

An Explanation of the WW excess at the LHC by Jet-veto resummation

Prerit Jaiswal Syracuse University

SCET 2015, Santa Fe 26th March, 2015

$pp \rightarrow WW$: The WW excess

	ATLAS	CMS	Theory (MCFM)
\sqrt{s}	$\sigma~[{ m pb}]$	$\sigma \; [{ m pb}]$	$\sigma~[{ m pb}]$
$7 \mathrm{TeV}$	$51.9^{+2.0+3.9+2.0}_{-2.0-3.9-2.0}$	$52.4\substack{+2.0+4.5+1.2\\-2.0-4.5-1.2}$	$47.04\substack{+2.02+0.90\\-1.51-0.66}$
8 TeV	$71.4^{+1.2+5.0+2.2}_{-1.2-4.4-2.1}$	$69.9 \substack{+2.8+5.6+3.1\\-2.8-5.6-3.1}$	$57.25^{+2.35+1.09}_{-1.60-0.80}$

- * A mild excess, $1.5 2\sigma$ over NLO theory prediction
- Excess at both 7 and 8 TeV, experiments more consistent with each other than the theory prediction.
- Significance of excess higher (3 σ) when considering binby-bin analysis.

$pp \rightarrow WW$: The WW excess

New Physics Hiding in Plain Sight?

* B. Feigl, H. Rzehak, and D. Zeppenfeld, New physics backgrounds to the $H \rightarrow W W$

search at the LHC?, [arXiv:1205.3468].

- D. Curtin, P. Jaiswal, and P. Meade, Charginos hiding in plain sight, CarXiv: 1206.68881.
- P. Jaiswal, K. Kopp, and T. Okui, Higgs production amidst the LHC detector, LarXiv:1303.1181].
- * K. Rolbiecki and K. Sakurai, Light stops emerging in WW cross section measurements?, [arXiv:1303.5696].
- P. Curtin, P. Jaiswal, P. Meade, and P.-J. Tien, Casting light on BSM physics with SM standard candles, EarXiv: 1304.70111.
- * P. Curtin, P. Meade, and P.-J. Tien, Natural SUSY in Plain Sight, CarXiv:1406.08481.
- J.S. Kim, K. Rolbiecki, K. Sakurai and J. Tattersall, Stop that ambulance! New physics at the LHC?, CarXiv: 1406.08581.

An explanation of the WW excess with 110 GeV charginos

Or simply a QCD effect?

Both ATLAS and CMS experiments impose jet-veto in their analysis

Need a better understanding of jet-veto. P. Jaiswal and T. Okui, An Explanation of the WW Excess at the LHC by Jet-Veto Resummation, CarXiv:1407.45371.

Jet-Veto: Origin of Large Logs * Jet-veto example : no `jets' with pr > 25 GeV allowed Many scales \implies Large Logs * Jet-veto \implies * Inclusive WW measurement: Only one scale appears : Mww - Obvious scale choice : $\mu \approx M_{WW}$. $\Gamma \mu = \mu_f = \mu_r I$ * WW + 0 jet measurement : Two scales appear : Mww and prveto - 2 possible choices : $\mu \approx M_{WW}$ or $\mu \approx p_T^{veto}$?? Minimize logs from Minimize logs from virtual diagrams. real diagrams.

Jet-Veto and Large Logs: The problem of many scales

- * A well known and understood problem in EFTs (Effective Field Theories)
- * SCET can provide answers on how to resum the large logs.

Soft Collinear Effective Theory (SCET) * Degrees of Freedom and power counting:

* Collinear Modes : $(p_+, p_-, p_\perp) \sim (1, \lambda^2, \lambda) M$

- * Anti-collinear Modes : $(p_+, p_-, p_\perp) \sim (\lambda^2, 1, \lambda) M$
- * Soft Modes : $(p_+, p_-, p_\perp) \sim (\lambda, \lambda, \lambda) M$

* Regulators:

- * Separation of off-shell and on-shell modes : DR At cut-off scale Λ , integrate out modes with off-shellness greater than Λ .
- Separation of collinear/anti-collinear modes : DR not sufficient.

SCET

* Separation of collinear/anti-collinear modes :

* Analytic / Rapidity Regulators

- * Collinear Anomaly:
 - * Dependence of amplitudes on v.
 - * Physical observables do not depend on regulator \Rightarrow RGE in v

* Analogous to µ dependence in DR

SCET : Calculations * SCET Lagrangian: $p(P_1) + p(P_2) \to W^+(p_3, s_3) + W^-(p_4, s_4) + X$ $\mathcal{L}_{hard} = \frac{1}{M} \epsilon^*_{\mu}(p_3, s_3) \epsilon^*_{\nu}(p_4, s_4) e^{i(p_3 + p_4) \cdot x} \mathcal{J}^{\mu\nu}(x)$ $(p_3 + p_4) \approx (1, 1, \lambda) \implies x \approx (1, 1, 1/\lambda)$ * SCET Current $J_X^{\mu\nu}(x, P_1, P_2, p_3, p_4) \equiv \langle X | \mathcal{J}^{\mu\nu}(x) | p(P_1) p(P_2) \rangle$ $J_X^{\mu\nu}(x, P_1, P_2, p_3, p_4)$ $= \int dt_1 dt_2 C^{\mu\nu}(t_1, t_2, p_{3+4\parallel}, p_{3-4}, \mu_{\rm f}) \left\langle X \left| \chi_{\bar{c}}^{i\alpha}(x^- + t_2, \vec{x}_\perp) \Gamma_{\alpha}^{\ \beta} \chi_{c_{i\beta}}(x^+ + t_1, \vec{x}_\perp) \right| p(P_1) p(P_2) \right\rangle$ Consistent power counting \Rightarrow Multipole expansion $(\partial_+, \partial_-, \partial_\perp) \approx (1, \lambda^2, \lambda)$ * Cross-section $\sigma \propto J(x) J(0) e^{i(p_3+p_4).x}$ factorizes $\sigma = \left| \hat{C}(\mu_{h}, \mu) \right|^{2} \otimes B_{1}(\mu_{s}, \mu) \otimes B_{2}(\mu_{s}, \mu) \otimes A_{c}(p_{T}^{veto}, \mu)$ collinear anomaly Wilson Coefficients Beam functions

SCET : Calculations Wilson Coefficients

* Matching full theory (QCD) to SCET operators at a hard scale μ_h

 $\chi_{c}^{i\alpha}(x^{-}+t_{2},\vec{x}_{\perp}) \Gamma_{\alpha}^{\beta} \chi_{c_{i\beta}}(x^{+}+t_{1},\vec{x}_{\perp})$ $\chi_{c}^{i\alpha}(x^{-}+t_{2},\vec{x}_{\perp}) \Gamma_{\alpha}^{\beta} \chi_{c_{i\beta}}(x^{+}+t_{1},\vec{x}_{\perp})$ QCP QCP SCET $Scaleless integrals \Rightarrow 0$ $IR poles : \epsilon^{-2}, \epsilon^{-1}$ $UV poles = IR poles : \epsilon^{-2}, \epsilon^{-1}$

One loop Wilson coefficients \Longrightarrow Full QCD diagrams with IR poles interpreted as UV poles

• Choose $\mu_h^2 \approx M^2$ to minimize $\log[M^2/\mu_h^2]$ at matching.

* Then use RGE to run to a low energy scale μ .

SCET : Calculations

Beam Functions

* Generalization of PDFs for less inclusive observables like jet-veto

- $\phi_n^{q/N}(\xi,\mu) = \frac{1}{2\pi} \int \mathrm{d}t \, e^{-i\xi t\bar{n}\cdot P} \sum_{V} \langle N(P) | \, \bar{\chi}^{(0)I}(t\bar{n}) \, |X_n\rangle \, \frac{\bar{\eta}}{2} \, \langle X_n | \, \chi^{(0)I}(0) \, |N(P)\rangle$
- * Renormalization of PDFs :
 - * Scaleless integrals in DR
 - \Rightarrow UV divergence = IR divergence (DGLAP=splitting functions)
- Renormalization of Beam functions :
 - * OPE on to PDFs
 - * DR not sufficient : need rapidity regulators
 - * Dependence on $v \Rightarrow$ Collinear anomaly term

Results for WW+0 jet production at the LHC

P. J. and T. Okui, An Explanation of the WW Excess at the LHC by Jet-Veto Resummation, EarXiv:1407.45371.

How to count

- * Power Counting parameter in SCET : $\lambda = p_T^{veto}/M$
 - * All calculations at LO in SCET power counting.
 - * SCET resums pieces singular in the $\lambda \rightarrow 0$ limit (i.e. $\log^{n} \lambda$)
 - Corrections beyond the singular pieces : Power Corrections
 Add them at the end if the full NLO result is known.
 (Power Corrections) = NLO (Singular pieces of NLO)

$$\sigma_{tot} = \sigma_{resum} + (\sigma_{N^n LO} - \sigma_{resum}^{[N^n LO expansion]})$$
Power Corrections

All ingredients already known in the literature.

NLL and NNLL Results for $q\overline{q} \rightarrow WW+0$ jet

Consistency Checks and Power Corrections

- * Recall : SCET resums terms singular in $p_T^{veto}/M \rightarrow 0$
- Power corrections suppressed by powers of ptveto/M. Found to be less than 1%.
- * Consistency Check : For small p_T^{veto} , NNLL cross-section expanded to $O(\alpha_s)$ should match fixed-order NLO calculations.

✓ Good agreement between our resummed results expanded to $O(\alpha_s)$ and MCFM for $q\bar{q}$ →WW at NLO in the 0-jet bin for small p_T^{veto} .

NNLL+NLO Results

 Beyond NLO : Besides logarithm terms e.g. α_s² L⁴, jet-clustering dependence :

$$(p_T^{veto}/M)^{\alpha_s^2[1+\log R+R^2+R^4+...}$$

Comparison with MC+Parton Showers

(Includes LO gg contribution assuming 100% of them pass jet-veto)

WW+0/1/2 jet matched : LO Madgraph5 + Pythia6 MC@NLO + Herwig6

Powheg v1 + Pythia6

Jet algorithm : anti-k₁, R=0.4 CTEQ6L for LO MC, CT10nlo for NLO MC, MSTW08nnlo for NNLL+NLO

Comparison with LHC data

	$\sqrt{s} =$		
	R = 0.4	R = 0.5	ă
	$p_{\mathrm{T}}^{\mathrm{veto}}=25\mathrm{GeV}$	$p_{\mathrm{T}}^{\mathrm{veto}}=30~\mathrm{GeV}$	
ATLAS	37 0+3.8%+5.0%+3.8%	_	$45 \sqrt{s}$
$\sigma_{WW}^{ m veto}~[{ m pb}]$	31.3-3.8%-5.0%-3.8%		
CMS		41 5+3.8%+7.2%+2.3%	- 40
$\sigma_{WW}^{ m veto}~[{ m pb}]$	_	41.0 - 3.8% - 7.2% - 2.3%	[pt
Theory	27 4+3.8%	20.0 + 2.4%	AMA 35
$\sigma_{WW}^{ m veto}~[{ m pb}]$	31.4-3.0%	$39.0_{-2.3\%}$	
Theory	9 1+13.5%	9 2 +11.5%	$30 p_T^{\text{veto}}$
$\sigma^{ m veto}_{h ightarrow WW}$ [pb]	2.1 - 11.4%	2.0 - 10.6%	

			_
	$\sqrt{s} = 8 \text{ TeV}$		
	R = 0.4	R = 0.5	Theory
	$p_{ m T}^{ m veto}=25~{ m GeV}$	$p_{ m T}^{ m veto}=30~{ m GeV}$	(WW only) THEAS TOWNS
ATLAS	40 1+1.7%+6.2%+3.1%		$60 \sqrt{s} = 8 \text{ TeV}$
$\sigma_{WW}^{ m veto}$ [pb]	40.1 - 1.7% - 5.2% - 2.9%	_	55
CMS		54 9+4.0%+6.5%+4.4%	
$\sigma_{WW}^{ m veto}$ [pb]	_	$54.2_{-4.0\%-6.5\%-4.4\%}$	
Theory	4.4 7+3.5%	AC C+2.2%	
$\sigma_{WW}^{ m veto}$ [pb]	44.1-2.8%	$40.0_{-2.1\%}$	
Theory	o.c+13.3%	$2.9^{+11.5\%}_{-11.5\%}$	$\begin{bmatrix} 40 \\ p_T^{\text{veto}} = 25 \text{ GeV } p_T^{\text{veto}} = 30 \text{ GeV} \end{bmatrix}$
$\sigma_{h ightarrow WW}^{ m veto}$ [pb]	$2.0^{-11.7\%}$		$35 \boxed{R = 0.4 \qquad R = 0.5}$

Similar Calculations * [arXiv:14074481] Transverse momentum resummation for WW : Patrick Meade, Harikrishnan Ramani, Mao Zeng

- * 3-7% reduction in discrepancy. (similar to our results without Π^2 resummation)
- * CarXiv:1410.47451 NNLL+NNLO extrapolation from Drell-Yan Pier Francesco Monni, Giulia Zanderighi
- * CarXiv:1412.84081 Automated NNLL+NLO : T. Becher, R. Frederix, M. Neubert and L. Rothenier
 - * Consistent with our result (without π^2 resummation)
- * [arXiv:1408.5243] NNLO for WW : Gehrmann et al
 - Increase of 7% consistent (NNLO effects accounted by π² resummation)

New CMS 8 TeV result with full data set

- * Reweighted MC using the `correct' pT distribution of the W-pair. [following procedure outlined in arXiv:1407.4481]
- Theory NNLO prediction : 59.8^{+1.3}_{-1.1} pb
- * Observed :

 $\sigma_{W^+W^-} = 60.1 \pm 0.9 \text{ (stat.)} \pm 3.2 \text{ (exp.)} \pm 3.1 \text{ (th.)} \pm 1.6 \text{ (lum.) pb.}$

Complex scales and scale uncertainties

P. J., A New Perspective on Scale Uncertainties, EarXiv:1411.06771.

Origin of Complex Scales $pp \rightarrow VV'$, where $V \in \{W, Z\}$ **Factorized cross sections :** $\sigma = C(\mu) \otimes f_1(\mu) \otimes f_2(\mu) \otimes S(\mu)$ Wilson Coefficient PDFs Soft Function Logarithms in Wilson coefficient, $C(\mu)$: $\log \left[(-M^2 - i0^+)/\mu^2 \right]$ * Matching of SCET to QCD at $\mu = \mu_h$ Choice of μ_h ? $\mu_h = M$ minimizes logs.... * *except that branch cut \Rightarrow - i π factors so that double logs produce π^2 factors.

* Motivates choice of μ_h in the complex μ^2 -plane, e.g. ${\mu_h}^2 \approx -M^2$

Large logs from Complex Scales Logarithms in Wilson coefficient, $C(\mu)$: $\log \left[(-M^2 - i0^+)/\mu^2 \right]$ Matching scale μ_h^2 complex-valued. * But PDFs evaluated at factorization scales which are real : $\mu f^2 \approx M^2$ * Hierarchy of scales in the complex μ^2 -plane * $Im(\mu^2)$ \Rightarrow Large Logs log(μ_h^2/μ_f^2) * Phase of μ_h^2 : Θ $\log(\mu_h^2/\mu_f^2) = i\Theta$ $Re(\mu^2)$ If Logs dominant : $\Theta = \pm \pi$ If non-Log terms dominant, no preferred value of Θ . RG equation for C(µ) known \Rightarrow Evolve from $\mu_h^2 \rightarrow \mu_f^2 \Rightarrow$ Resum Θ terms. * * Vary : $-\pi < \Theta < \pi$ similar to M/2 < $|\mu_h| < 2$ M

Scale Uncertainty

3-4 % increase in central value prediction w.r.t NLO (dynamic scale).

Better estimate of scale uncertainty.

Work in progress

- * pT resummation : allows to get distributions but misses jetclustering dependence
- Jet-veto resummation : allows precise calculation of crosssection in 0-jet bin but not the distributions.

- Petailed comparison of pT resummation vs jet-veto resummation (with P. Meade and H. Ramani)
- Pifferential pT distributions in the zero-jet bin (with T. Okui)