1(pi) +

C2(pi)O2(pi), we can use identity in Eq. (26) and reshuf-
fle the momenta pi in the first term of Eq. (26) to
make it look like the second term (O2) with reshuf-
fled momenta in the argument of the Wilson coe⌅cient
C1(p1, p2, p3, p4) ⌅ C1(p3, p2, p1, p4). As a result we re-
duced our basis of operators to only one: O2 and La-
grangian takes form:

Le� = �⇥(µh)
⌦

p1,p2,p3,p4

f(µh, µl, s, t, u)⌅
†
4⌅3⌅

†
2⌅1

= �⇥(µh)
⌦

pj

f(µh, µl, pj)
4⌦

i=1

Ri2Ôi(pj). (27)

There is one subtlety at this point, which is whether we
set the hard scale µh =

⇧
s =

↵
(p1 + p2)2 before the

summation in the Lagrangian, or we set this scale after
taking the matrix element with external states. We chose
to do the later while the former would give a di⇤erent
numerical result. However the di⇤erence should be within
hard scale variation, thus of the higher order, i.e. NNLL.
At NLL order the function f is equal to:

fNLL(µh,MZ , s, t, u) = eD(µl=MZ ,s)
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�
�22(s, t, u)�

1

4
�12(s, t, u) +
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�12(t, s, u)

⇥
.

(28)

At LL it is independent of loop momenta completely:

fLL(µh, µl) = �LL(µh, µl), (29)

where �LL is given in Eq. (16).

The	  low	  scale	  matching	  coefficient	  has	  been	  calculated	  in	  Manohar	  et	  al.	  
up	  to	  NNLL	  order.	  Keeping	  NLL	  order	  terms	  we	  get	  the	  result	  of	  “low	  scale	  matching”	  

At	  the	  low	  scale	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  we	  integrate	  out	  the	  massive	  gauge	  bosons	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

We	  now	  have	  all	  ingredients	  to	  perform	  	  
NLL	  resumma1on	  of	  wino	  annihila1on	  cross	  sec1on	  

Chiu,	  Golf,	  Kelley,	  Manohar,	  2007-‐2010	  
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the SM gauge group [18, 19]. We generalize this for-
malism to the case with heavy nonrelativistic dark mat-
ter (NRDM) in the initial state, and use it to calculate
�� ! ZZ, Z�, ��. The calculation can be broken into
pieces: constructing operators, matching at a high scale
µ ' 2m�, running down to µ ' mZ , and calculating
matrix elements at this low scale which include the Som-
merfeld enhancement.

EFT and High scale matching. At the high scale
µm� ' p

s = 2m� we match the annihilation process
in the full theory LSM +LDM onto a set of leading order
operators Or in our e↵ective theory NRDM-SCET:

L(0)
ann =

P2
r=1 Cr(m�, µ) Or(mW/Z , v, µ) . (2)

There are only two operators in the complete basis for
spin-singlet S-wave annihilation of DM:

Or =
�
�aT

v i�2�
b
v

� �
Sabcd

r Bic
n?Bjd

n̄?
�
i✏ijk(n � n̄)k ,

Sabcd
1 = �ab(Sce

n Sde
n̄ ) , Sabcd

2 = (Sae
v Sce

n )(Sbf
v Sdf

n̄ ) . (3)

Here v = (1, 0, 0, 0), n = (1, n̂), and n̄ = (1,�n̂) with n̂
the direction of an outgoing gauge boson. �a

v is a non-
relativistic two-component fermion DM field in the ad-
joint representation, Bn,n̄ contain the observed (collinear)
gauge bosons, and the S = S[ · As] are adjoint Wil-
son lines of soft gauge bosons along the  = n, n̄, v di-
rections. Without soft gauge bosons there are only two
possible contractions of gauge indices, �ab�cd and �ac�bd,
since (�aT

v i�2�
b
v) = �a↵

v �b�
v ✏↵� is symmetric in (ab). Due

to the factorization properties of soft gauge bosons for
heavy particles v, or collinear particles n, n̄, the addition
of the soft S Wilson lines does not change this, see [17].
The final state gauge bosons are also in a spin-singlet
with orthogonal polarizations so they must be contracted
with ✏ijk. The outgoing energetic gauge bosons appear
in the adjoint collinear gauge invariant building block

Bµa
n? = i/(in̄ · @n)n̄⌫G⌫µb

n Wba
n = Aµa

n? � kµ
?

n̄·k n̄ · Aa
n + . . .,

where Aµa
n is the n-collinear gauge boson field, G⌫µb

n is
the field strength, and Wba

n = Wba
n [n̄ · An] is a collinear

Wilson line in the adjoint representation. For the def-
inition of Bµa

n̄? simply swap n $ n̄. In addition to

the hard annihilation process encoded in L(0)
ann, we will

also use the leading order SCETII Lagrangian [17] L(0)
SCET

and leading order nonrelativistic Lagrangian for DM

L(0)
NRDM = �†

v(iv ·@+ ~r2/2m�)�v+ V̂ [�(†)
v ](mW,Z), where

V̂ is an operator giving the Yukawa and Coulombic po-
tentials from potential exchange of the W, Z, �.

To determine the Wilson coe�cients Cr at the high
scale we match from the full theory onto the e↵ective
theory. Since Cr only contain ultraviolet physics this
matching can be done in the unbroken SM with mW =
mZ = 0. At tree level we find C1(µm�) = �C2(µm�) =
�⇡↵2(µm�)/m�, where ↵2 = g2/4⇡ = ↵/ sin2 ✓̄W .

Sommerfeld-Sudakov Factorization Since L(0)
NRDM con-

tains no interactions with soft or collinear gauge bosons,

and L(0)
SCET contains no interactions with �vs, the matrix

element for the �0�0 evolution and annihilation factor-
izes from the matrix element involving the final state X:

CrhX|Or|�0�0i =⇥
Cr i✏ijk(n�n̄)khX|Sabcd

r Bic
n?Bjd

n̄?
�|0i⇤

⇥ h0|�aT
v i�2�

b
v|�0�0i. (4)

For the spin-singlet state |(�a�b)Si = ✏�↵|�a
↵�b

�i/
p
2, the

Sommerfeld enhancement factors are encoded in
⌦
0
���3T

v i�2�
3
v

��(�0�0)S
↵
= 4

p
2m�s00 , (5)

⌦
0
���+T

v i�2�
�
v

��(�0�0)S
↵
= 4m�s0± ,

where the matrix elements are evaluated using the po-
tential V̂ . For these channels the corresponding matrix
elements on the first line of (4) can be denoted FX

0 and
FX
± , thus giving an all-orders factorized result for the

spin-singlet annihilation amplitudes

M�0�0!X = 4m�

�p
2s00F

X
0 + s0±FX

±
�
, (6)

M�+��!X = 2
p
2m�

�p
2s±0F

X
0 + s±±FX

±
�
.

In the one-loop calculation of [5], the coe�cients s
[5]
0 =

s00 and s
[5]
± = s0± were also included as multiplica-

tive factors, which is consistent with this factorization.
We obtain the Sommerfeld coe�cients s00 and s0± by
solving the Schroedinger equation numerically (see e.g.
Appendix A of [6] for details). Note that at tree level
s00 = s±± = 1 and s0± = s±0 = 0.

With SU(2)L symmetry the gauge index structure of
the first line of (4) implies that the SCET perturbative
corrections at any order are encoded in just two Sudakov
form factors, ⌃1 and ⌃2. The gauge boson masses in-
duce symmetry breaking corrections at NLL which are
included by using ⌃W

1,2 for the W+W� final state, so

F ��
0 = P��(⌃1�⌃2) , F ��

± = 2P��⌃1 , (7)

FW+W�

0 = PW⌃W
1 , FW+W�

± = PW (2⌃W
1 �⌃W

2 ) ,

where the prefactors are P�� = �e2✏i
n?✏j

n̄?✏ijkn̂k/(2m�)

and PW = (g2/e2)P� . For F �Z
0 and FZZ

0 one simply
replaces P�� by P�Z = cot ✓̄W P�� or PZZ = cot2 ✓̄W P�� .
At tree level the form factors are all unity, ⌃1 = ⌃2 = 1.
For the �� and �Z final states there is no tree-level

annihilation from �0�0, so we normalize by writing

��0�0!X = �tree
�+��!X

��s00(⌃1 � ⌃2) +
p
2s0±⌃1

��2. (8)

Sudakov Resummation. We now calculate the Su-
dakov form factors ⌃1,2. For simplicity, in this calcula-
tion we take all DM components to have a common mass
m�. The operators O1,2 in (3) mix under renormalization
and the resummation of ↵2 ln

2,1(m2
�/m2

W ) corrections is
achieved by finding their SCET anomalous dimension

3

matrix, and running between the high scale µm� ' 2m�

and the low scale µZ ' mZ . For NLL order resumma-
tion we need the two-loop cusp and one-loop non-cusp
anomalous dimensions, plus the high scale matching at
tree level. The one-loop anomalous dimension matrix for
an operator with standard model quantum numbers and
any number of single collinear building blocks was de-
rived in Ref. [18], and we will make use of their results,
including the �-regulator [18, 20]. Our case di↵ers from
this general result because the incoming nonrelativistic
DM fields are in the same direction v, and hence we have
two soft Sv Wilson lines that can interact with each other
or self-interact.

The anomalous dimension matrix for (C1 C2)T is

�̂ = 2�WT + �̂S . (9)

Here �WT is the collinear anomalous dimension of Bia
n?

which only mixes into itself, and hence multiplies a diag-
onal matrix. Including the two-loop cusp and one-loop
non-cusp terms it is equal to [18]:

�NLL
WT

=
↵2

4⇡
�g
0 ln

2m�

µ
� ↵2

4⇡
b0 +

⇣↵2

4⇡

⌘2
�g
1 ln

2m�

µ
, (10)

where here and below ↵2(µ) is in the MS scheme, and
for SU(2) in the SM, CA = 2, b0 = 19/6 is the one-
loop �-function, the cusp anomalous dimensions are �g

0 =
4CA = 8 and �g

1 = 8
�
70
9 � 2

3⇡
2
�
. When integrating, we

will also need the two-loop �-function b1 = �35/6.
The soft anomalous dimension �̂S encodes the run-

ning and mixing of the soft factors Sabcd
1,2 and hence has

non-trivial structure. After canceling the regulator de-
pendent part with the zero-bin subtracted [21] collinear
graphs, the remaining non-zero one-loop contributions
come from: wavefunction renormalization from self con-
tracting a Sv, connecting the two Sv Wilson lines, and
connecting the Sn and Sn̄ Wilson lines. The wavefunc-
tion renormalization is the same as in Heavy Quark E↵ec-
tive Theory, �hv = �CA↵2/(2⇡). The full result needed
at NLL is

�̂NLL
S =

↵2

⇡
(1� i⇡)

✓
2 1

0 �1

◆
� 2↵2

⇡

✓
1 0

0 1

◆
. (11)

At the low scale µZ ' mZ the operators O1, O2

are matched onto operators with W, Z, �s, and ef-
fects associated with the gauge boson masses are in-
cluded from low scale matching (or using the rapid-
ity renormalization group [22, 23]). Here we are in-
terested in neutral transverse final state gauge bosons,
where the matching at NLL order reads [19] B3

? !
exp(D) (Z? cos ✓W + A? sin ✓W ) with

D(µZ) =
↵2(µZ)

2⇡
ln

4m2
�

µ2
Z

ln
m2

W

µ2
Z

. (12)

The Sommerfeld enhancement factors in (5) are low scale
matrix elements which are also calculated at µZ ' mZ

in the MS scheme.
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FIG. 1. Resummed leading and next-to-leading logarithmic
electroweak corrections for �+��,�0�0 ! ZZ,Z�, ��. Only
high scale variation by a factor of 2 from µm� = 2m� is shown.
Low scale variation has a 20% smaller error band for the top
plot and a 5% bigger error band for the bottom plot.

Analytical resummation formula at NLL order. The
resummed amplitude is


C1(µZ)

C2(µZ)

�
= eD(µZ)P exp

✓Z µZ

µm�

dµ

µ
�̂

◆
C1(µm�)

C2(µm�)

�
. (13)

This equation can be integrated analytically using
dµ/µ = d↵2/�2[↵2]. For X = ZZ, �Z, �� we find

⌃1 =
e⌦+D

3

⇣
2 z�

4 
b0 + z

2 
b0

⌘
, (14)

⌃1 � ⌃2 =
2 e⌦+D

3

⇣
z�

4 
b0 � z

2 
b0

⌘
,

where  = 1� i⇡, z = ↵2(µZ)/↵2(µm�), D is in Eq. (12),
and ⌦ at NLL order equals

⌦ =
�2⇡�g

0

�
z ln z+1�z

�

b20 ↵2(µZ)
� �g

0 b1
�
ln z�z� ln2 z

2 +1
�

2b30

� ln z

2b0


8
⇣
ln

4m2
�

µ2
m�

� 1
⌘
� 2b0

�
� �g

1

2b20
(z�ln z�1) . (15)
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matrix, and running between the high scale µm� ' 2m�

and the low scale µZ ' mZ . For NLL order resumma-
tion we need the two-loop cusp and one-loop non-cusp
anomalous dimensions, plus the high scale matching at
tree level. The one-loop anomalous dimension matrix for
an operator with standard model quantum numbers and
any number of single collinear building blocks was de-
rived in Ref. [18], and we will make use of their results,
including the �-regulator [18, 20]. Our case di↵ers from
this general result because the incoming nonrelativistic
DM fields are in the same direction v, and hence we have
two soft Sv Wilson lines that can interact with each other
or self-interact.

The anomalous dimension matrix for (C1 C2)T is

�̂ = 2�WT + �̂S . (9)

Here �WT is the collinear anomalous dimension of Bia
n?

which only mixes into itself, and hence multiplies a diag-
onal matrix. Including the two-loop cusp and one-loop
non-cusp terms it is equal to [18]:

�NLL
WT

=
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0 ln
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µ
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µ
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where here and below ↵2(µ) is in the MS scheme, and
for SU(2) in the SM, CA = 2, b0 = 19/6 is the one-
loop �-function, the cusp anomalous dimensions are �g

0 =
4CA = 8 and �g

1 = 8
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70
9 � 2
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2
�
. When integrating, we

will also need the two-loop �-function b1 = �35/6.
The soft anomalous dimension �̂S encodes the run-

ning and mixing of the soft factors Sabcd
1,2 and hence has

non-trivial structure. After canceling the regulator de-
pendent part with the zero-bin subtracted [21] collinear
graphs, the remaining non-zero one-loop contributions
come from: wavefunction renormalization from self con-
tracting a Sv, connecting the two Sv Wilson lines, and
connecting the Sn and Sn̄ Wilson lines. The wavefunc-
tion renormalization is the same as in Heavy Quark E↵ec-
tive Theory, �hv = �CA↵2/(2⇡). The full result needed
at NLL is

�̂NLL
S =

↵2

⇡
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At the low scale µZ ' mZ the operators O1, O2

are matched onto operators with W, Z, �s, and ef-
fects associated with the gauge boson masses are in-
cluded from low scale matching (or using the rapid-
ity renormalization group [22, 23]). Here we are in-
terested in neutral transverse final state gauge bosons,
where the matching at NLL order reads [19] B3
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exp(D) (Z? cos ✓W + A? sin ✓W ) with

D(µZ) =
↵2(µZ)

2⇡
ln

4m2
�

µ2
Z

ln
m2

W

µ2
Z

. (12)

The Sommerfeld enhancement factors in (5) are low scale
matrix elements which are also calculated at µZ ' mZ

in the MS scheme.
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Analytical resummation formula at NLL order. The
resummed amplitude is


C1(µZ)

C2(µZ)

�
= eD(µZ)P exp

✓Z µZ

µm�

dµ

µ
�̂

◆
C1(µm�)

C2(µm�)

�
. (13)

This equation can be integrated analytically using
dµ/µ = d↵2/�2[↵2]. For X = ZZ, �Z, �� we find

⌃1 =
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⌘
, (14)

⌃1 � ⌃2 =
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⌘
,

where  = 1� i⇡, z = ↵2(µZ)/↵2(µm�), D is in Eq. (12),
and ⌦ at NLL order equals

⌦ =
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(z�ln z�1) . (15)

3

matrix, and running between the high scale µm� ' 2m�

and the low scale µZ ' mZ . For NLL order resumma-
tion we need the two-loop cusp and one-loop non-cusp
anomalous dimensions, plus the high scale matching at
tree level. The one-loop anomalous dimension matrix for
an operator with standard model quantum numbers and
any number of single collinear building blocks was de-
rived in Ref. [18], and we will make use of their results,
including the �-regulator [18, 20]. Our case di↵ers from
this general result because the incoming nonrelativistic
DM fields are in the same direction v, and hence we have
two soft Sv Wilson lines that can interact with each other
or self-interact.

The anomalous dimension matrix for (C1 C2)T is

�̂ = 2�WT + �̂S . (9)

Here �WT is the collinear anomalous dimension of Bia
n?

which only mixes into itself, and hence multiplies a diag-
onal matrix. Including the two-loop cusp and one-loop
non-cusp terms it is equal to [18]:

�NLL
WT

=
↵2

4⇡
�g
0 ln

2m�

µ
� ↵2

4⇡
b0 +

⇣↵2

4⇡

⌘2
�g
1 ln

2m�

µ
, (10)

where here and below ↵2(µ) is in the MS scheme, and
for SU(2) in the SM, CA = 2, b0 = 19/6 is the one-
loop �-function, the cusp anomalous dimensions are �g

0 =
4CA = 8 and �g

1 = 8
�
70
9 � 2

3⇡
2
�
. When integrating, we

will also need the two-loop �-function b1 = �35/6.
The soft anomalous dimension �̂S encodes the run-

ning and mixing of the soft factors Sabcd
1,2 and hence has

non-trivial structure. After canceling the regulator de-
pendent part with the zero-bin subtracted [21] collinear
graphs, the remaining non-zero one-loop contributions
come from: wavefunction renormalization from self con-
tracting a Sv, connecting the two Sv Wilson lines, and
connecting the Sn and Sn̄ Wilson lines. The wavefunc-
tion renormalization is the same as in Heavy Quark E↵ec-
tive Theory, �hv = �CA↵2/(2⇡). The full result needed
at NLL is

�̂NLL
S =

↵2

⇡
(1� i⇡)

✓
2 1

0 �1

◆
� 2↵2

⇡

✓
1 0

0 1

◆
. (11)

At the low scale µZ ' mZ the operators O1, O2

are matched onto operators with W, Z, �s, and ef-
fects associated with the gauge boson masses are in-
cluded from low scale matching (or using the rapid-
ity renormalization group [22, 23]). Here we are in-
terested in neutral transverse final state gauge bosons,
where the matching at NLL order reads [19] B3

? !
exp(D) (Z? cos ✓W + A? sin ✓W ) with

D(µZ) =
↵2(µZ)

2⇡
ln

4m2
�

µ2
Z

ln
m2

W

µ2
Z

. (12)

The Sommerfeld enhancement factors in (5) are low scale
matrix elements which are also calculated at µZ ' mZ

in the MS scheme.
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Analytical resummation formula at NLL order. The
resummed amplitude is
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This equation can be integrated analytically using
dµ/µ = d↵2/�2[↵2]. For X = ZZ, �Z, �� we find
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where  = 1� i⇡, z = ↵2(µZ)/↵2(µm�), D is in Eq. (12),
and ⌦ at NLL order equals
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Figure 3: Feynman Graphs contributing to anomalous dimension matrix. Ultrasoft graphs s1 � s6;
Collinear graphs c1 � c4; wavefunction renormalization graphs w1 � w5.

matrix for an arbitrary operator containing any number of either massless SCET legs or massive
HQET legs is derived in Ref. [8]. It has the following form:

� = �
C

+ �
S

, (21)

where the collinear anomalous dimension is proportional to unit matrix and is equal to the sum over
each leg of a corresponding collinear anomalous dimension term (see Table III on page 32 of Ref. [8]).
On the other hand the soft anomalous dimension has non-trivial color structure and is universal in
the sense that it depends only on light-cone directions and color flow in the operator at hand. The
collinear anomalous dimension for our operators equals to:

�
C

= (2�
hv + 2�

WT ) ⇥ 1. (22)

In the equation above the transverse gauge boson collinear anomalous dimension matrix equals[8]:

�
WT =

↵2

4⇡
(4C

A

L
p

� b0) , (23)

where ↵2 = ↵em/sin2✓
W

L
p

= ln n̄ · p/µ; C
A

= 2 and b0 is the one-loop beta function of SU(2)
coupling in SM, i.e. b0 = 19/6. In fact it was found in Ref. [8] that transverse vector boson
pair production has the biggest electroweak radiative e↵ect out of all processes considered in that
reference. This is due to biggest Casimir factor value C

A

= 2, compared for example to C
F

= 3/4
for the SM gauge group.

The anomalous dimension matrix due to heavy fields h
v

is di↵erent from the heavy-field collinear
anomalous dimension found in Ref. [8]:

�bHQET
hv

= C
A

↵2

⇡

✓
ln 2� � 1

2

◆
, (24)

where � = E/M , where bHQET stands for boosted HQET. As opposed to this, in our case the
HQET fields are not boosted. So we provide our calculation with some details for this scenario in
the Appendix.
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the SM gauge group [18, 19]. We generalize this for-
malism to the case with heavy nonrelativistic dark mat-
ter (NRDM) in the initial state, and use it to calculate
�� ! ZZ, Z�, ��. The calculation can be broken into
pieces: constructing operators, matching at a high scale
µ ' 2m�, running down to µ ' mZ , and calculating
matrix elements at this low scale which include the Som-
merfeld enhancement.

EFT and High scale matching. At the high scale
µm� ' p

s = 2m� we match the annihilation process
in the full theory LSM +LDM onto a set of leading order
operators Or in our e↵ective theory NRDM-SCET:

L(0)
ann =

P2
r=1 Cr(m�, µ) Or(mW/Z , v, µ) . (2)

There are only two operators in the complete basis for
spin-singlet S-wave annihilation of DM:

Or =
�
�aT

v i�2�
b
v

� �
Sabcd

r Bic
n?Bjd

n̄?
�
i✏ijk(n � n̄)k ,

Sabcd
1 = �ab(Sce

n Sde
n̄ ) , Sabcd

2 = (Sae
v Sce

n )(Sbf
v Sdf

n̄ ) . (3)

Here v = (1, 0, 0, 0), n = (1, n̂), and n̄ = (1,�n̂) with n̂
the direction of an outgoing gauge boson. �a

v is a non-
relativistic two-component fermion DM field in the ad-
joint representation, Bn,n̄ contain the observed (collinear)
gauge bosons, and the S = S[ · As] are adjoint Wil-
son lines of soft gauge bosons along the  = n, n̄, v di-
rections. Without soft gauge bosons there are only two
possible contractions of gauge indices, �ab�cd and �ac�bd,
since (�aT

v i�2�
b
v) = �a↵

v �b�
v ✏↵� is symmetric in (ab). Due

to the factorization properties of soft gauge bosons for
heavy particles v, or collinear particles n, n̄, the addition
of the soft S Wilson lines does not change this, see [17].
The final state gauge bosons are also in a spin-singlet
with orthogonal polarizations so they must be contracted
with ✏ijk. The outgoing energetic gauge bosons appear
in the adjoint collinear gauge invariant building block

Bµa
n? = i/(in̄ · @n)n̄⌫G⌫µb

n Wba
n = Aµa

n? � kµ
?

n̄·k n̄ · Aa
n + . . .,

where Aµa
n is the n-collinear gauge boson field, G⌫µb

n is
the field strength, and Wba

n = Wba
n [n̄ · An] is a collinear

Wilson line in the adjoint representation. For the def-
inition of Bµa

n̄? simply swap n $ n̄. In addition to

the hard annihilation process encoded in L(0)
ann, we will

also use the leading order SCETII Lagrangian [17] L(0)
SCET

and leading order nonrelativistic Lagrangian for DM

L(0)
NRDM = �†

v(iv ·@+ ~r2/2m�)�v+ V̂ [�(†)
v ](mW,Z), where

V̂ is an operator giving the Yukawa and Coulombic po-
tentials from potential exchange of the W, Z, �.

To determine the Wilson coe�cients Cr at the high
scale we match from the full theory onto the e↵ective
theory. Since Cr only contain ultraviolet physics this
matching can be done in the unbroken SM with mW =
mZ = 0. At tree level we find C1(µm�) = �C2(µm�) =
�⇡↵2(µm�)/m�, where ↵2 = g2/4⇡ = ↵/ sin2 ✓̄W .

Sommerfeld-Sudakov Factorization Since L(0)
NRDM con-

tains no interactions with soft or collinear gauge bosons,

and L(0)
SCET contains no interactions with �vs, the matrix

element for the �0�0 evolution and annihilation factor-
izes from the matrix element involving the final state X:

CrhX|Or|�0�0i =⇥
Cr i✏ijk(n�n̄)khX|Sabcd

r Bic
n?Bjd

n̄?
�|0i⇤

⇥ h0|�aT
v i�2�

b
v|�0�0i. (4)

For the spin-singlet state |(�a�b)Si = ✏�↵|�a
↵�b

�i/
p
2, the

Sommerfeld enhancement factors are encoded in
⌦
0
���3T

v i�2�
3
v

��(�0�0)S
↵
= 4

p
2m�s00 , (5)

⌦
0
���+T

v i�2�
�
v

��(�0�0)S
↵
= 4m�s0± ,

where the matrix elements are evaluated using the po-
tential V̂ . For these channels the corresponding matrix
elements on the first line of (4) can be denoted FX

0 and
FX
± , thus giving an all-orders factorized result for the

spin-singlet annihilation amplitudes

M�0�0!X = 4m�

�p
2s00F

X
0 + s0±FX

±
�
, (6)

M�+��!X = 2
p
2m�

�p
2s±0F

X
0 + s±±FX

±
�
.

In the one-loop calculation of [5], the coe�cients s
[5]
0 =

s00 and s
[5]
± = s0± were also included as multiplica-

tive factors, which is consistent with this factorization.
We obtain the Sommerfeld coe�cients s00 and s0± by
solving the Schroedinger equation numerically (see e.g.
Appendix A of [6] for details). Note that at tree level
s00 = s±± = 1 and s0± = s±0 = 0.

With SU(2)L symmetry the gauge index structure of
the first line of (4) implies that the SCET perturbative
corrections at any order are encoded in just two Sudakov
form factors, ⌃1 and ⌃2. The gauge boson masses in-
duce symmetry breaking corrections at NLL which are
included by using ⌃W

1,2 for the W+W� final state, so

F ��
0 = P��(⌃1�⌃2) , F ��

± = 2P��⌃1 , (7)

FW+W�

0 = PW⌃W
1 , FW+W�

± = PW (2⌃W
1 �⌃W

2 ) ,

where the prefactors are P�� = �e2✏i
n?✏j

n̄?✏ijkn̂k/(2m�)

and PW = (g2/e2)P� . For F �Z
0 and FZZ

0 one simply
replaces P�� by P�Z = cot ✓̄W P�� or PZZ = cot2 ✓̄W P�� .
At tree level the form factors are all unity, ⌃1 = ⌃2 = 1.
For the �� and �Z final states there is no tree-level

annihilation from �0�0, so we normalize by writing

��0�0!X = �tree
�+��!X

��s00(⌃1 � ⌃2) +
p
2s0±⌃1

��2. (8)

Sudakov Resummation. We now calculate the Su-
dakov form factors ⌃1,2. For simplicity, in this calcula-
tion we take all DM components to have a common mass
m�. The operators O1,2 in (3) mix under renormalization
and the resummation of ↵2 ln

2,1(m2
�/m2

W ) corrections is
achieved by finding their SCET anomalous dimension
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the SM gauge group [18, 19]. We generalize this for-
malism to the case with heavy nonrelativistic dark mat-
ter (NRDM) in the initial state, and use it to calculate
�� ! ZZ, Z�, ��. The calculation can be broken into
pieces: constructing operators, matching at a high scale
µ ' 2m�, running down to µ ' mZ , and calculating
matrix elements at this low scale which include the Som-
merfeld enhancement.

EFT and High scale matching. At the high scale
µm� ' p

s = 2m� we match the annihilation process
in the full theory LSM +LDM onto a set of leading order
operators Or in our e↵ective theory NRDM-SCET:

L(0)
ann =

P2
r=1 Cr(m�, µ) Or(mW/Z , v, µ) . (2)

There are only two operators in the complete basis for
spin-singlet S-wave annihilation of DM:

Or =
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n̄ ) . (3)

Here v = (1, 0, 0, 0), n = (1, n̂), and n̄ = (1,�n̂) with n̂
the direction of an outgoing gauge boson. �a

v is a non-
relativistic two-component fermion DM field in the ad-
joint representation, Bn,n̄ contain the observed (collinear)
gauge bosons, and the S = S[ · As] are adjoint Wil-
son lines of soft gauge bosons along the  = n, n̄, v di-
rections. Without soft gauge bosons there are only two
possible contractions of gauge indices, �ab�cd and �ac�bd,
since (�aT

v i�2�
b
v) = �a↵

v �b�
v ✏↵� is symmetric in (ab). Due

to the factorization properties of soft gauge bosons for
heavy particles v, or collinear particles n, n̄, the addition
of the soft S Wilson lines does not change this, see [17].
The final state gauge bosons are also in a spin-singlet
with orthogonal polarizations so they must be contracted
with ✏ijk. The outgoing energetic gauge bosons appear
in the adjoint collinear gauge invariant building block

Bµa
n? = i/(in̄ · @n)n̄⌫G⌫µb

n Wba
n = Aµa

n? � kµ
?

n̄·k n̄ · Aa
n + . . .,

where Aµa
n is the n-collinear gauge boson field, G⌫µb

n is
the field strength, and Wba

n = Wba
n [n̄ · An] is a collinear

Wilson line in the adjoint representation. For the def-
inition of Bµa

n̄? simply swap n $ n̄. In addition to

the hard annihilation process encoded in L(0)
ann, we will

also use the leading order SCETII Lagrangian [17] L(0)
SCET

and leading order nonrelativistic Lagrangian for DM

L(0)
NRDM = �†

v(iv ·@+ ~r2/2m�)�v+ V̂ [�(†)
v ](mW,Z), where

V̂ is an operator giving the Yukawa and Coulombic po-
tentials from potential exchange of the W, Z, �.

To determine the Wilson coe�cients Cr at the high
scale we match from the full theory onto the e↵ective
theory. Since Cr only contain ultraviolet physics this
matching can be done in the unbroken SM with mW =
mZ = 0. At tree level we find C1(µm�) = �C2(µm�) =
�⇡↵2(µm�)/m�, where ↵2 = g2/4⇡ = ↵/ sin2 ✓̄W .

Sommerfeld-Sudakov Factorization Since L(0)
NRDM con-

tains no interactions with soft or collinear gauge bosons,

and L(0)
SCET contains no interactions with �vs, the matrix

element for the �0�0 evolution and annihilation factor-
izes from the matrix element involving the final state X:

CrhX|Or|�0�0i =⇥
Cr i✏ijk(n�n̄)khX|Sabcd

r Bic
n?Bjd

n̄?
�|0i⇤
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b
v|�0�0i. (4)

For the spin-singlet state |(�a�b)Si = ✏�↵|�a
↵�b
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2, the

Sommerfeld enhancement factors are encoded in
⌦
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= 4

p
2m�s00 , (5)
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v

��(�0�0)S
↵
= 4m�s0± ,

where the matrix elements are evaluated using the po-
tential V̂ . For these channels the corresponding matrix
elements on the first line of (4) can be denoted FX

0 and
FX
± , thus giving an all-orders factorized result for the

spin-singlet annihilation amplitudes
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0 + s0±FX

±
�
, (6)
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.

In the one-loop calculation of [5], the coe�cients s
[5]
0 =

s00 and s
[5]
± = s0± were also included as multiplica-

tive factors, which is consistent with this factorization.
We obtain the Sommerfeld coe�cients s00 and s0± by
solving the Schroedinger equation numerically (see e.g.
Appendix A of [6] for details). Note that at tree level
s00 = s±± = 1 and s0± = s±0 = 0.

With SU(2)L symmetry the gauge index structure of
the first line of (4) implies that the SCET perturbative
corrections at any order are encoded in just two Sudakov
form factors, ⌃1 and ⌃2. The gauge boson masses in-
duce symmetry breaking corrections at NLL which are
included by using ⌃W

1,2 for the W+W� final state, so

F ��
0 = P��(⌃1�⌃2) , F ��

± = 2P��⌃1 , (7)

FW+W�

0 = PW⌃W
1 , FW+W�

± = PW (2⌃W
1 �⌃W

2 ) ,

where the prefactors are P�� = �e2✏i
n?✏j

n̄?✏ijkn̂k/(2m�)

and PW = (g2/e2)P� . For F �Z
0 and FZZ

0 one simply
replaces P�� by P�Z = cot ✓̄W P�� or PZZ = cot2 ✓̄W P�� .
At tree level the form factors are all unity, ⌃1 = ⌃2 = 1.
For the �� and �Z final states there is no tree-level

annihilation from �0�0, so we normalize by writing

��0�0!X = �tree
�+��!X

��s00(⌃1 � ⌃2) +
p
2s0±⌃1

��2. (8)

Sudakov Resummation. We now calculate the Su-
dakov form factors ⌃1,2. For simplicity, in this calcula-
tion we take all DM components to have a common mass
m�. The operators O1,2 in (3) mix under renormalization
and the resummation of ↵2 ln

2,1(m2
�/m2

W ) corrections is
achieved by finding their SCET anomalous dimension

•  Good	  agreement	  with	  
the	  fixed	  order	  
calcula1on	  1	  in	  the	  low	  
mass	  region	  

•  Disagreement	  in	  the	  
low	  mass	  region	  for	  SE
+fixed	  order	  one	  loop	  
cacula1on	  2	  (only	  valid	  
for	  large	  DM	  mass)	  

•  SM+NLL	  bound	  has	  a	  
5%	  perturba1ve	  
uncertainty	  



Total	  annihila1on	  cross	  sec1on	  
Bounds	  from	  HESS	  line	  photons	  data	  and	  projected	  CTA	  

	   	   	   	  	  •  We	  assume	  wino	  cons1tutes	  all	  of	  DM	  
•  NFW	  profile	  



Conclusions	  
•  For	  heavy	  DM	  the	  annihila1on	  rate	  suffers	  
from	  large	  Sudakov	  double	  logarithms	  

•  We	  resummed	  these	  logarithms	  to	  NLL	  order	  
using	  SCET	  	  

•  Our	  results	  have	  uncertainty	  of	  5%	  level	  and	  
make	  the	  DM	  indirect	  detec1on	  
phenomenology	  robust	  

•  The	  Sudakov	  suppression	  effect	  is	  of	  the	  order	  
of	  a	  factor	  2-‐3	  for	  the	  DM	  mass	  of	  the	  order	  of	  
a	  few	  TeV	  
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Gamma Rays from Heavy Neutralino Dark Matter
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We consider the gamma-ray spectrum from neutralino dark matter annihilations and show that
internal bremsstrahlung of W pair final states gives a previously neglected source of photons at
energies near the mass of the neutralino. For masses larger than about 1 TeV, and for present
day detector resolutions, this results in a characteristic signal that may dominate not only over the
continuous spectrum from W fragmentation, but also over the γγ and γZ line signals which are
known to give large rates for heavy neutralinos. Observational prospects thus seem promising.

PACS numbers: 95.35.+d, 11.30.Pb, 98.70.Rz

INTRODUCTION

One of the most favoured dark matter candidates since
20 years or so, is the lightest supersymmetric parti-
cle [1, 2]. Most of the expected phenomenology has
been worked out, and is implemented in freely avail-
able, extensive computer packages like DarkSusy [3]
and micrOMEGAs [4]. The vast majority of the analy-
ses has been performed in various constrained versions of
the minimal supersymmetric extension of the Standard
Model (MSSM) (for reviews, see e.g. [5]), where either
radiative breaking of supersymmetry or the GUT condi-
tion on gaugino masses (or both) have been imposed. It is
clear from all these studies that a suitable neutralino can-
didate for dark matter is indeed available, with relic den-
sity as measured by WMAP (ΩCDMh2 = 0.113 ± 0.009,
where ΩCDM denotes the ratio of cold dark matter to
critical density and h is the Hubble constant in units of
100 km s−1 Mpc−1) [6], and with great prospects of being
detected either at the CERN LHC, or at the various di-
rect and indirect detection experiments of halo dark mat-
ter that are currently operational or being constructed.

However, one may also ask the unpleasant but not un-
realistic question what happens if supersymmetry is not
found at the LHC. If supersymmetry is still present, that
would probably mean that the mass scale of the light-
est supersymmetric particles is beyond the kinematical
reach of the accelerator. For neutralino masses at the
TeV scale, also the scattering cross section for direct de-
tection would necessarily be small, as would many of the
rates (antiprotons, positrons) for indirect detection. An
exception seems to be gamma-ray detection, firstly be-
cause rates do not fall off as rapidly [7] and secondly
due to eminent new gamma-ray telescopes, most clearly
demonstrated by the recent spectacular performance of
HESS, in particular as regards the multi-TeV signal that
has been observed towards the galactic center [8]. With
such new astrophysical gamma-ray instruments of un-
precedented size and energy resolution either in operation
[8, 9, 10] or under construction [11, 12], it is appropri-
ate to investigate possible levels of signals and spectral
signatures of heavy dark matter particle annihilation.

Most of the previous calculations have been carried
out at tree-level, with radiative corrections typically (and
correctly) believed to be at the few percent level. In some
cases, radiative corrections may on the contrary relieve
the annihilation rate from inhibiting factors having to do
with the Majorana fermion property of neutralinos and
the fact that annihilation in the dark matter halo effec-
tively takes place at rest [1]. One example of this is the
radiative “correction” of χχ → f f̄ through the emission
of a photon in the final state. Here, the first-order cor-
rected cross section can be many orders of magnitude
larger than the tree-level result [13].

A second example of an unexpectedly large cross sec-
tion is that of the second order, loop-induced γγ and Zγ
annihilation [7, 14, 15], where in the high mass, pure
higgsino (or wino [16]) limit the branching ratio normal-
ized to the lowest order rate can reach percent level,
despite the naive expectation of being 2 to 3 orders of
magnitude smaller. The origin of this enhancement has
only recently been fully understood, and is explained by
nonperturbative, binding energy effects in the special sit-
uation of having very small (i.e. galactic) velocities and
very large dark matter masses as well as small mass dif-
ferences between the neutralino and the lightest chargino
[17].

In this Letter, we focus on gamma rays from neutralino
annihilation into charged gauge boson pairs and show
that there is yet another, previously neglected enhance-
ment mechanism, appearing already at first order in αem:
radiative processes containing one photon in addition to
the weak bosons in the final state, give a new source
of photons which peaks near the highest possible energy
(the mass of the neutralino). This turns out to be a very
beneficial effect for the potential detection of neutralinos
with masses mχ ! 1 TeV, as the normally soft spectrum
of continuous photons coming from the fragmentation of
W or Z bosons (see, e.g., [7, 17, 18]) gets a high-energy
supplement with a clearly distinguishable signature. This
is reminiscent of the case of Kaluza-Klein dark matter,
where internal bremsstrahlung in annihilation processes
with charged lepton final states dominates the gamma-
ray spectrum at the highest energies [19] (see also [20]).

2

GAMMA RAYS FROM NEUTRALINO

ANNIHILATIONS

In most models, the lightest stable supersymmetric
particle is the lightest neutralino, henceforth just “the
neutralino”, which is a linear combination of the super-
partners of the gauge and Higgs fields,

χ ≡ χ̃0
1 = N11B̃ + N12W̃

3 + N13H̃
0
1 + N14H̃

0
2 . (1)

In order not to overclose the universe, a TeV-scale neu-
tralino must generally have a very large higgsino frac-
tion, Zh ≡ |N13|2 + |N14|2, if the usual GUT condition
M1 ∼ M2/2 is imposed; otherwise a heavy wino would
also be acceptable. In the following, we therefore focus on
higgsino-like neutralinos, with Zh ≈ 1 and N13 ≈ ±N14

[26]. For the high masses we are interested in, the anni-
hilation rate into charged gauge bosons often dominates.
Internal bremsstrahlung in these final states are there-
fore of great interest to investigate. Moreover, we note
that all our results are almost independent of the relative
velocity v of the annihilating neutralino pair. Analytical
expressions are therefore presented in the limit of vanish-
ing velocity, but should be applicable both at the time of
freeze-out (v/c ∼ 1/6) and to annihilating neutralinos in
the galactic halo today (v/c ∼ 10−3).
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1
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FIG. 1: Contributions to χχ → W +W−γ for a pure higgsino-
like neutralino (crossing fermion lines are not shown).

For a pure higgsino, the only contribution to the low-
est order annihilation cross section into charged gauge
bosons comes from a t-channel exchange of a chargino; it
is given by

(σv)WW =
g4

32π

(

m2
χ − m2

W

)

√

1 − m2
W /m2

χ

(

m2
χ + mχ±

1

2 − m2
W

)2 , (2)

where mχ±
1

and mW are the lightest chargino and W
masses, respectively.

Let us now consider radiative corrections with a photon
in the final state in addition to the W pair. Just as at
lowest order, the potential s-channel exchanges of Z and
Higgs bosons vanish, and the only Feynman diagrams
that contribute are shown in Fig. 1. To zeroth order in
ϵ ≡ mW /mχ, and retaining a leading logarithmic term,
the resulting photon multiplicity is given by

dNW
γ

dx
≡

d(σv)WWγ/dx

(σv)WW

≃
αem

π

[

4(1 − x + x2)2 ln(2/ϵ)

(1 − x)x

−
2(4 − 12x + 19x2 − 22x3 + 20x4 − 10x5 + 2x6)

(2 − x)2(1 − x)x

+
2(8 − 24x + 42x2 − 37x3 + 16x4 − 3x5) ln(1 − x)

(2 − x)3(1 − x)x

+ δ2

(

2x(2 − (2 − x)x)

(2 − x)2(1 − x)
+

8(1 − x) ln(1 − x)

(2 − x)3

)

+ δ4

(

x(x − 1)

(2 − x)2
+

(x − 1)(2 − 2x + x2) ln(1 − x)

(2 − x)3

)]

,

(3)

where x ≡ Eγ/mχ and δ ≡ (mχ±
1

− mχ)/mW .

Several interesting features can be identified in this
expression. For large mass shifts δ the last two terms
dominate. They originate from longitudinally polarized
charged gauge bosons in the final state, which are forbid-
den in the lowest order process because of the different
CP properties of the initial and final state [21]. Remem-
ber that in the limit of vanishing relative velocity, the ini-
tial state must be an S-wave with pseudoscalar quantum
numbers due to the Majorana nature of the neutralino.
The emission of a photon, on the other hand, will open up
this channel in the 1S0 partial wave, potentially leading
to very large cross sections [27]. However, in supersym-
metric scenarios with a heavy higgsino-like neutralino one
usually expects a mass shift δ < ϵ [17, 21], in which case
the longitudinal part (last two terms) can be neglected.

For small mass shifts, the cross section is instead dom-
inated by the production of transversely polarized gauge
bosons. This results in a peak in the spectrum at high
energies that becomes more and more pronounced for
higher neutralino masses. The appearance of this peak
can be understood by observing that for very heavy neu-
tralino masses the transversely polarized W bosons can
be treated as light and thus behave in the same way as
infrared photons radiated from the neutralino/chargino
line in Fig. 1. The mechanism that takes place is, in other
words, an amusing reflection of QED infrared behaviour
also for W bosons: The kinematical situation when the
photon and one of the W s leave the annihilation point
each with maximal energy, gets an enhancement, since it
is automatically accompanied by a very soft W . This is
also reflected in the symmetric appearance of the x → 0
and x → 1 poles in the first terms of Eq. (3).

As an illustrative example, we have chosen a typi-
cal higgsino-like MSSM model, fulfilling all experimental
constraints, as specified in Table I (similar models are
found in, e.g., the focus point region of mSUGRA). The
resulting photon spectrum from internal bremsstrahlung
of W pair final states is shown in Fig. 2. The symme-
try around x ∼ 0.5 in the spectrum indicates the related
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Let us now consider radiative corrections with a photon
in the final state in addition to the W pair. Just as at
lowest order, the potential s-channel exchanges of Z and
Higgs bosons vanish, and the only Feynman diagrams
that contribute are shown in Fig. 1. To zeroth order in
ϵ ≡ mW /mχ, and retaining a leading logarithmic term,
the resulting photon multiplicity is given by
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where x ≡ Eγ/mχ and δ ≡ (mχ±
1

− mχ)/mW .

Several interesting features can be identified in this
expression. For large mass shifts δ the last two terms
dominate. They originate from longitudinally polarized
charged gauge bosons in the final state, which are forbid-
den in the lowest order process because of the different
CP properties of the initial and final state [21]. Remem-
ber that in the limit of vanishing relative velocity, the ini-
tial state must be an S-wave with pseudoscalar quantum
numbers due to the Majorana nature of the neutralino.
The emission of a photon, on the other hand, will open up
this channel in the 1S0 partial wave, potentially leading
to very large cross sections [27]. However, in supersym-
metric scenarios with a heavy higgsino-like neutralino one
usually expects a mass shift δ < ϵ [17, 21], in which case
the longitudinal part (last two terms) can be neglected.

For small mass shifts, the cross section is instead dom-
inated by the production of transversely polarized gauge
bosons. This results in a peak in the spectrum at high
energies that becomes more and more pronounced for
higher neutralino masses. The appearance of this peak
can be understood by observing that for very heavy neu-
tralino masses the transversely polarized W bosons can
be treated as light and thus behave in the same way as
infrared photons radiated from the neutralino/chargino
line in Fig. 1. The mechanism that takes place is, in other
words, an amusing reflection of QED infrared behaviour
also for W bosons: The kinematical situation when the
photon and one of the W s leave the annihilation point
each with maximal energy, gets an enhancement, since it
is automatically accompanied by a very soft W . This is
also reflected in the symmetric appearance of the x → 0
and x → 1 poles in the first terms of Eq. (3).

As an illustrative example, we have chosen a typi-
cal higgsino-like MSSM model, fulfilling all experimental
constraints, as specified in Table I (similar models are
found in, e.g., the focus point region of mSUGRA). The
resulting photon spectrum from internal bremsstrahlung
of W pair final states is shown in Fig. 2. The symme-
try around x ∼ 0.5 in the spectrum indicates the related
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d
N

W γ
/d

x

x = Eγ/mχ

0.01

0.1

1

10.50

FIG. 2: The photon multiplicity for the radiative processes
χχ → W +W−γ. The dots represent the MSSM model of
Table I, as computed with the FormCalc package [22] for a
relative neutralino velocity of 10−3. The thick solid line shows
the full analytical result for the pure higgsino limit of the
same model but with zero relative neutralino velocity. The
thin solid line is the corresponding approximation as given in
Eq.(3). Also shown, as dashed and dotted lines, are two pure
higgsino models with a lightest neutralino (chargino) mass of
10 TeV (10 TeV) and 1.5 TeV (2.5 TeV), respectively.

M2 µ mA m
f̃

Af tanβ mχ m
χ
±
1

Zh W± Ωχh2

3.2 1.5 3.2 3.2 0.0 10.0 1.50 1.51 0.92 0.39 0.12

TABLE I: MSSM parameters for the example model shown
in Fig. 2-4 and the resulting neutralino mass (mχ), chargino
mass (m

χ
±
1

), higgsino fraction (Zh), branching ratio into W

pairs (W±) and neutralino relic density (Ωχh2), as calculated
with DarkSusy [3] and micrOMEGAs [4]. Masses are given
in units of TeV.

nature of the peak and the infrared divergence. For com-
pleteness, we have also included a very high mass (10
TeV) higgsino model which has received some attention
recently [17, 23] (even though thermal production of such
a neutralino in general gives a too large ΩCDM, unless one
allows for finetuning of parameters like the psedudoscalar
Higgs mass [24]). In addition, the case of a hypothetical
model with a very large mass shift is shown (where the
contributions from longitudinal W bosons dominate at
high energies).

Let us now consider those contributions to the gamma-
ray spectrum from the decay of heavy neutralinos that
have been studied earlier. Secondary gamma rays are
produced in the fragmentation of the W pairs, mainly
through the decay of neutral pions. In addition to the
secondary spectrum, there are line signals from the direct
annihilation of a neutralino pair into γγ [14] and Zγ [15].
Due to the high mass of the neutralino, these lines cannot
be resolved but effectively add to each other at an energy
equal to the neutralino mass.
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FIG. 3: The total differential photon distribution from χχ
annihilations (solid line) for the MSSM model of Table I. Also
shown separately is the contribution from radiative processes
χχ → W +W−γ (dashed), and the W fragmentation together
with the χχ → γγ, Zγ lines (dotted).
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FIG. 4: The same spectra as in Fig. 3, as seen by a detector
with an energy resolution of 15 percent.

For comparison, again using the model of Table I,
Fig. 3 shows the contributions from secondary photons
[17] and the line signals, as well as the new source of
photons from the internal bremsstrahlung diagrams of
Fig. 1.

The practical importance of the latter contribution can
be appreciated even more, when considering a finite de-
tector resolution of 15 %, which is typical for atmospheric
Cherenkov telescopes in that energy range; the result is a
smeared spectrum as shown in Fig. 4. One can see that,
although the strength of the γγ and Zγ lines already are
surprisingly large [7], the contribution from the internal
bremsstrahlung further enhances this peak by a factor of
2. The signal is also dramatically increased at lower en-
ergies, thereby filling out the “dip” just below the peak;
this latter effect will of course become even more pro-
nounced for better detector resolutions.

Contribu1on	  from	   WW�

•  The	  issue	  of	  peaking	  in	  the	  signal	  bin	  	  
	  x-‐-‐>1	  is	  DM	  mass	  dependent	  

•  More	  work	  is	  needed	  to	  understand	  
precisely	  the	  background	  subtrac1on	  
procedure	  of	  HESS	  and	  whether	  three	  
body	  final	  states	  get	  subtracted	  or	  not	  


