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Motivation

One of the main challenges to particle physics is to obtain rigorous
control about non-perturbative physics in QCD.
For hard exclusive processes with final-state hadrons:

“QCD factorization”
[Brodsky, Lepage (1979), Phys. Lett. B 87, 359]

[Efremov, Radyushkin (1980), Theor. Math. Phys. 42, 97]

Factorization into partonic rates convoluted with light-cone distribution
amplitudes (LCDAs)

Amplitudes will be organized in an expansion in the scale separation

λ ∼ ΛQCD
EM
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Motivation

So far, all applications of QCD factorization were plagued by the fact
that the scale EM was not large enough to ignore power-corrections.

→ Hard to estimate uncertainties from power-corrections and disentangle
them from uncertainties in non-perturbative hadronic parameters

In the decays of heavy bosons W ,Z → M + γ, the characteristic scale is
large compared to ΛQCD

→ power-corrections expected to be small!

Price to pay: Low branching ratios, experimentally extremely challenging
to identify
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Motivation

But: Large rates of electroweak gauge bosons are expected at the
HL-LHC and future machines, opening up the possibility to conduct such
studies:

high-luminosity LHC (3000 fb−1): ∼ 1011 Z bosons, ∼ 5 · 1011 W
bosons
TLEP, dedicated run at Z pole: ∼ 1012 Z bosons per year
LHC: large samples of W bosons in dedicated runs at WW or tt̄
thresholds

[Mangano, Melia (2014), arXiv:1410.7475]
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Motivation

Our interest was raised by recent studies of h → Vγ decays as probes for
non-standard Yukawa couplings

[Isidori, Manohar, Trott (2013), Phys. Lett. B 728, 131]
[Bodwin, Petriello, Stoynev, Velasco (2013), Phys. Rev. D 88, no. 5, 053003]

[Kagan et al. (2014), arXiv:1406.1722]
[Bodwin et al. (2014), arXiv:1407.6695]

And in principle the decays of Z → M + γ could also be used as probe
for flavor-off-diagonal Z couplings.

Based on:

Exclusive Radiative Decays of W and Z Bosons
in QCD Factorization

Yuval Grossman, MK, Matthias Neubert
arXiv:1501.06569
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Outline

1 QCD factorization
The factorization formula
Light cone distributions for mesons

2 Decays of electroweak gauge bosons
Radiative hadronic decays of Z bosons
Radiative hadronic decays of W bosons
Z decays as BSM probes
Weak radiative Z decays to M + W

3 Conclusions, summary and outlook
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QCD factorization
The factorization formula
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The factorization formula

Z0

γ

Z0

γ

In the decays considered, the intermediate fermion propagator is
highly virtual

Soft collinear effective theory allows seperation of scales into
→ the hard scale E
→ and the hadronic scale µ0

[Bauer et al. (2001), Phys. Rev. D 63, 114020]
[Bauer Pirjol, Stewart (2002), Phys. Rev. D 65, 054022]

[Beneke, Chapovsky, Diehl, Feldmann (2002), Nucl. Phys. B 643, 431]
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The factorization formula

Final state meson moving along the direction nµ described by
collinear quark, anti-quark and gluon fields

Scaling of the collinear momenta pc:(
n · pc, n̄ · pc, p⊥c

)
∼ E

(
λ2, 1, λ

)
p2

c ∼ Λ2
QCD , λ ∼ ΛQCD

E
Collinear quark and gluon fields:

Xc = /n /̄n
4 W †

c q Aµc⊥ = W †
c
(
iDµ

c⊥Wc
)

with Wc(x) = P exp

ig
0∫

−∞

dt n̄ ·Ac(x + tn̄)



Very rare, exclusive radiative decays of W and Z bosons in QCD factorization



The factorization formula

Final state meson moving along the direction nµ described by
collinear quark, anti-quark and gluon fields
Scaling of the collinear momenta pc:(

n · pc, n̄ · pc, p⊥c
)
∼ E

(
λ2, 1, λ

)
p2

c ∼ Λ2
QCD , λ ∼ ΛQCD

E

Collinear quark and gluon fields:

Xc = /n /̄n
4 W †

c q Aµc⊥ = W †
c
(
iDµ

c⊥Wc
)

with Wc(x) = P exp

ig
0∫

−∞

dt n̄ ·Ac(x + tn̄)



Very rare, exclusive radiative decays of W and Z bosons in QCD factorization



The factorization formula

Final state meson moving along the direction nµ described by
collinear quark, anti-quark and gluon fields
Scaling of the collinear momenta pc:(

n · pc, n̄ · pc, p⊥c
)
∼ E

(
λ2, 1, λ

)
p2

c ∼ Λ2
QCD , λ ∼ ΛQCD

E
Collinear quark and gluon fields:

Xc = /n /̄n
4 W †

c q Aµc⊥ = W †
c
(
iDµ

c⊥Wc
)

with Wc(x) = P exp

ig
0∫

−∞

dt n̄ ·Ac(x + tn̄)


Very rare, exclusive radiative decays of W and Z bosons in QCD factorization



The factorization formula

The collinear fields are of O(λ) in SCET power-counting
→ contributions with more field operators will always be
power-suppressed

At leading order, the decay amplitude AV→Mγ can be written as:

A =
∑

i

∫
dt Ci(t, µ) 〈M (k)| X̄c(tn̄)

/̄n
2 ΓiXc(0) |0〉+ . . .

=
∑

i

∫
dt Ci(t, µ) 〈M (k)| q̄(tn̄)

/̄n
2 Γi [tn̄, 0]q(0) |0〉+ . . .

〈M | . . . |0〉 = −ifM E
1∫
0

dx eixtn̄·kφM (x, µ) defines the light-cone

distribution amplitude
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The factorization formula

Which of the Dirac structures Γi contributes, depends on the type
of meson and there is exactly one Dirac structure for a given meson.

We denote the corresponding Wilson coefficient by CM (t, µ) and
define the Fourier-transformed Wilson coefficient, called the hard
function, as:

HM (x, µ) =
∫

dt CM (t, µ)eixtn̄·k

The factorization formula now reads:

A = −ifM E
1∫

0

dx HM (x, µ)φM (x, µ) + power
corrections
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The factorization formula

Define: Projectors MM , can be applied to partonic amplitudes directly.

In a practical calculation each Feynman diagram gives an expression of
the form:

ū(k1)A(q, k1, k2)v(k2) = Tr [v(k2)ū(k1)A(q, k1, k2)]

The projection is then:

ū(k1)A(q, k1, k2)v(k2)→
1∫

0

dx Tr [MM (k, x, µ) A(q, k1, k2)]

The projector MM depends on the type of meson (pseudoscalar, vector
meson [longitudinal/tranverse polarization]).
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The factorization formula

For a pseudoscalar meson, the projector to twist-3-order is given by:

MP(k, x, µ) = ifP
4

{
/kγ5φP(x, µ)− µP(µ)γ5

[
φp(x, µ)

−iσµν
kµn̄ν

k · n̄
φ′σ(x, µ)

6 + iσµνkµ
φσ(xµ)

6
∂

∂k⊥ν

]
+ 3-part.

}
where

φp(x, µ) = 1 φσ(x, µ) = 6x(1− x)

when three-particle LCDAs are neglected (Wandzura-Wilczek
approximation).

[Wandzura, Wilczek (1977), Phys. Lett. B 72, 195]
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QCD factorization
Light cone distributions for mesons
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Gegenbauer expansion of the LCDAs

The LCDA can be interpreted as the amplitude for finding a quark
with longitudinal momentum fraction x

Defined by local matrix element (here example for pseudo-scalar)

〈P(k)| q̄(tn̄)
/̄n
2 γ

5 [tn̄, 0]q(0) |0〉 = −ifM E
1∫

0

dx eixtn̄·kφM (x, µ)

For light mesons information about the LCDAs has to be extracted
from lattice QCD or sum rules. For mesons containing a heavy
quark (or for heavy quarkonia), this can be addressed with HQET
(or NRQCD).

Very rare, exclusive radiative decays of W and Z bosons in QCD factorization



Gegenbauer expansion of the LCDAs

The LCDA can be interpreted as the amplitude for finding a quark
with longitudinal momentum fraction x
Defined by local matrix element (here example for pseudo-scalar)

〈P(k)| q̄(tn̄)
/̄n
2 γ

5 [tn̄, 0]q(0) |0〉 = −ifM E
1∫

0

dx eixtn̄·kφM (x, µ)

For light mesons information about the LCDAs has to be extracted
from lattice QCD or sum rules. For mesons containing a heavy
quark (or for heavy quarkonia), this can be addressed with HQET
(or NRQCD).

Very rare, exclusive radiative decays of W and Z bosons in QCD factorization



Gegenbauer expansion of the LCDAs

The LCDA can be interpreted as the amplitude for finding a quark
with longitudinal momentum fraction x
Defined by local matrix element (here example for pseudo-scalar)

〈P(k)| q̄(tn̄)
/̄n
2 γ

5 [tn̄, 0]q(0) |0〉 = −ifM E
1∫

0

dx eixtn̄·kφM (x, µ)

For light mesons information about the LCDAs has to be extracted
from lattice QCD or sum rules. For mesons containing a heavy
quark (or for heavy quarkonia), this can be addressed with HQET
(or NRQCD).

Very rare, exclusive radiative decays of W and Z bosons in QCD factorization



Gegenbauer expansion of the LCDAs

We expand the LCDAs in the basis of Gegenbauer polynomials:

φM (x, µ) = 6x(1− x)
[
1 +

∞∑
n=1

aM
n (µ)C (3/2)

n (2x − 1)
]

where C (α)
n (x) are the Gegenbauer polynomials. The scale-dependence of

the LCDA is in the Gegenbauer moments aM
n (µ)

We need φ at the scale µ ∼ MZ while the aM
n (µ) are obtained at

µ ∼ ΛQCD

→ RG evolution important AND works in our favor
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RG evolution of the LCDAs

The Gegenbauer expansion yields a diagonal scale-evolution of the
coefficients:

aM
n (µ) =

(
αs(µ)
αs(µ0)

)γn/2β0

aM
n (µ0)

Every anomalous dimension γn is strictly positive

⇒ aM
n (µ→∞)→ 0

⇒ φM (x, µ→∞)→ 6x(1− x)
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RG evolution of the LCDAs

a) K LCDA b) J/ψ LCDA c) B LCDA

LCDAs for mesons at different scales, dashed lines: φM (x, µ = µ0), solid
lines: φM (x, µ = mZ ), grey dotted lines: φM (x, µ→∞)

At high scales compared to ΛQCD (e.g. µ ∼ mZ ) the sensitivity to
poorly-known aM

n is greatly reduced!
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Heavy mesons: quarkonia

For heavy quarkonium states M ∼ (QQ̄) the LCDA peaks at x = 1/2. In
the limit of mQ →∞, the width of the LCDA vanishes and
φM → δ(x − 1

2).

Using NRQCD, the LCDA can be related to a local matrix element
[Caswell, Lepage (1986), Phys. Lett. B 167, 437]

[Bodwin, Braaten, Lepage (1995), Phys. Rev. D 51, 1125]

One finds:
1∫

0

dx (2x − 1)2φM (x, µ0) = 〈v
2〉M
3 +O(v4)

[Braguta, Likhoded, Luchinsky (2007), Phys. Lett. B 646, 80]

Our model at the low scale:

φM (x, µ0) = x(1− x) exp
[
−

6(x − 1
2)2

〈v2〉

]
×normalization
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Heavy mesons: heavy-light states

For heavy-light mesons M ∼ (qQ̄), one defines:

1∫
0

dx φM (x, µ0)
x = mM

λM (µ0) + . . .

[Beneke, Buchalla, Neubert, Sachrajda (1999), Phys. Rev. Lett. 83, 1914]

where mM is the meson mass and the parameter λM is a (poorly known)
hadronic parameter and we have to use estimates.

[Braun, Ivanov, Korchemsky (2004), Phy. Rev. D 69, 034014]
[Ball, Jones, Zwicky (2007), Phys. Rev. D 75, 054004]

As model LCDA we employ

φM (x, µ0) = x(1− x) exp
[
−x mM

λM

]
×normalization

[Grozin, Neubert (1997), Phys. Rev. D 55, 272]
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Heavy meson LCDAs and RGE

Heavy meson LCDAs at the low scale µ0 = 1 GeV:

φM (x, µ0) = x(1− x) exp
[
−x mM

λM

]
×normalization

φM (x, µ0) = x(1− x) exp
[
−

6(x − 1
2 )2

〈v2〉

]
×normalization

The Gegenbauer expansion can be inverted to give:

aM
n (x, µ) = 2(2n + 3)

3(n + 1)(n + 2)

1∫
0

dx C (3/2)
n (2x − 1)φM (x, µ)

For light mesons, only the first few moments are known (we use up to
n = 2). For heavy mesons, we calculate the first 20 Gegenbauer
moments to resolve the peak structure of the LCDAs.
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2 )2

〈v2〉

]
×normalization

The Gegenbauer expansion can be inverted to give:

aM
n (x, µ) = 2(2n + 3)

3(n + 1)(n + 2)

1∫
0

dx C (3/2)
n (2x − 1)φM (x, µ)

For light mesons, only the first few moments are known (we use up to
n = 2). For heavy mesons, we calculate the first 20 Gegenbauer
moments to resolve the peak structure of the LCDAs.
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Decays of electroweak gauge bosons
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The Z→M + γ decay amplitude

Diagrams at O(αs):

Z0

γ

Z0

γ

+ analogous QCD corrections for second graph
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The Z → M + γ decay amplitude

Let us go through the steps of the calculation:

Compute the hard interactions at desired loop-order:

Z

γ

xk

x̄k
+

Z

γ

xk

x̄k

iA ∝ q̄(xk)
[
γν
(
vq − aqγ

5
)
/pγµ

]
q(x̄k)κ(x)

x

+ κ(x̄)
x̄ q̄(xk)

[
γµ/p′γν

(
vq − aqγ

5
)]

q(x̄k)

contains O (αs) corrections
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The Z → M + γ decay amplitude

Dirac structure of the amplitude is of the form:

Γ = vqγ
ν
/pγµ − aqγ

ν
/pγµγ5

The leading-twist two-particle projectors are:

MP = i fP
4 φP(x, µ) /kγ5

MV = −i fV
4 φV (x, µ) /k

M⊥V = i f⊥V (µ)
4 φ⊥V (x, µ) /k/εV∗

⊥

At leading twist only P and V‖ allowed! (recall: projecting involves
Tr[M Γ])
Subleading twist contributions strongly power-suppressed!
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The Z → M + γ decay amplitude

At the end of the day, we find:

iA = ± egfM
2 cos θW

[
iεµναβ

kµqνεαZε∗β
γ

k · q FM
1 −

(
εZ · ε∗

γ −
q · εZk · ε∗

γ

k · q

)
FM

2

]

with the form factors

FM
1 = QM

6 [I M
+ (mZ ) + Ī M

+ (mZ )] = QM

∞∑
n=0

C (+)
2n (mZ , µ)aM

2n(µ)

FM
2 = Q

′
M
6 [I M

− (mZ ) + Ī M
− (mZ )] = −Q′M

∞∑
n=0

C (−)
2n+1(mZ , µ)aM

2n+1(µ)

+ for pseudoscalar, - for vector

quark couplings to photon and Z boson

Convolution of LCDA with the hard function:

I M
± (mV ) =

1∫
0

dx H±(x,mV , µ)φM (x, µ)
Sums over even and odd Gegenbauer moments
and a coefficient function C (±)

n (mV , µ)
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The Z → M + γ decay amplitude

Coefficient functions:

C (±)
n (mV , µ) = 1 + CFαs(µ)

4π c(±)
n

(mV
µ

)
+O(α2

s )

with:

c(±)
n

(mV
µ

)
=
[ 2

(n + 1)(n + 2) − 4Hn+1 + 3
](

log m2
V
µ2 − iπ

)

+ 4H 2
n+1 −

4 (Hn+1 − 1)± 1
(n + 1)(n + 2) + 2

(n + 1)2(n + 2)2 − 9

Large logs are resummed to all orders by choosing µ ∼ mZ !
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The Z → M + γ decay amplitude

The combination C (±)
n (mV , µ)aM

n (µ) is formally scale independent!

The form factors become:

ReFM
1 = QM

[
0.94 + 1.05aM

2 (mZ ) + 1.15aM
4 (mZ ) + 1.22aM

6 (mZ ) + . . .
]

= QM
[
0.94 + 0.41aM

2 (µ0) + 0.29aM
4 (µ0) + 0.23aM

6 (µ0) + . . .
]

FM
2 = 0

n = 1 n = 2

LO

NLO

LO

NLO

moments at the high scale

→ sensitivity strongly reduced!
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Results for Z → Mγ

For the branching ratios BR(Z → Mγ) we find:
Z → . . . Branching ratio asym. LO
π0γ (9.80 + 0.09

− 0.14 µ ±0.03f ±0.61a2 ± 0.82a4 ) ·10−12 7.71 14.67
ρ0γ (4.19 + 0.04

− 0.06 µ ±0.16f ±0.24a2 ± 0.37a4 ) ·10−9 3.63 5.68
ωγ (2.89 + 0.03

− 0.05 µ ±0.15f ±0.29a2 ± 0.25a4 ) ·10−8 2.54 3.84
φγ (8.63 + 0.08

− 0.13 µ ±0.41f ±0.55a2 ± 0.74a4 ) ·10−9 7.12 12.31
J/ψ γ (8.02 + 0.14

− 0.15 µ ±0.20f
+ 0.39
− 0.36 σ) ·10−8 10.48 6.55

Υ(1S) γ (5.39 + 0.10
− 0.10 µ ±0.08f

+ 0.11
− 0.08 σ) ·10−8 7.55 4.11

Υ(4S) γ (1.22 + 0.02
− 0.02 µ ±0.13f

+ 0.02
− 0.02 σ) ·10−8 1.71 0.93

Υ(nS) γ (9.96 + 0.18
− 0.19 µ ±0.09f

+ 0.20
− 0.15 σ) ·10−8 13.96 7.59

scale dependence
decay constant

LCDA shape
obtained when using only asymptotic form of LCDA

φM(x) = 6x(1− x)obtained when using only LO hard functions
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The W→M + γ decay amplitude

Very rare, exclusive radiative decays of W and Z bosons in QCD factorization



W → M + γ

The decay W → M + γ is similar to the Z → M + γ decay, except for
an additional local contribution:

W+

γ

W+

γ

W+

γ

The form factor decomposition now looks as follows:

iA(W + → M +γ) = ±egfM
4
√

2
Vij

(
iεµναβ

kµqνεαW ε∗βγ
k · q FM

1 − ε⊥W · ε⊥∗γ FM
2

)

+ for pseudoscalar, - for vector
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Results for W → M + γ

For the branching ratios W± → M∓ γ, we find:

mode Branching ratio asym. LO
π±γ (4.00 + 0.06

− 0.11 µ ± 0.01f ± 0.49a2 ± 0.66a4 ) · 10−9 2.45 8.09
ρ±γ (8.74 + 0.17

− 0.26 µ ± 0.33f ± 1.02a2 ± 1.57a4 ) · 10−9 6.48 15.12
K±γ (3.25 + 0.05

− 0.09 µ ± 0.03f ± 0.24a1 ± 0.38a2 ± 0.51a4 ) · 10−10 1.88 6.38
K∗±γ (4.78 + 0.09

− 0.14 µ ± 0.28f ± 0.39a1 ± 0.66a2 ± 0.80a4 ) · 10−10 3.18 8.47
Dsγ (3.66 + 0.02

− 0.07 µ ± 0.12CKM ± 0.13f
+ 1.47
− 0.82 σ) · 10−8 0.98 8.59

D±γ (1.38 + 0.01
− 0.02 µ ± 0.10CKM ± 0.07f

+ 0.50
− 0.30 σ) · 10−9 0.32 3.42

B±γ (1.55 + 0.00
− 0.03 µ ± 0.37CKM ± 0.15f

+ 0.68
− 0.45 σ) · 10−12 0.09 6.44

flavour off-diagonal mesons allowedintroduces uncertainties from CKM elements
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Decays of electroweak gauge bosons
Z decays as BSM probes
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Z → M + γ decays as BSM probes

Our analysis can straight-forwardly be generalized to the case of non-SM
Z boson couplings to quarks!

Z0

γ

Z0

γ

At LEP, |ab| and |ac| have been measured to 1%, using our predictions,
|as|, |ad | and |au | could be measured to ∼ 6%

FCNC FCNC

Introducing FCNC couplings allows the production of flavor off-diagonal
mesons

Very rare, exclusive radiative decays of W and Z bosons in QCD factorization



Z → M + γ decays as BSM probes

Our analysis can straight-forwardly be generalized to the case of non-SM
Z boson couplings to quarks!

Z0

γ

Z0

γ

At LEP, |ab| and |ac| have been measured to 1%, using our predictions,
|as|, |ad | and |au | could be measured to ∼ 6%

FCNC FCNC

Introducing FCNC couplings allows the production of flavor off-diagonal
mesons

Very rare, exclusive radiative decays of W and Z bosons in QCD factorization



Z → M + γ decays as BSM probes

Our analysis can straight-forwardly be generalized to the case of non-SM
Z boson couplings to quarks!

Z0

γ

Z0

γ

At LEP, |ab| and |ac| have been measured to 1%, using our predictions,
|as|, |ad | and |au | could be measured to ∼ 6%

FCNC FCNC

Introducing FCNC couplings allows the production of flavor off-diagonal
mesons

Very rare, exclusive radiative decays of W and Z bosons in QCD factorization



Z → M + γ decays as BSM probes

Our analysis can straight-forwardly be generalized to the case of non-SM
Z boson couplings to quarks!

Z0

γ

Z0

γ

At LEP, |ab| and |ac| have been measured to 1%, using our predictions,
|as|, |ad | and |au | could be measured to ∼ 6%

FCNC FCNC

Introducing FCNC couplings allows the production of flavor off-diagonal
mesons

Very rare, exclusive radiative decays of W and Z bosons in QCD factorization



Z → M + γ decays as FCNC probes

Z0

γ

Z0

γ

Model independent predictions for flavor off-diagonal mesons:
Decay mode Branching ratio SM background

Z0 → K0γ
[
(7.70± 0.83) |vsd |2 + (0.01± 0.01) |asd |2

]
· 10−8 λ

sin2 θW
α
π
∼ 2 · 10−3

Z0 → D0γ
[
(5.30 + 0.67

− 0.43) |vcu |2 + (0.62 + 0.36
− 0.23) |acu |2

]
· 10−7 λ

sin2 θW
α
π
∼ 2 · 10−3

Z0 → B0γ
[
(2.08 + 0.59

− 0.41) |vbd |2 + (0.77 + 0.38
− 0.26) |abd |2

]
· 10−7 λ3

sin2 θW
α
π
∼ 8 · 10−5

Z0 → Bsγ
[
(2.64 + 0.82

− 0.52) |vbs|2 + (0.87 + 0.51
− 0.33) |abs|2

]
· 10−7 λ2

sin2 θW
α
π
∼ 4 · 10−4

Z0
W

W

γ

Z0

γ

W
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Z → M + γ decays as FCNC probes

FCNCs would induce tree-level neutral-meson mixing, strongly
constrained:∣∣Re

[
(vsd ± asd)2

]∣∣ < 2.9 · 10−8
∣∣Re
[
(vsd)2 − (asd)2

]∣∣ < 3.0 · 10−10∣∣Im[(vsd ± asd)2
]∣∣ < 1.0 · 10−10

∣∣Im[(vsd)2 − (asd)2
]∣∣ < 4.3 · 10−13∣∣(vcu ± acu)2

∣∣ < 2.2 · 10−8
∣∣(vcu)2 − (acu)2

∣∣ < 1.5 · 10−8∣∣(vbd ± abd)2
∣∣ < 4.3 · 10−8

∣∣(vbd)2 − (abd)2
∣∣ < 8.2 · 10−9∣∣(vbs ± abs)2

∣∣ < 5.5 · 10−7
∣∣(vbs)2 − (abs)2

∣∣ < 1.4 · 10−7

[Bona et al. (2007), JHEP 0803, 049]
[Bertone et al. (2012), JHEP 1303, 089]

[Carrasco et al. (2013), JHEP 1403, 016]

These bounds push our branching ratios down to 10−14, rendering them
unobservable.
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Decays of electroweak gauge bosons
Weak radiative Z decays to M + W
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The Z → M + W decay

The contributing diagrams in this case look similar to the W → Mγ
decays:

Z0

W−

Z0

W−

Z0

W−

Form factor decomposition:

iA(Z → M +W−) =± g2fM

4
√

2cW
Vij

(
1− m2

W
m2

Z

)
×
(

iεµναβ
kµqνεαZε

∗β
W

k · q FM
1 − εZ · ε∗W FM

2 + q · εZ k · ε∗W
k · q FM

3

)

now allowed because W can be longitudinally polarizedAllows the QCD factorization approach to be tested at lower scale
(mZ −mW ) ≈ 10 GeV!
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Results for Z → M + W

For the decay rates, we find:

Γ(Z → M +W−) = πα2(mZ )f 2
M

48mZ
|Vij |2

s2
W

c2
W

(3
2 + 3

2 s2
W + 227

180 s4
W + 0.003aM

1 + . . .
)

Our predictions for the branching ratios are:

Decay mode Branching ratio
Z 0 → π±W∓ (1.51± 0.005f ) · 10−10

Z 0 → ρ±W∓ (4.00± 0.15f ) · 10−10

Z 0 → K±W∓ (1.16± 0.01f ) · 10−11

Z 0 → K ∗±W∓ (1.96± 0.12f ) · 10−11

Z 0 → DsW∓ (6.04± 0.20CKM ± 0.22f ) · 10−10

Z 0 → D±W∓ (1.99± 0.14CKM ± 0.10f ) · 10−11

The O(αs) corrections to this are an interesting project left for future
work, in particular the scale dependence of the result.

very small sensitivity to LCDA
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Conclusions, summary and outlook

To summarize:
Decay mode Branching ratio Decay mode Branching ratio
Z 0 → π0γ (9.80± 1.03) · 10−12 W± → π±γ (4.00± 0.83) · 10−9

Z 0 → ρ0γ (4.19± 0.47) · 10−9 W± → ρ±γ (8.74± 1.91) · 10−9

Z 0 → ωγ (2.89± 0.41) · 10−8 W± → K±γ (3.25± 0.69) · 10−10

Z 0 → φγ (8.63± 1.01) · 10−9 W± → K∗±γ (4.78± 1.15) · 10−10

Z 0 → J/ψ γ (8.02± 0.45) · 10−8 W± → Dsγ (3.66 + 1.49
− 0.85) · 10−8

Z 0 → Υ(1S) γ (5.39± 0.16) · 10−8 W± → D±γ (1.38 + 0.51
− 0.33) · 10−9

Z 0 → Υ(4S) γ (1.22± 0.13) · 10−8 W± → B±γ (1.55 + 0.79
− 0.60) · 10−12

For Z → Vγ → µ+µ−γ, one can trigger on muons and the photon

We expect O(100) J/ψ γ events at the LHC
Ideas for reconstructing (ρ, ω and φ) + γ exist

[Kagan et al. (2014), arXiv:1406.1722]

Reconstructing W decays at the LHC is more challenging
[Mangano, Melia (2014), arXiv:1410.7475]
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Conclusions and outlook

A few things that I did not talk about today, but are featured in the
paper:

In some older papers, the authors speculated about a “possible huge
enhancement” of the decays W , Z → Pγ coming from an
unsuppressed contribution from the axial anomaly.

[Jacob, Wu (1989), Phys. Lett. B 232, 529]

[Keum,Pham (1994), Mod. Phys. Lett. A 9, 1545]

We find that such claims are false.

We have derived decay constants for several mesons from updated
experimental data, decreasing the uncertainty of our predictions.
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Conclusions and outlook

We have derived predictions for the decay rates of exclusive radiative
decays V → M + γ in the framework of QCD factorization. The
branching ratios are small, between O(10−12) to O(10−9).

Decays like the ones considered here provide a new playground to test
the QCD factorization approach in a theoretically clean environment.

Precise measurements of branching ratios at the LHC and possible future
machines enable us to test couplings in a novel way and can also serve as
new physics probes.

Future work: Lots! The approach can be (and has been) applied to Higgs
boson decays. A careful NLO analysis of these decays is work in progress.
Also possible: decays with multiple mesons (i.e. W ,Z , h → M1M2)

Thank you for your attention!

Very rare, exclusive radiative decays of W and Z bosons in QCD factorization



Conclusions and outlook

We have derived predictions for the decay rates of exclusive radiative
decays V → M + γ in the framework of QCD factorization. The
branching ratios are small, between O(10−12) to O(10−9).

Decays like the ones considered here provide a new playground to test
the QCD factorization approach in a theoretically clean environment.

Precise measurements of branching ratios at the LHC and possible future
machines enable us to test couplings in a novel way and can also serve as
new physics probes.

Future work: Lots! The approach can be (and has been) applied to Higgs
boson decays. A careful NLO analysis of these decays is work in progress.
Also possible: decays with multiple mesons (i.e. W ,Z , h → M1M2)

Thank you for your attention!

Very rare, exclusive radiative decays of W and Z bosons in QCD factorization



Conclusions and outlook

We have derived predictions for the decay rates of exclusive radiative
decays V → M + γ in the framework of QCD factorization. The
branching ratios are small, between O(10−12) to O(10−9).

Decays like the ones considered here provide a new playground to test
the QCD factorization approach in a theoretically clean environment.

Precise measurements of branching ratios at the LHC and possible future
machines enable us to test couplings in a novel way and can also serve as
new physics probes.

Future work: Lots! The approach can be (and has been) applied to Higgs
boson decays. A careful NLO analysis of these decays is work in progress.
Also possible: decays with multiple mesons (i.e. W ,Z , h → M1M2)

Thank you for your attention!

Very rare, exclusive radiative decays of W and Z bosons in QCD factorization



Conclusions and outlook

We have derived predictions for the decay rates of exclusive radiative
decays V → M + γ in the framework of QCD factorization. The
branching ratios are small, between O(10−12) to O(10−9).

Decays like the ones considered here provide a new playground to test
the QCD factorization approach in a theoretically clean environment.

Precise measurements of branching ratios at the LHC and possible future
machines enable us to test couplings in a novel way and can also serve as
new physics probes.

Future work: Lots! The approach can be (and has been) applied to Higgs
boson decays. A careful NLO analysis of these decays is work in progress.
Also possible: decays with multiple mesons (i.e. W ,Z , h → M1M2)

Thank you for your attention!

Very rare, exclusive radiative decays of W and Z bosons in QCD factorization



Conclusions and outlook

We have derived predictions for the decay rates of exclusive radiative
decays V → M + γ in the framework of QCD factorization. The
branching ratios are small, between O(10−12) to O(10−9).

Decays like the ones considered here provide a new playground to test
the QCD factorization approach in a theoretically clean environment.

Precise measurements of branching ratios at the LHC and possible future
machines enable us to test couplings in a novel way and can also serve as
new physics probes.

Future work: Lots! The approach can be (and has been) applied to Higgs
boson decays. A careful NLO analysis of these decays is work in progress.
Also possible: decays with multiple mesons (i.e. W ,Z , h → M1M2)

Thank you for your attention!

Very rare, exclusive radiative decays of W and Z bosons in QCD factorization


	QCD factorization
	The factorization formula
	Light cone distributions for mesons

	Decays of electroweak gauge bosons
	Radiative hadronic decays of Z bosons
	Radiative hadronic decays of W bosons
	Z decays as BSM probes
	Weak radiative Z decays to M + W

	Conclusions, summary and outlook

