Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

Matthias König Johannes Gutenberg-University Mainz

XIIth Annual Workshop on Soft-Collinear Effective Theory 2015 Sante Fe (NM)

Cluster of Excellence

Precision Physics, Fundamental Interactions and Structure of Matter

One of the main challenges to particle physics is to obtain rigorous control about non-perturbative physics in QCD.

For hard exclusive processes with final-state hadrons:

"QCD factorization"

[Brodsky, Lepage (1979), Phys. Lett. B 87, 359] [Efremov, Radyushkin (1980), Theor. Math. Phys. 42, 97]

One of the main challenges to particle physics is to obtain rigorous control about non-perturbative physics in QCD.

For hard exclusive processes with final-state hadrons:

"QCD factorization"

[Brodsky, Lepage (1979), Phys. Lett. B 87, 359] [Efremov, Radyushkin (1980), Theor. Math. Phys. 42, 97]

Factorization into partonic rates convoluted with light-cone distribution amplitudes (LCDAs)

One of the main challenges to particle physics is to obtain rigorous control about non-perturbative physics in QCD.

For hard exclusive processes with final-state hadrons:

"QCD factorization"

[Brodsky, Lepage (1979), Phys. Lett. B 87, 359] [Efremov, Radyushkin (1980), Theor. Math. Phys. 42, 97]

Factorization into partonic rates convoluted with light-cone distribution amplitudes (LCDAs)

Amplitudes will be organized in an expansion in the scale separation

$$
\lambda \sim \frac{\Lambda_{\rm QCD}}{E_M}
$$

 \rightarrow Hard to estimate uncertainties from power-corrections and disentangle them from uncertainties in non-perturbative hadronic parameters

 \rightarrow Hard to estimate uncertainties from power-corrections and disentangle them from uncertainties in non-perturbative hadronic parameters

In the decays of heavy bosons $W, Z \rightarrow M + \gamma$, the characteristic scale is large compared to $\Lambda_{\rm QCD}$

 \rightarrow Hard to estimate uncertainties from power-corrections and disentangle them from uncertainties in non-perturbative hadronic parameters

In the decays of heavy bosons $W, Z \rightarrow M + \gamma$, the characteristic scale is large compared to $\Lambda_{\rm QCD}$

 \rightarrow power-corrections expected to be small!

 \rightarrow Hard to estimate uncertainties from power-corrections and disentangle them from uncertainties in non-perturbative hadronic parameters

In the decays of heavy bosons $W, Z \rightarrow M + \gamma$, the characteristic scale is large compared to $\Lambda_{\rm QCD}$

 \rightarrow power-corrections expected to be small!

Price to pay: Low branching ratios, experimentally extremely challenging to identify

But: Large rates of electroweak gauge bosons are expected at the HL-LHC and future machines, opening up the possibility to conduct such studies:

- high-luminosity LHC $(3000\,{\rm fb}^{-1})$: $\sim 10^{11}$ *Z* bosons, $\sim 5 \cdot 10^{11}$ *W* bosons
- TLEP, dedicated run at *Z* pole: $\sim 10^{12}$ *Z* bosons per year
- \blacksquare LHC: large samples of *W* bosons in dedicated runs at *WW* or *tt* thresholds

[Mangano, Melia (2014), arXiv:1410.7475]

Our interest was raised by recent studies of $h \to V\gamma$ decays as probes for non-standard Yukawa couplings

> [Isidori, Manohar, Trott (2013), Phys. Lett. B 728, 131] [Bodwin, Petriello, Stoynev, Velasco (2013), Phys. Rev. D 88, no. 5, 053003] [Kagan et al. (2014), arXiv:1406.1722] [Bodwin et al. (2014), arXiv:1407.6695]

And in principle the decays of $Z \rightarrow M + \gamma$ could also be used as probe for flavor-off-diagonal *Z* couplings.

Our interest was raised by recent studies of $h \to V\gamma$ decays as probes for non-standard Yukawa couplings

> [Isidori, Manohar, Trott (2013), Phys. Lett. B 728, 131] [Bodwin, Petriello, Stoynev, Velasco (2013), Phys. Rev. D 88, no. 5, 053003] [Kagan et al. (2014), arXiv:1406.1722] [Bodwin et al. (2014), arXiv:1407.6695]

And in principle the decays of $Z \rightarrow M + \gamma$ could also be used as probe for flavor-off-diagonal *Z* couplings.

Based on:

Exclusive Radiative Decays of *W* **and** *Z* **Bosons in QCD Factorization** Yuval Grossman, MK, Matthias Neubert

arXiv:1501.06569

Outline

1 [QCD factorization](#page-13-0)

- **[The factorization formula](#page-13-0)**
- **[Light cone distributions for mesons](#page-28-0)**
- 2 [Decays of electroweak gauge bosons](#page-47-0)
	- [Radiative hadronic decays of Z bosons](#page-48-0)
	- [Radiative hadronic decays of W bosons](#page-70-0)
	- [Z decays as BSM probes](#page-77-0)
	- \blacksquare Weak radiative Z decays to M $+$ W

3 [Conclusions, summary and outlook](#page-92-0)

[QCD factorization](#page-13-0) [The factorization formula](#page-13-0)

Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

The factorization formula

 \blacksquare In the decays considered, the intermediate fermion propagator is highly virtual

The factorization formula

- \blacksquare In the decays considered, the intermediate fermion propagator is highly virtual
- Soft collinear effective theory allows seperation of scales into
	- \rightarrow the hard scale E
	- \rightarrow and the hadronic scale μ_0

[Bauer et al. (2001), Phys. Rev. D 63, 114020] [Bauer Pirjol, Stewart (2002), Phys. Rev. D 65, 054022] [Beneke, Chapovsky, Diehl, Feldmann (2002), Nucl. Phys. B 643, 431]

Final state meson moving along the direction n^{μ} described by collinear quark, anti-quark and gluon fields

- Final state meson moving along the direction n^{μ} described by collinear quark, anti-quark and gluon fields
- Scaling of the collinear momenta p_c :

$$
\left(n \cdot p_c, \bar{n} \cdot p_c, p_c^{\perp}\right) \sim E\left(\lambda^2, 1, \lambda\right)
$$

$$
p_c^2 \sim \Lambda_{\text{QCD}}^2, \qquad \lambda \sim \frac{\Lambda_{\text{QCD}}}{E}
$$

■ Scaling of the collinear momenta p_c :

$$
\left(n \cdot p_c, \bar{n} \cdot p_c, p_c^{\perp}\right) \sim E\left(\lambda^2, 1, \lambda\right)
$$

$$
p_c^2 \sim \Lambda_{\text{QCD}}^2, \qquad \lambda \sim \frac{\Lambda_{\text{QCD}}}{E}
$$

■ Collinear quark and gluon fields:

$$
\mathcal{X}_c = \frac{\rlap{\hspace{0.1cm}/}{n}\rlap{\hspace{0.1cm}}}{4} W_c^\dagger q \qquad \mathcal{A}_{c\perp}^\mu = W_c^\dagger \left(i D_{c\perp}^\mu W_c \right)
$$
\nwith $W_c(x) = \mathbf{P} \exp \left(i g \int_{-\infty}^0 dt \; \bar{n} \cdot A_c(x + t\bar{n}) \right)$

The collinear fields are of $\mathcal{O}(\lambda)$ **in SCET power-counting** \rightarrow contributions with more field operators will always be power-suppressed

- **The collinear fields are of** $\mathcal{O}(\lambda)$ **in SCET power-counting** \rightarrow contributions with more field operators will always be power-suppressed
- At leading order, the decay amplitude $\mathcal{A}_{V\rightarrow M\gamma}$ can be written as:

$$
\mathcal{A} = \sum_{i} \int dt \ C_{i}(t,\mu) \langle M(k) | \bar{\mathcal{X}}_{c}(t\bar{n}) \frac{\vec{\hbar}}{2} \Gamma_{i} \mathcal{X}_{c}(0) | 0 \rangle + \dots
$$

$$
= \sum_{i} \int dt \ C_{i}(t,\mu) \langle M(k) | \bar{q}(t\bar{n}) \frac{\vec{\hbar}}{2} \Gamma_{i}[t\bar{n},0] q(0) | 0 \rangle + \dots
$$

- **The collinear fields are of** $\mathcal{O}(\lambda)$ **in SCET power-counting** \rightarrow contributions with more field operators will always be power-suppressed
- At leading order, the decay amplitude $A_{V\rightarrow M\gamma}$ can be written as:

$$
\mathcal{A} = \sum_{i} \int dt \ C_{i}(t,\mu) \langle M(k) | \bar{\mathcal{X}}_{c}(t\bar{n}) \frac{\vec{\hbar}}{2} \Gamma_{i} \mathcal{X}_{c}(0) | 0 \rangle + \dots
$$

=
$$
\sum_{i} \int dt \ C_{i}(t,\mu) \langle M(k) | \bar{q}(t\bar{n}) \frac{\vec{\hbar}}{2} \Gamma_{i}[t\bar{n},0] q(0) | 0 \rangle + \dots
$$

 $\langle M | \ldots | 0 \rangle = -i f_M E \int_0^1$ $\int\limits_0^{\cdot} dx\ e^{ixt\bar n\cdot k}\phi_M(x,\mu)$ defines the light-cone distribution amplitude

Notai Which of the Dirac structures Γ_i contributes, depends on the type of meson and there is exactly one Dirac structure for a given meson.

- **Notable Which of the Dirac structures** Γ_i **contributes, depends on the type** of meson and there is exactly one Dirac structure for a given meson.
- We denote the corresponding Wilson coefficient by $C_M(t,\mu)$ and define the Fourier-transformed Wilson coefficient, called the hard function, as:

$$
H_M(x,\mu) = \int dt \ C_M(t,\mu) e^{ixt\bar{n}\cdot k}
$$

- **Notai** Which of the Dirac structures Γ_i contributes, depends on the type of meson and there is exactly one Dirac structure for a given meson.
- We denote the corresponding Wilson coefficient by $C_M(t,\mu)$ and define the Fourier-transformed Wilson coefficient, called the hard function, as:

$$
H_M(x,\mu) = \int dt \ C_M(t,\mu) e^{ixt\bar{n}\cdot k}
$$

The factorization formula now reads:

$$
\mathcal{A} = - i f_M E \int \limits_{0}^{1} dx \, H_M(x,\mu) \phi_M(x,\mu) + \begin{array}{l} \text{power} \\ \text{corrections} \end{array}
$$

 JG U

Define: Projectors *M^M* , can be applied to partonic amplitudes directly.

In a practical calculation each Feynman diagram gives an expression of the form:

$$
\bar{u}(k_1)A(q, k_1, k_2)v(k_2) = \text{Tr}\left[v(k_2)\bar{u}(k_1)A(q, k_1, k_2)\right]
$$

Define: Projectors *M^M* , can be applied to partonic amplitudes directly.

In a practical calculation each Feynman diagram gives an expression of the form:

$$
\bar{u}(k_1)A(q, k_1, k_2)v(k_2) = \text{Tr}\left[v(k_2)\bar{u}(k_1)A(q, k_1, k_2)\right]
$$

The projection is then:

$$
\bar{u}(k_1)A(q, k_1, k_2)v(k_2) \to \int_{0}^{1} dx \operatorname{Tr} [M_M(k, x, \mu) A(q, k_1, k_2)]
$$

The projector *M^M* depends on the type of meson (pseudoscalar, vector meson [longitudinal/tranverse polarization]).

$$
M_P(k, x, \mu) = \frac{if_P}{4} \left\{ k\gamma_5 \phi_P(x, \mu) - \mu_P(\mu)\gamma_5 \left[\phi_p(x, \mu) -i \sigma_{\mu\nu} \frac{k^{\mu} \bar{n}^{\nu}}{k \cdot \bar{n}} \frac{\phi_{\sigma}'(x, \mu)}{6} + i \sigma_{\mu\nu} k^{\mu} \frac{\phi_{\sigma}(x\mu)}{6} \frac{\partial}{\partial k_{\perp \nu}} \right] + 3 \text{-part.} \right\}
$$

where

$$
\phi_p(x,\mu) = 1 \qquad \phi_\sigma(x,\mu) = 6x(1-x)
$$

when three-particle LCDAs are neglected (Wandzura-Wilczek approximation).

[Wandzura, Wilczek (1977), Phys. Lett. B 72, 195]

[QCD factorization](#page-13-0) [Light cone distributions for mesons](#page-28-0)

Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

■ The LCDA can be interpreted as the amplitude for finding a quark with longitudinal momentum fraction *x*

- The LCDA can be interpreted as the amplitude for finding a quark with longitudinal momentum fraction *x*
- Defined by local matrix element (here example for pseudo-scalar)

$$
\langle P(k)| \bar{q}(t\bar{n})\frac{\vec{n}}{2}\gamma^5[t\bar{n},0]q(0)|0\rangle = -i f_M E \int_0^1 dx \, e^{ixt\bar{n}\cdot k} \phi_M(x,\mu)
$$

- The LCDA can be interpreted as the amplitude for finding a quark with longitudinal momentum fraction *x*
- Defined by local matrix element (here example for pseudo-scalar)

$$
\langle P(k)| \bar{q}(t\bar{n})\frac{\vec{n}}{2}\gamma^5[t\bar{n},0]q(0)|0\rangle = -i f_M E \int_0^1 dx \, e^{ixt\bar{n}\cdot k} \phi_M(x,\mu)
$$

For light mesons information about the LCDAs has to be extracted from lattice QCD or sum rules. For mesons containing a heavy quark (or for heavy quarkonia), this can be addressed with HQET (or NRQCD).

We expand the LCDAs in the basis of Gegenbauer polynomials:

$$
\phi_M(x,\mu) = 6x(1-x)\left[1 + \sum_{n=1}^{\infty} a_n^M(\mu) C_n^{(3/2)}(2x-1)\right]
$$

where $\mathit C_n^{(\alpha)}(x)$ are the Gegenbauer polynomials. The scale-dependence of the LCDA is in the Gegenbauer moments $a_n^M(\mu)$

We expand the LCDAs in the basis of Gegenbauer polynomials:

$$
\phi_M(x,\mu) = 6x(1-x)\left[1 + \sum_{n=1}^{\infty} a_n^M(\mu) C_n^{(3/2)}(2x-1)\right]
$$

where $\mathit C_n^{(\alpha)}(x)$ are the Gegenbauer polynomials. The scale-dependence of the LCDA is in the Gegenbauer moments $a_n^M(\mu)$

We need ϕ at the scale $\mu \sim M_Z$ while the $a_n^M(\mu)$ are obtained at $\mu \sim \Lambda_{\rm QCD}$

We expand the LCDAs in the basis of Gegenbauer polynomials:

$$
\phi_M(x,\mu) = 6x(1-x)\left[1 + \sum_{n=1}^{\infty} a_n^M(\mu) C_n^{(3/2)}(2x-1)\right]
$$

where $\mathit C_n^{(\alpha)}(x)$ are the Gegenbauer polynomials. The scale-dependence of the LCDA is in the Gegenbauer moments $a_n^M(\mu)$

We need ϕ at the scale $\mu \sim M_Z$ while the $a_n^M(\mu)$ are obtained at $\mu \sim \Lambda_{\rm QCD}$

 \rightarrow RG evolution important AND works in our favor

■ The Gegenbauer expansion yields a diagonal scale-evolution of the coefficients:

$$
a_n^M(\mu) = \left(\frac{\alpha_s(\mu)}{\alpha_s(\mu_0)}\right)^{\gamma_n/2\beta_0} a_n^M(\mu_0)
$$

ັງG∣∪

$$
a_n^M(\mu) = \left(\frac{\alpha_s(\mu)}{\alpha_s(\mu_0)}\right)^{\gamma_n/2\beta_0} a_n^M(\mu_0)
$$

 JG U

E Every anomalous dimension γ_n is strictly positive

$$
\Rightarrow a_n^M(\mu \to \infty) \to 0
$$

$$
\Rightarrow \phi_M(x, \mu \to \infty) \to 6x(1-x)
$$

LCDAs for mesons at different scales, dashed lines: $\phi_M(x,\mu=\mu_0)$, solid lines: $\phi_M(x, \mu = m_Z)$, grey dotted lines: $\phi_M(x, \mu \to \infty)$

LCDAs for mesons at different scales, dashed lines: $\phi_M(x,\mu=\mu_0)$, solid lines: $\phi_M(x, \mu = m_Z)$, grey dotted lines: $\phi_M(x, \mu \to \infty)$

At high scales compared to Λ_{QCD} (e.g. $\mu \sim m_Z$) the sensitivity to poorly-known a_n^M is greatly reduced!

For heavy quarkonium states $M \sim (Q\overline{Q})$ the LCDA peaks at $x = 1/2$. In the limit of $m_Q \to \infty$, the width of the LCDA vanishes and $\phi_M \to \delta(x - \frac{1}{2})$ $(\frac{1}{2})$.

 JG U

For heavy quarkonium states $M \sim (QQ)$ the LCDA peaks at $x = 1/2$. In the limit of $m_Q \rightarrow \infty$, the width of the LCDA vanishes and $\phi_M \to \delta(x - \frac{1}{2})$ $(\frac{1}{2})$.

Using NRQCD, the LCDA can be related to a local matrix element

[Caswell, Lepage (1986), Phys. Lett. B 167, 437] [Bodwin, Braaten, Lepage (1995), Phys. Rev. D 51, 1125]

One finds:

$$
\int_{0}^{1} dx (2x - 1)^{2} \phi_{M}(x, \mu_{0}) = \frac{\langle v^{2} \rangle_{M}}{3} + \mathcal{O}(v^{4})
$$

[Braguta, Likhoded, Luchinsky (2007), Phys. Lett. B 646, 80]

 JG U

For heavy quarkonium states $M \sim (QQ)$ the LCDA peaks at $x = 1/2$. In the limit of $m_Q \rightarrow \infty$, the width of the LCDA vanishes and $\phi_M \to \delta(x - \frac{1}{2})$ $(\frac{1}{2})$.

Using NRQCD, the LCDA can be related to a local matrix element

[Caswell, Lepage (1986), Phys. Lett. B 167, 437] [Bodwin, Braaten, Lepage (1995), Phys. Rev. D 51, 1125]

One finds:

$$
\int_{0}^{1} dx (2x - 1)^{2} \phi_{M}(x, \mu_{0}) = \frac{\langle v^{2} \rangle_{M}}{3} + \mathcal{O}(v^{4})
$$

[Braguta, Likhoded, Luchinsky (2007), Phys. Lett. B 646, 80]

Our model at the low scale:

$$
\phi_M(x,\mu_0) = x(1-x) \exp\left[-\frac{6(x-\frac{1}{2})^2}{\langle v^2 \rangle}\right] \times \text{normalization}
$$

For heavy-light mesons $M \sim (q\overline{Q})$, one defines:

$$
\int\limits_0^1 dx \, \frac{\phi_M(x,\mu_0)}{x} = \frac{m_M}{\lambda_M(\mu_0)} + \dots
$$

[Beneke, Buchalla, Neubert, Sachrajda (1999), Phys. Rev. Lett. 83, 1914]

where m_M is the meson mass and the parameter λ_M is a (poorly known) hadronic parameter and we have to use estimates.

> [Braun, Ivanov, Korchemsky (2004), Phy. Rev. D 69, 034014] [Ball, Jones, Zwicky (2007), Phys. Rev. D 75, 054004]

For heavy-light mesons $M \sim (qQ)$, one defines:

$$
\int\limits_0^1 dx \, \frac{\phi_M(x,\mu_0)}{x} = \frac{m_M}{\lambda_M(\mu_0)} + \dots
$$

[Beneke, Buchalla, Neubert, Sachrajda (1999), Phys. Rev. Lett. 83, 1914]

where m_M is the meson mass and the parameter λ_M is a (poorly known) hadronic parameter and we have to use estimates.

> [Braun, Ivanov, Korchemsky (2004), Phy. Rev. D 69, 034014] [Ball, Jones, Zwicky (2007), Phys. Rev. D 75, 054004]

As model LCDA we employ

$$
\phi_M(x,\mu_0)=x(1-x)\exp\left[-x\frac{m_M}{\lambda_M}\right]\times \text{normalization}
$$

[Grozin, Neubert (1997), Phys. Rev. D 55, 272]

Heavy meson LCDAs at the low scale $\mu_0 = 1 \,\text{GeV}$:

$$
\phi_M(x, \mu_0) = x(1-x) \exp\left[-x \frac{m_M}{\lambda_M}\right] \times \text{normalization}
$$

$$
\phi_M(x, \mu_0) = x(1-x) \exp\left[-\frac{6(x-\frac{1}{2})^2}{\langle v^2 \rangle}\right] \times \text{normalization}
$$

Heavy meson LCDAs at the low scale $\mu_0 = 1 \,\text{GeV}$:

$$
\phi_M(x, \mu_0) = x(1-x) \exp\left[-x \frac{m_M}{\lambda_M}\right] \times \text{normalization}
$$

$$
\phi_M(x, \mu_0) = x(1-x) \exp\left[-\frac{6(x-\frac{1}{2})^2}{\langle v^2 \rangle}\right] \times \text{normalization}
$$

The Gegenbauer expansion can be inverted to give:

$$
a_n^M(x,\mu) = \frac{2(2n+3)}{3(n+1)(n+2)} \int_0^1 dx \ C_n^{(3/2)}(2x-1)\phi_M(x,\mu)
$$

Heavy meson LCDAs at the low scale $\mu_0 = 1 \,\text{GeV}$:

$$
\phi_M(x, \mu_0) = x(1-x) \exp\left[-x \frac{m_M}{\lambda_M}\right] \times \text{normalization}
$$

$$
\phi_M(x, \mu_0) = x(1-x) \exp\left[-\frac{6(x-\frac{1}{2})^2}{\langle v^2 \rangle}\right] \times \text{normalization}
$$

The Gegenbauer expansion can be inverted to give:

$$
a_n^M(x,\mu) = \frac{2(2n+3)}{3(n+1)(n+2)} \int_0^1 dx \ C_n^{(3/2)}(2x-1)\phi_M(x,\mu)
$$

For light mesons, only the first few moments are known (we use up to $n = 2$). For heavy mesons, we calculate the first 20 Gegenbauer moments to resolve the peak structure of the LCDAs.

[Decays of electroweak gauge bosons](#page-47-0)

The $\mathbf{Z} \to \mathbf{M} + \gamma$ **decay amplitude**

Diagrams at $\mathcal{O}(\alpha_s)$:

+ analogous QCD corrections for second graph

Let us go through the steps of the calculation:

Let us go through the steps of the calculation:

■ Compute the hard interactions at desired loop-order:

$$
i\mathcal{A} \propto \bar{q}(xk) \left[\gamma^{\nu} \left(v_q - a_q \gamma^5 \right) \rlap/p \gamma^{\mu} \right] q(\bar{x}k) \frac{\kappa(x)}{x} + \frac{\kappa(\bar{x})}{\bar{x}} \bar{q}(xk) \left[\gamma^{\mu} \rlap/p' \gamma^{\nu} \left(v_q - a_q \gamma^5 \right) \right] q(\bar{x}k)
$$

Let us go through the steps of the calculation:

■ Compute the hard interactions at desired loop-order:

Dirac structure of the amplitude is of the form:

$$
\Gamma = v_q \gamma^{\nu} \rlap{/} \rlap{/} \rlap{/} \gamma^{\mu} - a_q \gamma^{\nu} \rlap{/} \rlap{/} \rlap{/} \gamma^{\mu} \gamma^5
$$

Dirac structure of the amplitude is of the form:

$$
\Gamma=v_q\gamma^\nu p\!\!\!/ \gamma^\mu-a_q\gamma^\nu p\!\!\!/ \gamma^\mu\gamma^5
$$

■ The leading-twist two-particle projectors are:

$$
M_P = i\frac{f_P}{4}\phi_P(x,\mu) k\gamma^5
$$

\n
$$
M_V = -i\frac{f_V}{4}\phi_V(x,\mu) k
$$

\n
$$
M_V^{\perp} = i\frac{f_V^{\perp}(\mu)}{4}\phi_V^{\perp}(x,\mu) k\gamma^V_{\perp}
$$

Dirac structure of the amplitude is of the form:

$$
\Gamma=v_q\gamma^\nu p\!\!\!/ \gamma^\mu-a_q\gamma^\nu p\!\!\!/ \gamma^\mu\gamma^5
$$

 \blacksquare The leading-twist two-particle projectors are:

$$
M_P = i\frac{f_P}{4}\phi_P(x,\mu) k\gamma^5
$$

$$
M_V = -i\frac{f_V}{4}\phi_V(x,\mu) k
$$

$$
M_V^{\perp} = i\frac{f_V^{\perp}(\mu)}{4}\phi_V^{\perp}(x,\mu) k\phi_V^{\perp *}
$$

At leading twist only P and V_{\parallel} allowed! (recall: projecting involves Tr[*M* Γ]) Subleading twist contributions **strongly** power-suppressed!

$$
i\mathcal{A} = \pm \frac{egf_M}{2\cos\theta_W} \left[i\epsilon_{\mu\nu\alpha\beta} \frac{k^{\mu} q^{\nu} \varepsilon_Z^{\alpha} \varepsilon_{\gamma}^{* \beta}}{k \cdot q} F_1^M - \left(\varepsilon_Z \cdot \varepsilon_{\gamma}^{*} - \frac{q \cdot \varepsilon_Z k \cdot \varepsilon_{\gamma}^{*}}{k \cdot q} \right) F_2^M \right]
$$

with the form factors

$$
F_1^M = \frac{Q_M}{6} [I_+^M(m_Z) + \bar{I}_+^M(m_Z)] = Q_M \sum_{n=0}^{\infty} C_{2n}^{(+)}(m_Z, \mu) a_{2n}^M(\mu)
$$

$$
F_2^M = \frac{Q_M'}{6} [I_-^M(m_Z) + \bar{I}_-^M(m_Z)] = -Q_M' \sum_{n=0}^{\infty} C_{2n+1}^{(-)}(m_Z, \mu) a_{2n+1}^M(\mu)
$$

$$
i\mathcal{A} = \bigoplus_{\substack{2 \text{cos } \theta_W}} \underbrace{e g f_M}_{k \text{cos } \theta_W} \left[i \epsilon_{\mu\nu\alpha\beta} \frac{k^{\mu} q^{\nu} \epsilon_{Z}^{\alpha} \epsilon_{\gamma}^{* \beta}}{k \cdot q} F_1^M - \left(\epsilon_Z \cdot \epsilon_{\gamma}^{*} - \frac{q \cdot \epsilon_Z k \cdot \epsilon_{\gamma}^{*}}{k \cdot q} \right) F_2^M \right]
$$
\nwith the form factors\n
$$
F_1^M = \frac{\mathcal{Q}_M}{6} [I_+^M(m_Z) + \bar{I}_+^M(m_Z)] = \mathcal{Q}_M \sum_{n=0}^{\infty} C_{2n}^{(+)}(m_Z, \mu) a_{2n}^M(\mu)
$$
\n
$$
F_2^M = \frac{\mathcal{Q}_M'}{6} [I_-^M(m_Z) + \bar{I}_-^M(m_Z)] = -\mathcal{Q}_M' \sum_{n=0}^{\infty} C_{2n+1}^{(-)}(m_Z, \mu) a_{2n+1}^M(\mu)
$$

$$
i\mathcal{A} = \pm \frac{egf_M}{2\cos\theta_W} \left[i\epsilon_{\mu\nu\alpha\beta} \frac{k^{\mu} q^{\nu} \varepsilon_Z^{\alpha} \varepsilon_{\gamma}^{* \beta}}{k \cdot q} F_1^M - \left(\varepsilon_Z \cdot \varepsilon_{\gamma}^{*} - \frac{q \cdot \varepsilon_Z k \cdot \varepsilon_{\gamma}^{*}}{k \cdot q} \right) F_2^M \right]
$$

with the form factors

$$
F_1^M = \underbrace{\mathbb{Q}_M}_{6} [I_+^M(m_Z) + \overline{I}_+^M(m_Z)] = \underbrace{\mathbb{Q}_M}_{n=0} \sum_{n=0}^{\infty} C_{2n}^{(+)}(m_Z, \mu) a_{2n}^M(\mu)
$$

$$
F_2^M = \underbrace{\mathbb{Q}_M^{'} \mathbb{Q}_L^{M}}_{6} [I_-^M(m_Z) + \overline{I}_-^M(m_Z)] = \underbrace{\mathbb{Q}_M^{'} \sum_{n=0}^{\infty} C_{2n+1}^{(-)}(m_Z, \mu) a_{2n+1}^M(\mu)}
$$

quark couplings to photon and Z boson

$$
i\mathcal{A} = \pm \frac{egf_M}{2\cos\theta_W} \left[i\epsilon_{\mu\nu\alpha\beta} \frac{k^{\mu} q^{\nu} \varepsilon_Z^{\alpha} \varepsilon_{\gamma}^{* \beta}}{k \cdot q} F_1^M - \left(\varepsilon_Z \cdot \varepsilon_{\gamma}^{*} - \frac{q \cdot \varepsilon_Z k \cdot \varepsilon_{\gamma}^{*}}{k \cdot q} \right) F_2^M \right]
$$

with the form factors

$$
F_1^M = \frac{Q_M}{6} \left[I_+^M(m_Z) + \bar{I}_+^M(m_Z) \right] = Q_M \sum_{n=0}^{\infty} C_{2n}^{(+)}(m_Z, \mu) a_{2n}^M(\mu)
$$

$$
F_2^M = \frac{Q_M'}{6} \left[I_-^M(m_Z) + \bar{I}_-^M(m_Z) \right] = -Q_M' \sum_{n=0}^{\infty} C_{2n+1}^{(-)}(m_Z, \mu) a_{2n+1}^M(\mu)
$$

Convolution of LCDA with the hard function:

$$
I_{\pm}^{M}(m_{V}) = \int_{0}^{1} dx H_{\pm}(x, m_{V}, \mu)\phi_{M}(x, \mu)
$$

$$
i\mathcal{A} = \pm \frac{egf_M}{2\cos\theta_W} \left[i\epsilon_{\mu\nu\alpha\beta} \frac{k^{\mu} q^{\nu} \varepsilon_{Z}^{\alpha} \varepsilon_{\gamma}^{* \beta}}{k \cdot q} F_1^M - \left(\varepsilon_Z \cdot \varepsilon_{\gamma}^{*} - \frac{q \cdot \varepsilon_Z k \cdot \varepsilon_{\gamma}^{*}}{k \cdot q} \right) F_2^M \right]
$$

with the form factors

$$
F_1^M = \frac{Q_M}{6} [I_+^M(m_Z) + \bar{I}_+^M(m_Z)] = Q_M \left[\sum_{n=0}^{\infty} C_{2n}^{(+)}(m_Z, \mu) a_{2n}^M(\mu) \right]
$$

$$
F_2^M = \frac{Q_M'}{6} [I_-^M(m_Z) + \bar{I}_-^M(m_Z)] = -Q_M' \left[\sum_{n=0}^{\infty} C_{2n+1}^{(-)}(m_Z, \mu) a_{2n+1}^M(\mu) \right]
$$

Sums over even and odd Gegenbauer moments and a coefficient function $\,C^{(\pm)}_n(m_V,\mu)\,$

$$
C_n^{(\pm)}(m_V, \mu) = 1 + \frac{C_F \alpha_s(\mu)}{4\pi} c_n^{(\pm)} \left(\frac{m_V}{\mu}\right) + \mathcal{O}(\alpha_s^2)
$$

 JG U

with:

$$
c_n^{(\pm)}\left(\frac{m_V}{\mu}\right) = \left[\frac{2}{(n+1)(n+2)} - 4H_{n+1} + 3\right] \left(\log \frac{m_V^2}{\mu^2} - i\pi\right)
$$

$$
+ 4H_{n+1}^2 - \frac{4\left(H_{n+1} - 1\right) \pm 1}{(n+1)(n+2)} + \frac{2}{(n+1)^2(n+2)^2} - 9
$$

Large logs are resummed to all orders by choosing $\mu \sim m_Z!$

The combination $C_n^{(\pm)}(m_V,\mu)a_n^M(\mu)$ is formally scale independent!

The form factors become:

$$
ReF_1^M = Q_M [0.94 + 1.05a_2^M(m_Z) + 1.15a_4^M(m_Z) + 1.22a_6^M(m_Z) + \dots]
$$

= $Q_M [0.94 + 0.41a_2^M(\mu_0) + 0.29a_4^M(\mu_0) + 0.23a_6^M(\mu_0) + \dots]$
 $F_2^M = 0$

The combination $C_n^{(\pm)}(m_V,\mu)a_n^M(\mu)$ is formally scale independent!

The combination $C_n^{(\pm)}(m_V,\mu)a_n^M(\mu)$ is formally scale independent!

The form factors become:

$$
ReF_1^M = Q_M [0.94 + 1.05a_2^M(m_Z) + 1.15a_4^M(m_Z) + 1.22a_6^M(m_Z) + \ldots]
$$

= $Q_M [0.94 + 0.41a_2^M(\mu_0) + 0.29a_4^M(\mu_0) + 0.23a_6^M(\mu_0) + \ldots]$
 $F_2^M = 0$ \rightarrow **sensitivity strongly reduced!**

For the branching ratios $BR(Z \to M\gamma)$ we find:

	Branching ratio $Z \rightarrow \ldots$	asym. LO	
$\pi^0 \gamma$	$\pm 0.03_f \pm 0.61_{a_2} \pm 0.82_{a_4} \cdot 10^{-12}$ (9.80) -0.14μ		14.67
$\rho^0 \gamma$	$+0.04$ $\pm 0.16_f \pm 0.24_{a_2} \pm 0.37_{a_4} \right)$ $\cdot 10^{-9}$ (4.19) -0.06μ	3.63 5.68	
$\omega\gamma$	$+0.03$ $\pm 0.15_f \pm 0.29_{a_2} \pm 0.25_{a_4} \cdot 10^{-8}$ (2.89) -0.05μ	2.54	3.84
$\phi\gamma$	$+0.08$ $\pm 0.41_f \pm 0.55_{a_2} \pm 0.74_{a_4}$) $\cdot 10^{-9}$ (8.63) -0.13μ	7.12	12.31
$J/\psi \gamma$ (8.02)	$^{+0.39}_{-0.36~\sigma})$ $+0.14$ $\cdot 10^{-8}$ $\pm 0.20_f$ -0.15μ	10.48 6.55	
$\Upsilon(1S)\gamma$ (5.39)	$+0.11$ λ $+0.10$ $\cdot 10^{-8}$ $\pm 0.08_f$ -0.08σ -0.10μ	\parallel 7.55 \parallel 4.11	
$\Upsilon(4S) \gamma (1.22)$	$+0.02$ $+0.02$ $\pm 0.13_f$ -0.02σ -0.02μ	$\cdot 10^{-8}$ 1.71 0.93	
$\Upsilon(nS) \gamma (9.96$	$+0.20$ $+0.18$ $\cdot 10^{-8}$ $\pm 0.09_f$ 0.19μ -0.15σ	13.96	7.59

For the branching ratios $BR(Z \to M\gamma)$ we find:

$Z \rightarrow$	Branching ratio		asym.	LO
$\pi^{0}\gamma$	$\pm 0.03_f \pm 0.61_{a_2} \pm 0.82_{a_4}$	$\cdot 10^{-}$	7.71	14.67
$\rho^0 \gamma$	$+0.04$ $\pm 0.16_f \pm 0.24_{a_2} \pm 0.37_{a_4} \cdot 10^{-9}$ 4.19 -0.06μ		3.63	5.68
$\omega\gamma$	$+0.03$ $\pm 0.15_f \pm 0.29_{a_2} \pm 0.25_{a_4}$ $\left(2.89\right)$ $-$ 0.05 μ	$\cdot 10^{-8}$	2.54	3.84
φ $γ$	$+0.08$ $\pm 0.41_f \pm 0.55_{a_2} \pm 0.74_{a_4}$) $\cdot 10^{-9}$ (8.63) -0.13μ		7.12	12.31
$J/\psi \gamma$	$+0.39$ $+0.14$ 8.02 $\pm 0.20_f$ -0.36σ -0.15μ	$\cdot 10^{-8}$	10.48	6.55
$\Upsilon(1S)\gamma$	$+0.10$ $+0.11$ $\pm 0.08_f$ (5.39) -0.08σ -0.10μ	$\cdot 10^{-8}$	7.55	4.11
$\Upsilon(4S)\gamma$	$+0.02$ $+0.02$ $\pm 0.13_f$ (1.22) -0.02σ -0.02μ	$\cdot 10^{-8}$	1.71	0.93
$\Upsilon(nS) \gamma$ (9.96	$+0.20$ $+0.18$ $\pm 0.09f$ -0.19μ $= 0.15 \sigma$	$\cdot 10^{-8}$	13.96	7.59

scale dependence

For the branching ratios $BR(Z \to M\gamma)$ we find:

$Z \rightarrow$			Branching ratio		asym.	LO
$\pi^0\gamma$	'9.80 14μ		$(\pm 0.03_f \pm 0.61_{a_2} \pm 0.82_{a_4})$	$\cdot 10^{-12}$	7.71	14.67
$\rho^0 \gamma$	$+0.04$ 4.19 0.06μ		$\pm 0.16_f \pm 0.24_{a_2} \pm 0.37_{a_4}$) $\cdot 10^{-9}$		3.63	5.68
$\omega\gamma$	$+0.03$ 2.89 -0.05μ		$\pm 0.15 f \pm 0.29_{a_2} \pm 0.25_{a_4}$) $\cdot 10^{-8}$		2.54	3.84
$\phi\gamma$	$+0.08$ $^{\prime}8.63$ -0.13μ	± 0.41	$\pm 0.55_{a_2} \pm 0.74_{a_4}$) $\cdot 10^{-9}$		7.12	12.31
$J/\psi \gamma$	$+0.14$ 8.02 -0.15μ	$\pm 0.20_f$	$^{+0.39}_{-0.36~\sigma})$	$\cdot 10^{-8}$	10.48	6.55
$\Upsilon(1S)$	$+0.10$ 5.39 -0.10μ	$\pm 0.08_f$	$+0.11$ 0.08σ	$\cdot 10^{-8}$	7.55	4.11
$\Upsilon(4S)$ γ	$+0.02$ 1.22 0.02μ	$\pm 0.13f$	$+0.02$ 0.02σ	$\cdot 10^{-8}$	1.71	0.93
$\Upsilon(nS)$ γ	$+0.18$ (9.96) 0.19μ	$\pm 0.09f$	$+0.20$ -0.15σ	$\cdot 10^{-8}$	13.96	7.59
scale dependence						
decay constant						

For the branching ratios $BR(Z \to M\gamma)$ we find:

For the branching ratios $BR(Z \to M\gamma)$ we find:

$Z \rightarrow \ldots$	Branching ratio	asym.	LO
π^{0}	$\pm 0.03_f \pm 0.61_{a_2} \pm 0.82_{a_4} \cdot 10^{-12}$ 0.14μ		14.67
$\rho^0 \gamma$	$+0.04$ $\pm 0.16_f \pm 0.24_{a_2} \pm 0.37_{a_4}) \cdot 10^{-9}$ (4.19) -0.06μ	3.63	5.68
$\omega \gamma$	$+0.03$ $\pm 0.15_f \pm 0.29_{a_2} \pm 0.25_{a_4} \cdot 10^{-8}$ (2.89) -0.05μ	2.54 3.84	
$\phi\gamma$	$+0.08$ $\pm 0.41_f \pm 0.55_{a_2} \pm 0.74_{a_4}$) $\cdot 10^{-9}$ (8.63) -0.13μ		7.12 12.31
$J/\psi \gamma$	$^{+0.39}_{-0.36~\sigma})$ $+0.14$ $\cdot 10^{-8}$ (8.02) $\pm 0.20_f$ -0.15μ	10.48 6.55	
$\Upsilon(1S)\gamma$ (5.39)	$+0.11$ $+0.10$ $\cdot 10^{-8}$ $\pm 0.08_f$ -0.10μ -0.08σ	7.55 4.11	
$\Upsilon(4S) \gamma (1.22)$	$+0.02$ $+0.02$ $\cdot 10^{-8}$ $\pm 0.13_f$ -0.02μ -0.02σ	\parallel 1.71 \parallel 0.93	
$\Upsilon(nS) \gamma$ (9.96	$+0.20$ $+0.18$ $\cdot 10^{-8}$ $\pm 0.09_f$ -0.19μ -0.15σ	13.96	7.59

obtained when using only asymptotic form of LCDA

 $\phi_{\mathbf{M}}(\mathbf{x}) = \mathbf{6}\mathbf{x}(\mathbf{1} - \mathbf{x})$

For the branching ratios $BR(Z \to M\gamma)$ we find:

$Z \rightarrow \ldots$	Branching ratio	asym. LO	
$\pi^0 \gamma$	$+0.09$ $\pm 0.03_f \pm 0.61_{a_2} \pm 0.82_{a_4} \cdot 10^{-12}$ (9.80 -0.14μ	7.71	14.67
$\rho^0 \gamma$	$+0.04$ $\pm 0.16_f \pm 0.24_{a_2} \pm 0.37_{a_4}$) $\cdot 10^{-9}$ (4.19) -0.06μ	3.63	5.68
$\omega\gamma$	$+0.03$ $\pm 0.15_f \pm 0.29_{a_2} \pm 0.25_{a_4} \cdot 10^{-8}$ (2.89) -0.05μ	2.54	3.84
$\phi\gamma$	$+0.08$ $\pm 0.41_f \pm 0.55_{a_2} \pm 0.74_{a_4}$) $\cdot 10^{-9}$ (8.63) -0.13μ		7.12 12.31
$J/\psi \gamma$	$^{+0.39}_{-0.36~\sigma})$ $+0.14$ $\cdot 10^{-8}$ (8.02) $\pm 0.20_f$ -0.15μ	10.48 6.55	
$\Upsilon(1S)\gamma$ (5.39)	$+0.10$ $+0.11$ $\cdot 10^{-8}$ $\pm 0.08_f$ -0.10μ -0.08σ	7.55	4.11
$\Upsilon(4S) \gamma$ (1.22)	$+0.02$ $+0.02$ $\cdot 10^{-8}$ $\pm 0.13_f$ -0.02μ -0.02σ	1.71	\vert 0.93
$\Upsilon(nS) \gamma$ (9.96	$+0.20$ $+0.18$ $\cdot 10^{-8}$ $\pm 0.09_f$ 0.19μ -0.15σ	13.96	7.59

obtained when using only LO hard functions

The $\mathbf{W} \rightarrow \mathbf{M} + \gamma$ decay amplitude

 JG U

The decay $W \to M + \gamma$ is similar to the $Z \to M + \gamma$ decay, except for an additional local contribution:

The form factor decomposition now looks as follows:

$$
i\mathcal{A}(W^+ \to M^+\gamma) = \pm \frac{egf_M}{4\sqrt{2}} V_{ij} \left(i\epsilon_{\mu\nu\alpha\beta} \frac{k^{\mu}q^{\nu}\varepsilon_W^{\alpha\beta}}{k \cdot q} F_1^M - \varepsilon_W^{\perp} \cdot \varepsilon_\gamma^{\perp *} F_2^M \right)
$$
JG U

The decay $W \to M + \gamma$ is similar to the $Z \to M + \gamma$ decay, except for an additional local contribution:

 JG U

The decay $W \to M + \gamma$ is similar to the $Z \to M + \gamma$ decay, except for an additional local contribution:

The form factor decomposition now looks as follows:

$$
i\mathcal{A}(W^+ \to M^+\gamma) = \bigoplus_{\substack{\uparrow \\ \uparrow}} \frac{egf_M}{4\sqrt{2}} V_{ij} \left(i\epsilon_{\mu\nu\alpha\beta} \frac{k^{\mu} q^{\nu} \varepsilon_W^{\alpha} \varepsilon_\gamma^{\ast\beta}}{k \cdot q} F_1^M - \varepsilon_W^{\perp} \cdot \varepsilon_\gamma^{\perp *} F_2^M \right) +
$$
 for pseudoscalar, - for vector

For the branching ratios $W^{\pm} \to M^{\mp} \gamma$, we find:

For the branching ratios $W^{\pm} \to M^{\mp} \gamma$, we find:

flavour off-diagonal mesons allowed

For the branching ratios $W^{\pm} \to M^{\mp} \gamma$, we find:

introduces uncertainties from CKM elements

[Decays of electroweak gauge bosons](#page-47-0) [Z decays as BSM probes](#page-77-0)

Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

 JG U

 JG U

At LEP, $|a_b|$ and $|a_c|$ have been measured to 1%, using our predictions, $|a_s|$, $|a_d|$ and $|a_u|$ could be measured to $\sim 6\%$

At LEP, $|a_b|$ and $|a_c|$ have been measured to 1%, using our predictions, $|a_s|$, $|a_d|$ and $|a_u|$ could be measured to $\sim 6\%$

Introducing FCNC couplings allows the production of flavor off-diagonal mesons

Z → *M* + *γ* **decays as FCNC probes**

Model independent predictions for flavor off-diagonal mesons:

Z → *M* + *γ* **decays as FCNC probes**

JGU

Model independent predictions for flavor off-diagonal mesons:

FCNCs would induce tree-level neutral-meson mixing, strongly constrained:

[Bona et al. (2007), JHEP 0803, 049] [Bertone et al. (2012), JHEP 1303, 089] [Carrasco et al. (2013), JHEP 1403, 016]

These bounds push our branching ratios down to 10^{-14} , rendering them unobservable.

[Decays of electroweak gauge bosons](#page-47-0) [Weak radiative Z decays to M + W](#page-85-0)

Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

The contributing diagrams in this case look similar to the $W \to M\gamma$ decays:

 JG U

Form factor decomposition:

$$
i\mathcal{A}(Z \to M^+ W^-) = \pm \frac{g^2 f_M}{4\sqrt{2}c_W} V_{ij} \left(1 - \frac{m_W^2}{m_Z^2} \right)
$$

$$
\times \left(i\epsilon_{\mu\nu\alpha\beta} \frac{k^{\mu} q^{\nu} \epsilon_Z^{\alpha} \epsilon_W^{\beta\beta}}{k \cdot q} F_1^M - \epsilon_Z \cdot \epsilon_W^* F_2^M + \frac{q \cdot \epsilon_Z k \cdot \epsilon_W^*}{k \cdot q} F_3^M \right)
$$

The contributing diagrams in this case look similar to the $W \to M\gamma$ decays:

Form factor decomposition:

$$
i\mathcal{A}(Z \to M^+ W^-) = \pm \frac{g^2 f_M}{4\sqrt{2}c_W} V_{ij} \left(1 - \frac{m_W^2}{m_Z^2} \right)
$$

$$
\times \left(i\epsilon_{\mu\nu\alpha\beta} \frac{k^{\mu} q^{\nu} \varepsilon_{Z}^{\alpha} \varepsilon_{W}^{\beta}}{k \cdot q} F_1^M - \varepsilon_Z \cdot \varepsilon_W^* F_2^M + \frac{q \cdot \varepsilon_Z k \cdot \varepsilon_W^*}{k \cdot q} F_3^M \right)
$$

now allowed because *W* can be longitudinally polarized

 JG U

The contributing diagrams in this case look similar to the $W \to M\gamma$ decays:

JG U

Form factor decomposition:

$$
i\mathcal{A}(Z \to M^+ W^-) = \pm \frac{g^2 f_M}{4\sqrt{2}c_W} V_{ij} \left(1 - \frac{m_W^2}{m_Z^2} \right)
$$

$$
\times \left(i\epsilon_{\mu\nu\alpha\beta} \frac{k^{\mu} q^{\nu} \epsilon_{Z}^{\alpha} \epsilon_{W}^{\beta}}{k \cdot q} F_1^M - \epsilon_Z \cdot \epsilon_W^* F_2^M + \frac{q \cdot \epsilon_Z k \cdot \epsilon_W^*}{k \cdot q} F_3^M \right)
$$

Allows the QCD factorization approach to be tested at lower scale $(m_Z - m_W) \approx 10$ GeV!

For the decay rates, we find:

$$
\Gamma(Z \to M^+ W^-) = \frac{\pi \alpha^2 (m_Z) f_M^2}{48 m_Z} |V_{ij}|^2 \frac{s_W^2}{c_W^2} \left(\frac{3}{2} + \frac{3}{2} s_W^2 + \frac{227}{180} s_W^4 + 0.003 a_1^M + \ldots\right)
$$

Our predictions for the branching ratios are:

For the decay rates, we find:

$$
\Gamma(Z \to M^+ W^-) = \frac{\pi \alpha^2 (m_Z) f_M^2}{48 m_Z} |V_{ij}|^2 \frac{s_W^2}{c_W^2} \left(\frac{3}{2} + \frac{3}{2} s_W^2 + \frac{227}{180} s_W^4 + \underbrace{0.003 a_1^M}_{\nearrow}\right) + \dots)
$$
\nvery small sensitivity to LCDA

Our predictions for the branching ratios are:

For the decay rates, we find:

$$
\Gamma(Z \to M^+ W^-) = \frac{\pi \alpha^2 (m_Z) f_M^2}{48 m_Z} |V_{ij}|^2 \frac{s_W^2}{c_W^2} \left(\frac{3}{2} + \frac{3}{2} s_W^2 + \frac{227}{180} s_W^4 + \underbrace{0.003 a_1^M}_{\nearrow}\right) + \dots)
$$
\nvery small sensitivity to LCDA

Our predictions for the branching ratios are:

The $\mathcal{O}(\alpha_s)$ corrections to this are an interesting project left for future work, in particular the scale dependence of the result.

[Conclusions, summary and outlook](#page-92-0)

Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

For $Z \to V \gamma \to \mu^+ \mu^- \gamma$, one can trigger on muons and the photon

For $Z \to V \gamma \to \mu^+ \mu^- \gamma$, one can trigger on muons and the photon We expect $\mathcal{O}(100)$ *J*/ $\psi \gamma$ events at the LHC

For $Z \to V \gamma \to \mu^+ \mu^- \gamma$, one can trigger on muons and the photon We expect $\mathcal{O}(100)$ $J/\psi \gamma$ events at the LHC

If Ideas for reconstructing $(\rho, \omega \text{ and } \phi) + \gamma \text{ exist}$

[Kagan et al. (2014), arXiv:1406.1722]

For $Z \to V \gamma \to \mu^+ \mu^- \gamma$, one can trigger on muons and the photon We expect $\mathcal{O}(100)$ $J/\psi \gamma$ events at the LHC

If Ideas for reconstructing $(\rho, \omega \text{ and } \phi) + \gamma \text{ exist}$

[Kagan et al. (2014), arXiv:1406.1722]

Reconstructing *W* decays at the LHC is more challenging \blacksquare

[Mangano, Melia (2014), arXiv:1410.7475]

A few things that I did not talk about today, but are featured in the paper:

In some older papers, the authors speculated about a "possible huge enhancement" of the decays $W, Z \rightarrow P\gamma$ coming from an unsuppressed contribution from the axial anomaly.

[Jacob, Wu (1989), Phys. Lett. B 232, 529]

[Keum,Pham (1994), Mod. Phys. Lett. A 9, 1545]

We find that such claims are false.

A few things that I did not talk about today, but are featured in the paper:

In some older papers, the authors speculated about a "possible huge enhancement" of the decays $W, Z \rightarrow P\gamma$ coming from an unsuppressed contribution from the axial anomaly.

[Jacob, Wu (1989), Phys. Lett. B 232, 529]

[Keum,Pham (1994), Mod. Phys. Lett. A 9, 1545]

We find that such claims are false.

■ We have derived decay constants for several mesons from updated experimental data, decreasing the uncertainty of our predictions.

Decays like the ones considered here provide a new playground to test the QCD factorization approach in a theoretically clean environment.

Decays like the ones considered here provide a new playground to test the QCD factorization approach in a theoretically clean environment.

Precise measurements of branching ratios at the LHC and possible future machines enable us to test couplings in a novel way and can also serve as new physics probes.

Decays like the ones considered here provide a new playground to test the QCD factorization approach in a theoretically clean environment.

Precise measurements of branching ratios at the LHC and possible future machines enable us to test couplings in a novel way and can also serve as new physics probes.

Future work: Lots! The approach can be (and has been) applied to Higgs boson decays. A careful NLO analysis of these decays is work in progress. Also possible: decays with multiple mesons (i.e. $W, Z, h \rightarrow M_1 M_2$)

Decays like the ones considered here provide a new playground to test

Thank you for your attention!

machines enable us to test couplings in a novel way and can also serve as novel way and can also serve as \sim

new physics probes.

Future work: Lots! The approach can be (and has been) applied to Higgs boson decays. A careful NLO analysis of these decays is work in progress. Also possible: decays with multiple mesons (i.e. $W, Z, h \rightarrow M_1 M_2$)