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Total Scattering Cross 
Sections in QFT

Consider the total scattering cross section for neutral particles

�(s) =

Z
d�

dt
dt

This integral is dominated by 
the region t ⌧ s

some measure of traverse momentum 
transfer at intermediate stage of calculation

t



Power Counting Exercise

Break up integral into regions with 
distinct power counting parameters

t ⌧ s � ⌘ t/s

s ⇠ t � ⇤ � ⌘ ⇤/(t, s) SCET-I,II

SCETII-like

1:

2:

Consider region 1: There must exist some underlying hard event 
which must be integrated out generating some higher 

dimensional  external operator 

S ⇠ C(s, t)

Z
d

4
x⇠̄n⇠n̄⇠̄n1⇠n2 ⇠ �

4



Region 2:    No underlying  hard  interaction, at the scale     
generate the interaction

t

(�n,�m,�) : (m+ n) � 3

“Glauber” mode

S ⇠
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2 ⇠ 1

SCET formalism is lacking a treatment of a 
nettlesome mode 

s

t The Glauber mode
pµg ⇠ (�2,�2,�)

n

n̄

Og = g2

~p2
?
(⇠̄n

n̄/
2 ⇠n)(⇠n̄

n/
2 ⇠n̄)

Contributes at leading order to action, 
threatens factorization.
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The initial state of the incoming nucleus is defined as |A; p⟩. The general final hadronic or partonic state is defined
as |X⟩. As a result, the semi-inclusive hadronic tensor may be defined as

Wµν=
∑

X

(2π4)δ4(q+PA−pX)⟨A; p|Jµ(0)|X⟩⟨X |Jν(0)|A; p⟩ = 2Im

[
∫

d4yeiq·y⟨A; p|Jµ(y)Jν(0)|A; p⟩
]

, (32)

where the sum (
∑

X) runs over all possible hadronic states and Jµ is the hadronic electromagnetic current i.e.,
Jµ = Qq ξ̄n̄γµξn, where Qq is the charge of a quark of flavor q in units of the positron charge e. It is understood
that the factors of the electromagnetic coupling constant have already been extracted and included in Eq. (30). The
leptonic tensor will not be discussed further. The focus in the remaining shall lie exclusively on the hadronic tensor.

In a full QCD calculation of Eq. (32), one computes the hadronic tensor, order by order, in the strong coupling.
This leads to the introduction of a variety of processes leading to a modification of the structure of the jet. Such
processes include radiative branchings, flavor changes of propagating partons, as well as transverse diffusion of the
partons in the shower which ensues from the quark produced in the hard scattering. In this article, we will focus
solely on the processes which lead to the transverse momentum diffusion or transverse broadening of the produced
hard quark.

In Ref. [30], the leading contributions to transverse broadening without induced radiation, at all orders in coupling,
were identified as those of Fig. 5. These diagrams depict processes where the propagating parton engenders multiple
scattering off the glue field inside the various nucleons through which it propagates. However, scatterings do not
change the small off-shellness of the propagating parton; as a result, large transverse momentum radiations do not
occur. Using simple kinematics, the relation between the momentum components of the glue field ki may be surmised
by insisting that the off-shellness of the i + 1th quark line be of the same order as the ith line,

(p + ki)
2 = p2 + k2

i + 2p+k−
i + 2p−k+

i − 2p⃗⊥ · k⃗i
⊥. (33)

Insisting that (p+ki)2 ∼ p2 ∼ λ2Q2 and given the known scaling of the quark momenta (i.e., p+ ∼ λ2Q, p− ∼ Q, p⃗⊥ ∼
λQ), we obtain that k⃗i

⊥ ∼ λQ, k+
i ∼ λ2Q and k−

i may scale with a range of different choices Q, λQ, λ2Q etc. The first
two cases for the scaling of k− represent gluons which are emanated with large (−)-momentum from a nucleon moving
with large (+)-momentum. The number of such gluons must be vanishingly small. The first non-trivial population of
gluons emanating from a nucleon moving with a large (+)-momentum, are those which scale as k ∼ [λ2, λ2, λ], which
essentially constitute the Glauber sector.
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FIG. 5: An order n diagram which contributes solely to transverse broadening.

Using the Feynman rules derived for Glauber gluons in section 2, the leading component of nth order diagrams such

e� + nucleus� e� + Jet(k⇥) + X

�

�
�
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If there were no hard interaction then 
Glauber is responsible for forward scattering, 

so Glaubers must form a phase in hard 
collisions

� Propagators
�

dnk�
(2�)n
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k2
�(q� � k�)2

�
dnk�dn⇥�
(2�)(2n)

1
k2
�(⇥� � k�)2(q� � ⇥�)2

1
q2
�

i⌅̃G = i �s e⇥�E 2�2⇥�(�⇥) µ2⇥|x⇥|2⇥
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��
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1
(m + 1)!

(i�̃G)m+1 = ei�̃G � 1+ + + . . .
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⇥
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• Abelian Eikonal Phase

(Work in progress with I. 
Stewart)

“V ” ⇠ �(x+)�(x�) log(x
2
?) Strong analogy with NRQCD, Coulomb 

kernel is dressed by soft gluons

Note that while this operator is at the 
heart of region 2, it also exists at leading 

order in region 1, where it plants the 
seed of doubt on factorization proofs.



Note: no hard interactions to all orders in 
perturbation theory. The scale         

          
   plays no dynamical role.

s = (p1 + p2)
2

Consider the dressing of the Glauber 
kernel by soft gluons

M ⇠ f(s/t, t/m2)

t
The scale s can only show up in logs:

RG can not hope to capture the logs, need RRG

log(p+/⌫) + log(p�/⌫) + log(t/⌫2) = log(s/t)

F (s/t) ⇠ (s/t)� Regge behaviour

k+

k�

Q

�Q

�2Q

�2Q �Q Q

n-coll.

n̄-coll.

soft
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FIG. 4. Tree level matching for the nnn̄n̄ Glauber operators. In a) we show the four full QCD graphs

with t-channel singularites. The matching results are given by reading down each column. In b) we show

the corresponding Glauber operators for the four operators in SCET with two equivalent notations. The

notation with the dotted line in c) emphasizes the factorized nature of the n and n̄ sectors in the SCET

Glauber operators, which have a 1/P2
? between them denoted by the dashed line.

scattering process, so we take ?-polarization for the external gluon fields. Expanding in � the

results for the top row of diagrams at leading order is

i
h

ūn
n̄/

2
TBun

ih�8⇡↵s(µ)�BC

~q 2

?

ih

v̄n̄
n/

2
TCvn̄

i

, (27)

i
h

ifBA3A2gµ2µ3
? n̄ · p

2

ih�8⇡↵s(µ)�BC

~q 2

?

ih

v̄n̄
n/

2
TCvn̄
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,
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h
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~q 2
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ih

ifCA4A1gµ1µ4
? n · p
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,
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h

ifBA3A2gµ2µ3
? n̄ · p
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ih�8⇡↵s(µ)�BC

~q 2

?

ih

ifCA4A1gµ1µ4
? n · p

1

i

.

In writting these results we have written out the collinear quark spinors but left o↵ the collinear

gluon polarization vectors "µ2A2
n (p

2

) etc, for simplicity.

We begin our analysis by discussing the SCET
II

operators whose tree level matrix elements

reproduce the results in Eq. (27). The four SCET
II

operators whose matrix elements reproduce

Eq. (27) factorize into collinear and soft operators separated by 1/P2

? factors, so we adopt the

notation:

Oqq
nsn̄ = OqB

n

1

P2

?
OBC

s

1

P2

?
OqC

n̄ , Ogq
nsn̄ = OgB

n

1

P2

?
OBC

s

1

P2

?
OqC

n̄ ,

Oqg
nsn̄ = OqB

n

1

P2

?
OBC

s

1

P2

?
OgC

n̄ , Ogg
nsn̄ = OgB

n

1

P2

?
OBC

s

1

P2

?
OgC

n̄ . (28)

On the left-hand side the subscripts indicate that these operators involve three sectors {n, s, n̄},
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FIG. 4. Tree level matching for the nnn̄n̄ Glauber operators. In a) we show the four full QCD graphs

with t-channel singularites. The matching results are given by reading down each column. In b) we show

the corresponding Glauber operators for the four operators in SCET with two equivalent notations. The

notation with the dotted line in c) emphasizes the factorized nature of the n and n̄ sectors in the SCET

Glauber operators, which have a 1/P2
? between them denoted by the dashed line.
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In writting these results we have written out the collinear quark spinors but left o↵ the collinear

gluon polarization vectors "µ2A2
n (p

2

) etc, for simplicity.

We begin our analysis by discussing the SCET
II

operators whose tree level matrix elements

reproduce the results in Eq. (27). The four SCET
II

operators whose matrix elements reproduce

Eq. (27) factorize into collinear and soft operators separated by 1/P2

? factors, so we adopt the

notation:

Oqq
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n̄ , Ogq
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On the left-hand side the subscripts indicate that these operators involve three sectors {n, s, n̄},

Operator 
basis:

OBC
s = 8⇡↵sP2

?�
BC + ....

19

while the first and second superscript determine whether we take a quark or gluon operator in the

n-collinear or n̄-collinear sectors. Without soft gluons we have OBC
s = �BCP2

?.

The n-collinear quark and gluon terms, which occur in the first square bracket in each of the

four terms in Eq. (27), are matrix elements of the n-collinear operators

OqB
n = �n,!T

B n̄/

2
�n,! , OgB

n =
i

2
fBCDBC

n?µ,�! n̄ · (P+P†)BDµ
n?,! . (29)

Here the ! momentum labels ensure that the operators only pick out the forward contribution

where the large momentum of the n-collinear fields is conserved within the n-collinear operators,

and for the gluon operator we will always take ! > 0 (which avoids the need to worry about the

symmetry factor obtained when the two Bn?s are swapped). The n̄-collinear quark and gluon

terms appear as the contributions in the last square brackets of the four terms Eq. (27), and are

matrix elements of the operators,

OqB
n̄ = �n̄,!0TB n/

2
�n̄,!0 , OgB

n̄ =
i

2
fBCDBC

n̄?µ,�!0 n · (P+P†)BDµ
n̄?,!0 , (30)

where for the gluon operator we take !0 > 0. From Eqs. (29) and (30) we see that the n-collinear

and n̄-collinear results are the same, just with n $ n̄. These collinear operators are bilinears of the

fundamental quark and gluon gauge invariant building block operators in SCET. Furthermore, both

of these operators are octet combinations of the building blocks. The special condition imposed by

forward scattering kinematics is that these bilinears have a conserved momentum in one component

(we leave this as implicit in our definitions in Eqs. (29) and (30) since further subscripts would

be needed to indicate it explicitly). The tree level matching that yields the proper Wilson line

structure in the operators in Eqs. (29) and (30) is actually non-trivial due to operator mixing, and

is described in detail in Sec. III A.

The middle terms in square brackets in Eq. (27), those involving ↵s, do not have objects like

polarization vectors or spinors that correspond to external lines. Nevertheless, they are actually

matrix elements of a soft operator which involves soft gluon fields as well as soft Wilson lines.

Accounting for the the 1/P2

? factors in Eq. (28) these operators must reduce to 8⇡↵sP2

? when all

soft fields are turned o↵. The full soft operators are derived in Sec. III B and we obtain

OBC
s = 8⇡↵s

⇢

Pµ
?ST

n Sn̄P?µ � P?
µ g eBnµ

S?ST
n Sn̄ � ST

n Sn̄g eBn̄µ
S?P?

µ � g eBnµ
S?ST

n Sn̄g eBn̄
S?µ

� nµn̄⌫

2
ST
n ig eG

µ⌫
s Sn̄

�BC

. (31)

Here the Sn and Sn̄ Wilson lines are in the adjoint representation as described near Eq. (14) and

the other field objects eBn
S?, eBn̄

S?, and eGs are matrices in the adjoint space as in Eq. (20). The

adjoint soft Wilson lines Sn and Sn̄ are generated from integrating out soft interactions with the n

and n̄ collinear fields which lead to momenta p2 ⇠ Q2� � Q2�2. They are necessary to maintain

soft gauge invariance. The operator in Eq. (31) is gauge invariant under soft gauge transformations

Must allow for soft 
emission
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FIG. 8. Tree level matching for the nnss Glauber operators. In a) we show the four full QCD graphs with

t-channel singularites. The matching results are given by reading down each column. In b) we show the

corresponding Glauber operators in SCET.

Os ⇠ �2. Thus together the operators in Eq. (28) scale overall as Oij ⇠ �2. As we will see below in

Sec. II E, for this type of Glauber operator this scaling yields contributions that are leading order

in the power counting for both forward scattering and for hard scattering processes. Therefore the

operators in Eq. (28) contribute to the leading order Lagragian in SCET. Due to our normalization

of OBC
s the tree level Wilson coe�cient for all four of these operators are 1. These are the first

four terms appearing in our Glauber Lagrangian, and we can summarize our matching result, and

extend it to other pairs of distinct collinear sectors by writing

LII(0)

G =
X

n,n̄

X

i,j=q,g

OiB
n

1

P2

?
OBC

s

1

P2

?
OjC

n̄ + . . . , (32)

where the ellipses denote additional terms involving rescattering of soft fields to be discussed below.

In the sum we consider both n and n̄ to be collinear labels for distinct sectors.

2. Soft-Collinear Scattering

An analogous matching calculation can be done for the forward scattering between soft and

n-collinear fields. We show the diagrams for this matching calculation in Fig. 8 and label the

momenta for this calculation as q(pn
2

) + q̄(pS
1

) ! q(pn
3

) + q̄(pS
4

). We use an analagous labelling for

the cases with gluons. Here the large O(�0) n-collinear momentum is conserved as before. Since

the soft momenta n · p
1,4 ⇠ � � n · p

2,3 ⇠ �2 they are also conserved by the exchanged Glauber

gluon, so we again have forward scattering with

n · p
1

= n · p
4

, n̄ · p
2

= n̄ · p
3

. (33)

The ?-momenta are the same size here as in the n-n̄ scattering case, and we follow again the con-

vention that p?
1

= �p?
4

= p?
3

= �p?
2

= q?/2. Once again, we should consider a physical scattering

process to carry out the matching so we take the gluons to have ? polarizations. Computing the
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full QCD graphs in Fig. 8a and expanding in � gives

i
h

ūn
n̄/

2
TBun

ih�1

~q 2

?

ih

8⇡↵sv̄s
n/

2
TBvs

i

, (34)

i
h

ifBA3A2gµ2µ3
? n̄ · p

2
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~q 2
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ih

8⇡↵sv̄s
n/
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TBvs

i

, i
h

ūn
n̄/
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~q 2
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ih
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? n · p
1

i
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i
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ifBA3A2gµ2µ3
? n̄ · p

2

ih�1

~q 2

?

ih

8⇡↵sif
BA4A1gµ1µ4

? n · p
1

i

.

Thus despite the di↵erences in the scaling of momenta, the results for the n-s scattering are

essentially the same as for the n-n̄ scattering given above in Eq. (27). The reason for this is

that the comparison of light-cone momenta in these two cases is the same, the n̄ · p momenta are

largest for the n-collinear particles, and the n · p momenta are larger for the n̄ or soft particles

than they are for the n-collinear particles. For the four SCET operators that are responsible for

forward scattering of soft with n-collinear particles we write operators with n-collinear and soft

components separated by a 1/P2

? factor

Oqq
ns = OqB

n

1

P2

?
OqnB

s , Oqg
ns = OqB

n

1

P2

?
OgnB

s , Ogq
ns = OgB

n

1

P2

?
OqnB

s , Ogg
ns = OgB

n

1

P2

?
OgnB

s . (35)

The structure of soft Wilson lines in OqnB
s and OgnB

s is determined by the direction of the collinear

fields, explaining why we add the additional subscript n to the quark and gluon superscripts: qn

and gn. The SCET operators which reproduce the result in Eq. (34) again involve OqB
n or OgB

n

from Eq. (29) for the n-collinear sector terms in the left-most square brackets, just as was the case

for reproducing Eq. (27). For the soft-collinear scattering there does not exist a set of fields that

are between these sectors in rapidity, hence here there is no analog of the soft operator with two

adjoint indices in Eq. (32), and the 1/P2

? gives the central terms in square brackets in Eq. (34).

The remaining right most terms in square brackets are reproduced by the soft quark and gluon

operators:

OqnB
s = 8⇡↵s

⇣

 ̄n
S TB n/

2
 n
S

⌘

,

OgnB
s = 8⇡↵s

⇣ i

2
fBCDBnC

S?µ n · (P+P†)BnDµ
S?

⌘

. (36)

Here the soft fields with n superscripts carry Sn Wilson lines and were defined in Eqs. (12) and (16)

above. The appearance of the adjoint Wilson line SnTBS†
n = SBC

n TC is necessary to preserve soft

gauge invariance, and we will see in Sec. III A that they arise from integrating out soft attachments

to the n collinear lines. By convention we group the gauge coupling with the soft component of

the operator. Due to our normalization conventions the total operators in Eq. (35) have Wilson

coe�cients that are 1 at tree level. To derive the scaling of the operators we note that OiB
n ⇠ �2,

and OiB
s ⇠ �3, so with the 1/P2

? ⇠ ��2 we have the total scaling Oij
ns ⇠ �3. This is the correct

scaling for a mixed n-s Glauber operator that contributes at leading power in the SCET Lagrangian

as shown below in Sec. II E.

Matching is identical to the collinear-collinear 
case 
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gauge invariance, and we will see in Sec. III A that they arise from integrating out soft attachments

to the n collinear lines. By convention we group the gauge coupling with the soft component of

the operator. Due to our normalization conventions the total operators in Eq. (35) have Wilson

coe�cients that are 1 at tree level. To derive the scaling of the operators we note that OiB
n ⇠ �2,

and OiB
s ⇠ �3, so with the 1/P2

? ⇠ ��2 we have the total scaling Oij
ns ⇠ �3. This is the correct

scaling for a mixed n-s Glauber operator that contributes at leading power in the SCET Lagrangian

as shown below in Sec. II E.
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If there is another collinear sector, such as our n̄, then there will be a set of soft-n̄ scattering

operators analogous to Eq. (35), which we can simply obtain by taking n $ n̄ in the above analysis.

This gives

Oqq
n̄s = OqB

n̄
1

P2

?
Oqn̄B

s , Oqg
n̄s = OqB

n̄
1

P2

?
Ogn̄B

s , Ogq
n̄s = OgB

n̄
1

P2

?
Oqn̄B

s , Ogg
n̄s = OgB

n̄
1

P2

?
Ogn̄B

s , (37)

which now involve the n̄-collinear bilinear operators in Eq. (30), and the soft operators

Oqn̄B
s = 8⇡↵s

⇣

 ̄n̄
S TB n̄/

2
 n̄
S

⌘

,

Ogn̄B
s = 8⇡↵s

⇣ i

2
fBCDBn̄C

S?µ n̄ · (P+P†)Bn̄Dµ
S?

⌘

, (38)

where the fields  n̄
s and Bn̄Dµ

S? can be found in Eqs. (12) and (16). Once again with our conventions

these operators have tree level Wilson coe�cients equal to 1.

Considering all terms which cause scattering between either colllinear or soft fields we can write

the full Glauber Lagrangian for SCET
II

as

LII(0)

G =
X

n,n̄

X

i,j=q,g

Oij
nsn̄ +

X

n

X

i,j=q,g

Oij
ns

⌘
X

n,n̄

X

i,j=q,g

OiB
n

1

P2

?
OBC

s

1

P2

?
OjC

n̄ +
X

n

X

i,j=q,g

OiB
n

1

P2

?
OjnB

s . (39)

In SCET
I

these Glauber operators are the same as in SCET
II

, so

LI(0)

G = LII(0)

G . (40)

However due to the appearance of ultrasoft fields, and the di↵erences between how momentum

sectors are separated the precise behavior of these operators in loop diagrams will in general be

di↵erent. We will see this explicitly in our one-loop matching calculations in Secs. IVA and ??.

3. Matching for All Polarizations

For completeness, we can also repeat the matching calculations involving external gluons with

arbitrary external polarizations. This amounts to not specifying a specific basis for the physical

states, and allows us to see how the scattering with non-transverse polarizations are matched by

the EFT. To carry out this calculation it is important to use the equations of motion to simplify

the gluon matrix elements. For a full theory scattered gluon of momentum p the equations of

motion imply p2 = 0 as well as

0 = pµAµ(p) =
1

2
n̄ · p n·A(p) +

1

2
n · p n̄·A(p) + p? ·A?(p) . (41)

As an explicit example we consider the two-gluon two-quark matching calculation given by the

diagrams shown in Fig. 12. Since the Glauber operator Ogq
n̄s obviously only yields n̄ · A and A?

Final Glauber action

Three rapidity 
sectors

Two rapidity 
sectors



The form of the collinear operators are fixed but the 
soft can have a much more general form

Need to match up to 2 gluons to fix all 
of the coefficients

51

All together the 10 operators in Eqs. (91,93,96,97) give a complete basis for the soft operator

OAB
s . Note that the odd and even operators in the basis are related by Oi+1

= Oi

�

�

n$n̄
, and that

this di↵ers from the hermiticity condition in Eq. (89). In the next section we consider the con-

straints obtained by matching with up to two soft external gluons in order to fix the corresponding

coe�cients C
1,...,10 in Eq. (87).

Summary of operators:

O
1

= Pµ
?ST

n Sn̄P?µ

O
2

= Pµ
?ST

n̄ SnP?µ

O
3

= P? ·(g eBn
S?)(ST

n Sn̄) + (ST
n Sn̄)(g eBn̄

S?)·P?

O
4

= P? ·(g eBn̄
S?)(ST

n̄ Sn) + (ST
n̄ Sn)(g eBn

S?)·P?

O
5

= P?
µ (ST

n Sn̄)(g eBn̄µ
S?) + (g eBnµ

S?)(ST
n Sn̄)P?

µ

O
6

= P?
µ (ST

n̄ Sn)(g eBnµ
S?) + (g eBn̄µ

S?)(ST
n̄ Sn)P?

µ

O
7

= (gBnµ
S?)S

T
n Sn̄(gBn̄

S?µ)

O
8

= (gBn̄µ
S?)S

T
n̄ Sn(gBn

S?µ)

O
9

= ST
n nµn̄⌫(ig eG

µ⌫
s )Sn̄

O
10

= ST
n̄ nµn̄⌫(ig eG

µ⌫
s )Sn

F. Matching with up to Two Soft Gluons (NEW)

Here we consider the basis of operators O
1,...,10 given above in Eqs.(91,93,96,97), and determine

the corresponding Wilson coe�cients through matching calculations involving 0, 1, or 2 soft gluons.

For this analysis it su�ces to consider only quarks for the n-collinear and n̄-collinear external lines.

With zero soft gluons the resulting amplitude was given in Eq. (27), and requires that the

soft operators
P

iCiOi reduce to P2

?�
AB when no gluons are present. Only O

1

and O
2

have this

property, so the constraint from the zero soft gluon emission amplitude is

C
1

+ C
2

= 1 . (98)

For the matching with one external soft gluon we consider the five full theory diagrams in figure

Fig. 15a, and consider all possible projections of the gluon’s polarization with respect to {n, n̄,?},
without exploiting the equations of motion, which gives Eq. (64). While we have already verified

in Sec. III B that the combination of operators given in Eq. (31) reproduces this 1 soft gluon result,

we have not yet proven that it is the unique combination which can do so. Using momentum

conservation k = q0 � q, the one soft gluon matching generates the structures {qµ?, nµq? · q0?/n ·

OAB
s = 8⇡↵s

X

i

CiO
AB
i
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FIG. 13. a) Full theory graphs for the tree level matching of quark-quark forward scattering with one extra

n-collinear gluon. b) EFT graphs for the tree level matching for the four quark operator with one n-collinear

gluon.

Eq. (41) to eliminate n ·A(kn) in terms of A?(kn) and n̄ ·A(kn), then these two diagrams exactly

match up. This agreement is very analogous to the agreement we saw earlier for the diagrams in

Fig. 12, just with an extra quark line attached to one of the gluons there, and use of the equations

of motion on only one gluon.

When the kn external gluon has n̄µ polarization all the diagrams in Fig. 13 contribute. For this

case the analogy with simply adding a quark line to one of the gluons in Fig. 12 breaks down, since

using the equations of motion on only one gluon line no longer su�ces to achieve agreement. In

this case, the result for the sum of the full theory graphs in Fig. 13a is

Fig. 13a = 2g3fABC n̄µ
h

ūn
n̄/

2
TBun

ih

v̄n̄
n/

2
TCvn̄

i 1

q2(q � k)2 n̄ · k
h

q2 + 2n·k n̄·k
i

. (61)

The result for the first graph in SCET is

Fig. 13b1 = 2g3fABC n̄µ
h

ūn
n̄/

2
TBun

ih

v̄n̄
n/

2
TCvn̄

i 1

q2(q � k)2 n̄ · k
h

2k? · (q? � k?)
i

. (62)

Using k2 = n·k n̄·k + k2? = 0 and q = q? the di↵erence is

Fig. 13a� Fig. 13b1 = 2g3fABC n̄µ
h

ūn
n̄/

2
TBun

ih

v̄n̄
n/

2
TCvn̄

i 1

q2(q � k)2 n̄ · k
h

q2? � 2k? · q?
i

= 2g3fABC n̄µ
h

ūn
n̄/

2
TBun

ih

v̄n̄
n/

2
TCvn̄

i 1

q2? n̄ · k
= Fig. 13b2 , (63)

which, as indicated, is precisely the contribution from the W Wilson lines in the second graph

in Fig. 13b. Thus we validate the presence of both the nonlocal T-product and local Wilson line

contributions in SCET.

The same matching calculation can also be carried out for the gluon-quark n-n̄ scattering,

to validate the appearance of additional n̄ · An fields in the Bn? building blocks of the Glauber

Not at all obvious that one collinear emission 
can be matched given that there are non-local 

TOP’s which contribute in the EFT 

non-locality only eliminated after using 
the on-shell condition

k ·A = 0

similar matching works for gluon operators

from 
Wilson line
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FIG. 15. One Soft Gluon Matching for the Lipatov Operator in SCET appearing in quark-quark scattering.

a) Full theory graphs. b) EFT Lipatov Operator graph with one soft gluon, shown by two equivalent

diagrams which exploit a localized or factorized notation.

not write out the analysis in detail. We have carried out explicit matching calculations to test

the soft and collinear Wilson lines, confirming that they are correctly included in these operators.

Examples of the necessary diagrams can be obtained by replacing An gluons in Figs. 13 and 14

by As gluons. In this analysis it is the large momentum direction of the remaining An̄ fields that

determines the components of the soft gluons that show up in the soft Sn̄ Wilson lines.

B. Soft Lipatov Operator from Tree Level Matching

In the Ons and On̄s operators there are two di↵erent rapidity sectors present, and the full

structure of the operators is determined by the analysis of Secs. II C and IIIA, whereas for the

operator Onsn̄ there are three rapidity sectors, and we can have a non-trivial soft operator in

addition to the n-collinear and n̄-collinear components. While the structure of the collinear part

of these operators was derived through the analysis of the Sec. III A, the matching corrections

considered so far have not probed the soft operator. To do that we must consider soft gluon

emission in the presence of n-n̄ forward scattering, which we will do in this section.

At the one soft gluon level, this emission is governed by the famous Lipatov vertex. This vertex

is the combined Feynman rule for the emission of a soft gluon in the presence of the forward

scattering of energetic quarks or gluons. For quark-quark scattering the corresponding full theory

diagrams are shown in Fig. 15a, and the contribution from SCET is in Fig. 15b. At leading power

Matching all polarizations w/o using on shell 
conditions at 1-gluon  

(simplifies 2 gluon matching)
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FIG. 17. Two Soft Gluon Matching for the Lipatov Operator. a) Full theory graphs with scaling for external

particles labeled. b) EFT graphs involving the Lipatov Operator and two soft gluons. The first three graphs

are T-products while the last is the direct Lipatov Operator two gluon term.

From the n̄ ? states we gather only one independent equation

C
4

+ C
6

= �1. (83)

The constraints from nn̄ are little more tricky because they get contributions from using the

equations of motion in the results for there ?? and (n/n̄) ?. Also, there are many more kinematic

variables involved and thus many more constraints. An immediate consequence of this matching

gives

C
5

+ C
6

= �1

�C
2

� 2C
6

+ 2C
11

� C
7,9 = 1, (84)

which then implies using (77,78)

C
1

= C
3

= C
4

= C
5

= C
8,10 = 0, (85)

TOP’s
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C
7,9 = C

6

= �C
2

= �1, (86)

such that

OBC
s = 8⇡↵s

⇢

Pµ
?ST

n Sn̄P?µ � P?
µ g eBnµ

S?ST
n Sn̄ � ST

n Sn̄g eBn̄µ
S?P?

µ � g eBnµ
S?ST

n Sn̄g eBn̄
S?µ

� nµn̄⌫

2
ST
n ig eG

µ⌫
s Sn̄

�BC

. (87)

and agrees with eq. 31.

IV. ONE LOOP MATCHING CALCULATIONS

A. One Loop Matching in SCETII

In this section we carry out the one-loop matching for forward scattering, comparing graphs in

the full theory and in SCET. The goals of this analysis are to check the completeness of our EFT

description by checking that all infrared (IR) divergences in the full theory are correctly reproduced

by SCET, to understand the structure of ultraviolet and rapidity divergences that appear in the

SCET diagrams, and to characterize the type of corrections that can be generated at the hard scale

by matching.

To be definite, we will consider quark-quark forward scattering, or strictly speaking quark-

antiquark forward scattering (which avoids the need to add the trivial quark-quark exchange con-

tribution). The external momentum routing we use is the same as shown labeled on Fig. 1, which

we repeat for convenience on the first graph of Fig. 18. The large forward momenta are conserved,

n̄ · p
2

= n̄ · p
3

and n · p
1

= n · p
4

, and the large Mandelstam invariant s = n · p
1

n̄ · p
2

= n · p
4

n̄ · p
1

to leading power. The exchanged momentum is given by the much smaller Mandelstam invariant

t = q2? = �~q 2 where q = p
3

� p
2

= p
1

� p
4

, and we take p?
1

= �p?
2

= p?
3

= �p?
4

= q?/2.

To regulate IR divergences in the full theory in a manner that can also be implemented in

SCET
II

, we include a small gluon mass m. For SCET
II

the mass m is included for both soft

and collinear gluons in loops, as well as for the Glauber potential from 1/P2

? terms via 1/~k 2

? !
1/(~k 2

?+m2). Since we take m ! 0 whenever possible, this does not cause any problems with gauge

invariance in this one-loop calculation (for example we set m = 0 from the start for the vacuum

polarization graphs). The full theory is UV finite after coupling renormalization, and we make use

of dimensional regularization with d = 4 � 2✏ to regulate divergences in individual diagrams. For

SCET
II

dimensional regularization wit d = 4� 2✏ will be used with factorization scale µ in MS to

regulate invariant mass divergences.

We also use a rapidity regulator [36] to regulate additional divergences that are associated with

distinguishing soft and collinear modes [42]. These divergence arise as a consequence of the fact

that the soft and collinear fields have the same virtuality and to distinguish them we must choose

At one gluon level this operator reproduces the Lipatov 
vertex and generalizes it to arbitrary number of gluons. 
The form is uniquely fixed to all loops as there are no 

hard corrections to the theory.

55

k
1? · k

2?fC2AEfC1BE , q2?f
C1AEfC2BE , and q2?f

C2AEfC1BE , giving respectively

C
9

= �1

2
(106)

C
10

= 0 ,

C
3

+
1

2
C
7

� C
9

= �1 ,

�C
6

+
1

2
C
8

+ C
10

= 0 .

Combining these results with Eq. (105) yields a unique solution for all the coe�cients, giving our

final answer

C
2

= C
4

= C
5

= C
6

= C
8

= C
10

= 0 , (107)

C
1

= �C
3

= �C
7

= +1 , C
9

= �1

2
.

Thus we see that all operators in the basis involving (ST
n̄ Sn) have zero coe�cients, while all op-

erators with (ST
n Sn̄) except O5

have nonzero coe�cients. Putting together these results back into

Eq. (87) the final result is

OBC
s = 8⇡↵s

⇢

Pµ
?ST

n Sn̄P?µ � P?
µ g eBnµ

S?ST
n Sn̄ � ST

n Sn̄g eBn̄µ
S?P?

µ � g eBnµ
S?ST

n Sn̄g eBn̄
S?µ

� nµn̄⌫

2
ST
n ig eG

µ⌫
s Sn̄

�BC

. (108)

This is precisely the result for OAB
s that we quoted earlier in Eq. (31).

IV. ONE LOOP MATCHING CALCULATIONS

A. One Loop Matching in SCETII

In this section we carry out the one-loop matching for forward scattering, comparing graphs in

the full theory and in SCET. The goals of this analysis are to check the completeness of our EFT

description by checking that all infrared (IR) divergences in the full theory are correctly reproduced

by SCET, to understand the structure of ultraviolet and rapidity divergences that appear in the

SCET diagrams, and to characterize the type of corrections that can be generated at the hard scale

by matching.

To be definite, we will consider quark-quark forward scattering, or strictly speaking quark-

antiquark forward scattering (which avoids the need to add the trivial quark-quark exchange con-

tribution). The external momentum routing we use is the same as shown labeled on Fig. 1, which

we repeat for convenience on the first graph of Fig. 19. The large forward momenta are conserved,

n̄ · p
2

= n̄ · p
3

and n · p
1

= n · p
4

, and the large Mandelstam invariant s = n · p
1

n̄ · p
2

= n · p
4

n̄ · p
1
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FIG. 10. One loop iterations of the Glauber potential for n–n̄ forward scattering of a qq̄ pair.

D. Formalism for Multi-Glauber Diagrams

1. One-Loop Glauber Box and Triangle Diagrams

To illustrate the presence of additional singularities that occur in the presence of Glauber

gluons, we will consider the one-loop computation for the iteration of two Glauber operators in

this section. We will see that it is necessary to introduce a rapidity regulator into LII(0)

G in order

to yield well defined results for the various possible contractions of two operators which induce a

loop momentum with Glauber scaling.

To see some of the di�culties inherent in having well defined Glauber potentials, we will start

by considering the iteration of two Oqq
nsn̄ potentials to generate a loop graph. We can contract the

n-collinear quarks and the n̄-collinear quarks to give the “box” and “cross box” graphs shown in

Fig. 10. To keep the particles onshell in the e↵ective theory the loop momentum k must not spoil

the power counting for any of the propagators in the loop. Therefore we must have n · k ⇠ �2

and n̄ · k ⇠ �2, but can have k? ⇠ �. We will refer to this as an n-n̄ Glauber loop momentum.

We decompose d�dk ⌘ ddk/(2⇡)d = (1/2) d�k+d�k�d�d�2k? where d = 4� 2✏, and recall the forward

conditions p+
4

= p+
1

and p�
3

= p�
2

. The box and cross-box loop integrals involve two Glauber

denominators and two propagators from the collinear quarks. They are

I
Gbox

=

Z

d�d�2k? d�k+ d�k�

2(~k 2

?)(~k?+~q?)2
⇣

k++p+
3

�(~k?+~q?/2) 2/p�
2

+i0
⌘⇣

�k�+p�
4

�(~k?+~q?/2) 2/p+
1

+i0
⌘ ,

I
Gcbox

=

Z

d�d�2k? d�k+ d�k�

2(~k 2

?)(~k?+~q?)2
⇣

k++p+
3

�(~k?+~q?/2) 2/p�
2

+i0
⌘⇣

+k�+p�
1

�(~k?+~q?/2) 2/p+
1

+i0
⌘ .

(46)

These graphs involve log divergent integrals of the type
R

dk+/(k++�± i0) and
R

dk�/(k�+�±
i0) that are not regulated by dimensional regularization. These singularities must be dealt with

systematically by introducing an additional regulation method.

In the case of the potential for two heavy quarks in NRQCD, the cross-box diagram would be

zero because both poles in the energy contour integral would be on the same side, and the box

diagram would be convergent since both fermion propagators would carry the loop energy. Indeed,

Glauber Loop Exegesis: Two insertions of  
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FIG. 10. One loop iterations of the Glauber potential for n–n̄ forward scattering of a qq̄ pair.

D. Formalism for Multi-Glauber Diagrams

1. One-Loop Glauber Box and Triangle Diagrams

To illustrate the presence of additional singularities that occur in the presence of Glauber

gluons, we will consider the one-loop computation for the iteration of two Glauber operators in

this section. We will see that it is necessary to introduce a rapidity regulator into LII(0)

G in order

to yield well defined results for the various possible contractions of two operators which induce a

loop momentum with Glauber scaling.

To see some of the di�culties inherent in having well defined Glauber potentials, we will start

by considering the iteration of two Oqq
nsn̄ potentials to generate a loop graph. We can contract the

n-collinear quarks and the n̄-collinear quarks to give the “box” and “cross box” graphs shown in

Fig. 10. To keep the particles onshell in the e↵ective theory the loop momentum k must not spoil

the power counting for any of the propagators in the loop. Therefore we must have n · k ⇠ �2

and n̄ · k ⇠ �2, but can have k? ⇠ �. We will refer to this as an n-n̄ Glauber loop momentum.

We decompose d�dk ⌘ ddk/(2⇡)d = (1/2) d�k+d�k�d�d�2k? where d = 4� 2✏, and recall the forward

conditions p+
4

= p+
1

and p�
3

= p�
2

. The box and cross-box loop integrals involve two Glauber

denominators and two propagators from the collinear quarks. They are
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These graphs involve log divergent integrals of the type
R

dk+/(k++�± i0) and
R

dk�/(k�+�±
i0) that are not regulated by dimensional regularization. These singularities must be dealt with

systematically by introducing an additional regulation method.

In the case of the potential for two heavy quarks in NRQCD, the cross-box diagram would be

zero because both poles in the energy contour integral would be on the same side, and the box

diagram would be convergent since both fermion propagators would carry the loop energy. Indeed,

Onsn̄

Neither integral is well defined. In the Abelian limit the sum of the two integrals is well defined. 
However to calculate the          piece we need the individual diagrams to be well definedCA

Introduce a rapidity regulator | 2q3/⌫ |�⌘
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Glauber cross-box integral becomes
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since the poles are on the same side. For the Glauber box integral we get
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Here 2A = p�
4

+p+
3

�(~k?+~q?/2) 2/p+
1

�(~k?+~q?/2) 2/p�
2

and the ⌘ dependent term evaluates to (�i⇡)

as ⌘ ! 0 for any value of this A. This extra (�i) is the factor that causes the Glauber potential

to exponentiate into a phase. The result in Eq. (48) for the ⌘-regulated box is exactly the same as

the result obtained from maninpulating the integrands in the sum of the box and cross-box in the

abelain case in App. A.

E↵ectively the ⌘-regulator has decoupled the spacetime constraints so that the box diagram

alone is like independently integrating the two Glauber potentials over all times, while the cross

box does not contribute. This is the same spacetime picture that is obtained by adding the box

and cross-box integrands in the abelian theory to get a �(k+)�(k�) type structure. In the abelian

theory there is a redundancy for how this result is obtained from the two graphs, but in the non-

abelian theory it is important as far as the color structure is concerned that it is the box graph

alone that contributes. The nonabelian part of the cross-box topology contributes only for another

momentum region, namely when we have the loop graph with two soft gluons. In SCET this

contribution has the same topology as shown in the first figure in Fig. 3b (but does not correspond

solely to vacuum polarization). These soft graphs come from contractions of Oqg
ns and Oqg

n̄s with

a soft loop momentum. Since the soft gluon terms in the operator involve fABC they explicitly

do not have an abelian contribution, so it is a regulator independent statement that the ablelian

contribution is entirely carried by the Glauber iterations. Any consistent regulator for the Glauber

singularities must have these properties.
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the result obtained from maninpulating the integrands in the sum of the box and cross-box in the

abelain case in App. A.

E↵ectively the ⌘-regulator has decoupled the spacetime constraints so that the box diagram

alone is like independently integrating the two Glauber potentials over all times, while the cross

box does not contribute. This is the same spacetime picture that is obtained by adding the box

and cross-box integrands in the abelian theory to get a �(k+)�(k�) type structure. In the abelian

theory there is a redundancy for how this result is obtained from the two graphs, but in the non-

abelian theory it is important as far as the color structure is concerned that it is the box graph

alone that contributes. The nonabelian part of the cross-box topology contributes only for another

momentum region, namely when we have the loop graph with two soft gluons. In SCET this

contribution has the same topology as shown in the first figure in Fig. 3b (but does not correspond

solely to vacuum polarization). These soft graphs come from contractions of Oqg
ns and Oqg

n̄s with

a soft loop momentum. Since the soft gluon terms in the operator involve fABC they explicitly

do not have an abelian contribution, so it is a regulator independent statement that the ablelian

contribution is entirely carried by the Glauber iterations. Any consistent regulator for the Glauber

singularities must have these properties.

First term in build up of 
Glauber Phase

Is there a Non-Abelian contribution to the phase? 
Yes coming from soft loops

The Abelian phase is universal as it does not care 
about the the spin of the collinear lines. 



We can also consider soft-collinear forward 
scattering
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FIG. 11. One loop iterations of the Glauber potential for n–soft forward scattering of a qq̄ pair.

We will see in Sec. VIIA that the above properites of the ⌘-regulator extend in a nice way

for arbitrary iterations of Glauber potentials with Glauber loop momenta. Any iteration diagram

with crossed Glauber potential lines will give zero in the same manner as the crossed box above,

and the ⌘-regulated iterated boxes alone yield an ei� � 1 Greens function even in the nonabelian

theory. In the abelian theory the phase � is one-loop exact. In the nonabelian theory there will be

one-loop corrections to the Glauber kernel from graphs involving soft and collinear loop momenta,

and the full set of such diagrams will be computed in Sec. IVA and App. E.

Lets now extend the above analysis to iterations of Glauber potentials other than Oqq
nsn̄. If we

consider n-n̄ scattering where either or both of the collinear lines are gluons, then from the form of

the operators and Feynman rules in Eqs. (27) and (29) we have the same momentum integrals as

those analyzed above, again with a n-n̄ Glauber loop momentum. So iterations of these operators

behave in the same way as the qq̄ scattering.

We can also consider Glauber potentials obtained by iterations of the operator Oij
ns or by

iterations of Oij
n̄s. In these cases the loop momentum will be Glauber if we have the soft-collinear

Glauber scaling, namely kµ ⇠ (�2,�,�) for Oij
ns iterations, or kµ ⇠ (�,�2,�) for Oij

n̄s iterations.

The graphs for two Oqq
ns iterations are shown in Fig. 11. At the level of 4-point functions the

Feynman rules for the rescatterings involving n-s are direct analogs of those for the n-n̄ scattering.

Keeping pµ
2,3 as n-collinear, but letting pµ

1.4 be soft, the iteration of two Oqq
nss gives the same box

and cross-box integrals shown in Eq. (46). Here k+ ⇠ �2, while k� ⇠ �, but each loop integral

scales as �5/�7 = ��2 as before. To regulate these n-s Glauber loops we can use |n · k � �n̄ · k|�⌘

instead of |2kz|�⌘ in Eqs. (47) and (48), where � ⇠ � is a boost factor that ensures that the two

terms in the regulator have the same ⇠ �2 scaling. However, the results for these integrals are the

same as if we took � = 1 since they are independent of � as long as � 6= 0. To see this simply

change variables to k0� = �k�, noting that this gives back the regulator |n · k � n̄ · k0|�⌘, and

d�k�/(k� +A) = d�k0�/(k0� +A/�). The cross-box again vanishes and the box yields the same A

independent result that we found in Eq. (48), once we drop O(⌘) terms.

Just the boost of the previous case, yields  
the same result but now the the glaubers  

carry (�2,�,�2)

| k+ � �k� |⌘Can tweak regulator to 
insure homogenous scaling

Gives same result as 
collinear-collinear



Other source of rapidity divergences are the 
Wilson lines which need to be regulated
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divergences [42]. This can be achieved using the rapidity regulator of Ref. [36], which distinguishes

modes using a rapidity factorization scale ⌫. In this subsection we highlight some di↵erences related

to the fact that the rapidity regulator is also necessary to distinguish Glauber contributions, and

consistently regulate zero-bin subtractions for soft and collinear contributions.

To regulate rapidity divergences in graphs involving Wilson lines we include factors of

w
�

�

�

2Pz

⌫

�

�

�

�⌘/2
, w2

�

�

�

n · P
⌫

�

�

�

�⌘
, w2

�

�

�

n̄ · P
⌫

�

�

�

�⌘
, (55)

for Wilson lines involving (n · As or n̄ · As) soft gluons, n · An̄ n̄-collinear gluons, and n̄ · An

n-collinear gluons respectively [36]. At one-loop rapidity divergences will appear as 1/⌘ poles

with a corresponding logarithmic dependence on the cuto↵ ⌫. Here w is a book keeping coupling

used to calculate anomalous dimensions through ⌫d/d⌫ w = �⌘w, and as ⌘ ! 0 we then set the

renormalized w = 1. The regulated expressions for the momentum space Wilson lines are

Sn =
X

perms

exp

⇢ �g

n · P


w|2Pz|�⌘/2

⌫�⌘/2
n ·As

��

, Sn̄ =
X

perms

exp

⇢ �g

n̄ · P


w|2Pz|�⌘/2

⌫�⌘/2
n̄ ·As

��

,

(56)

Wn =
X

perms

exp

⇢ �g

n̄ · P
�

w2|n̄ · P|�⌘

⌫�⌘
n̄ ·An

��

, Wn̄ =
X

perms

exp

⇢ �g

n · P


w2|n · P|�⌘

⌫�⌘
n ·An̄

��

.

Here the regulator momentum operators P act only on the gluon field in the square brackets,

whereas the inverse momentum operators �g/P act on all fields to the right when the exponentials

are expanded. We separately regulate every soft or collinear gluon from the Wilson lines in order

to maintain consistency with our use of the rapidity regulator for Glauber loops (rather than

introducing the regulator only for the group momentum as in Ref. [36]). We have confirmed that

our choice maintains exponentiation for matrix elements that only involve Wilson lines, since the

exponentiation can be derived by permutations of momenta under which the regulator is symmetric.

An additional complication in the operators we consider is the presence of inverse factors of n̄ · P
and n · P that appear outside of the Wilson lines. In order to make our prescription unambiguous

when operators are written in di↵erent equivalent forms, we also regulate these factors. Examples

where this occurs include OgB
n , OgB

n̄ , OgnB
s , and Ogn̄B

s . Here, the inverse power to that in Eq. (55)

is used, so for example n̄ · P ! n̄ · P 1

w2

�

�

n̄·P
⌫

�

�

+⌘
in the numerator of the n-collinear operator OgB

n ,

and n̄ · P ! n̄ · P 1

w

�

�

2Pz

⌫

�

�

+⌘/2
in the numerator of the soft operator OgnB

s .

We also regulate Glauber loops with the rapidity regulator, by regulating 1/q2? factors in the

manner discussed in in Sec. IID 1. The limit ⌘ ! 0 is always considered first, with the rapidity

renormalization carried out at finite ✏, and then the limit ✏ ! 0 is taken. Graphs without rapidity

divergences or sensitivity will give the same answer whether one set ⌘ = 0 before or after the loop

integration. We introduce factors of the ⌘-regulator for each Glauber potential, so the Glauber

Note we regulate every gluon to be consistent with 
the Glaubers (important for zero bin cancellation)



Zero Bin Subtractions

Soft, Collinear and Glauber all overlap
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FIG. 18. Full theory graphs for the matching calculation of quark-quark forward scattering at one-loop. We

number the top row a) to e), and the bottom row f) to j).

lapping modes are Glauber, soft, and collinear. Therefore the structure of these subtractions for

one-loop soft and collinear graphs is

S = S � S(G) , Cn = Cn � C(S)
n � C(G)

n + C(GS)
n (88)

where the superscript indicates the momentum region for which the subtraction is formulated.

With the rapidity regulator we use here these subtractions often lead to scaleless integrals, but not

for all diagrams we must consider.

Consider first the full QCD graphs shown in Fig. 18 which we number from a) to j). These

graphs are computed exactly and then expanded in the EFT limit with t ⌧ s. There are two

additional box-type graphs obtained by rotating Fig. 18a,b by 90�, but neither of these graphs

contributes at leading order in this limit. The proper cut structure is obtained with s = s+ i0 and

t = t + i0, where we note that for our kinematics s > 0 and t < 0. For brevity when giving our

results below, we quote the original QCD integrand and then the final expanded result for each

graph. The group theory and spinor factors come in one of four combinations which we denote
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For the full theory box graph we have
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where the ellipses indicate terms that are higher order in t/s. Similarly for the cross-box we have
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ū(p
3

)TATB�⌫(/p
2

� /k)�µu(p
2

)
⇤⇥

v̄(p
1

)TATB�⌫(/k � /p
4

)�µv(p4)
⇤

[k2 �m2](k � p
2

)2(k � p
4

)2[(k + q)2 �m2]

=
4i↵2

s

t

⇣

Snn̄
1

� 1

2
Snn̄
3

⌘



2 ln
⇣�s

t

⌘

ln
⇣�t

m2

⌘

+ ln2
⇣�t

m2

⌘

� ⇡2

3

�

+ . . . . (91)

49

p1

p2 p3

p4

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

FIG. 18. Full theory graphs for the matching calculation of quark-quark forward scattering at one-loop. We

number the top row a) to e), and the bottom row f) to j).

lapping modes are Glauber, soft, and collinear. Therefore the structure of these subtractions for

one-loop soft and collinear graphs is

S = S � S(G) , Cn = Cn � C(S)
n � C(G)

n + C(GS)
n (88)

where the superscript indicates the momentum region for which the subtraction is formulated.

With the rapidity regulator we use here these subtractions often lead to scaleless integrals, but not

for all diagrams we must consider.

Consider first the full QCD graphs shown in Fig. 18 which we number from a) to j). These

graphs are computed exactly and then expanded in the EFT limit with t ⌧ s. There are two

additional box-type graphs obtained by rotating Fig. 18a,b by 90�, but neither of these graphs

contributes at leading order in this limit. The proper cut structure is obtained with s = s+ i0 and

t = t + i0, where we note that for our kinematics s > 0 and t < 0. For brevity when giving our

results below, we quote the original QCD integrand and then the final expanded result for each

graph. The group theory and spinor factors come in one of four combinations which we denote
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where the ellipses indicate terms that are higher order in t/s. Similarly for the cross-box we have
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Using the rapidity regulator many of the zero-
bin diagrams vanish but crucially not all as in 

this example.
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FIG. 18. Full theory graphs for the matching calculation of quark-quark forward scattering at one-loop. We

number the top row a) to e), and the bottom row f) to j).

lapping modes are Glauber, soft, and collinear. Therefore the structure of these subtractions for

one-loop soft and collinear graphs is

S = S � S(G) , Cn = Cn � C(S)
n � C(G)

n + C(GS)
n (88)

where the superscript indicates the momentum region for which the subtraction is formulated.

With the rapidity regulator we use here these subtractions often lead to scaleless integrals, but not

for all diagrams we must consider.

Consider first the full QCD graphs shown in Fig. 18 which we number from a) to j). These

graphs are computed exactly and then expanded in the EFT limit with t ⌧ s. There are two

additional box-type graphs obtained by rotating Fig. 18a,b by 90�, but neither of these graphs

contributes at leading order in this limit. The proper cut structure is obtained with s = s+ i0 and

t = t + i0, where we note that for our kinematics s > 0 and t < 0. For brevity when giving our

results below, we quote the original QCD integrand and then the final expanded result for each

graph. The group theory and spinor factors come in one of four combinations which we denote
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where the ellipses indicate terms that are higher order in t/s. Similarly for the cross-box we have
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For the Y-graphs with a single three-gluon vertex the two graphs give equal contributions and we
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ū(p
3

)TA�⌫/k��u(p
2

)
⇤⇥

v̄(p
1

)TA�µv(p
4

)
⇤

Tµ⌫�(q,�k � p
3

, k + p
2

)

k2[(k + p
2

)2 �m2][(k + p
3

)2 �m2]

=
i↵2

s

t
Snn̄
3



6

✏
+ 6 ln

⇣µ2

�t

⌘

+ 8 ln
⇣�t

m2

⌘

+ 4

�

+ . . . . (92)

Here we include the MS factors of ◆✏ = (4⇡)�✏e✏�E and µ2✏, and the triple gluon vertex momentum

factor is Tµ⌫�(k1, k2, k3) = gµ⌫(k1�k
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The two vertex renormalization graphs give the same contribution, and we find
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Finally for the full theory vacuum polarization graphs we have the standard Feynman gauge results

(here we can set m2 = 0 from the start),
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The sum of UV divergences from Eqs. (93-96) only involves Snn̄
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Adding up all the full theory one-loop graphs plus the coupling counterterm graph we find
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FIG. 18. Full theory graphs for the matching calculation of quark-quark forward scattering at one-loop. We

number the top row a) to e), and the bottom row f) to j).

lapping modes are Glauber, soft, and collinear. Therefore the structure of these subtractions for

one-loop soft and collinear graphs is

S = S � S(G) , Cn = Cn � C(S)
n � C(G)

n + C(GS)
n (88)

where the superscript indicates the momentum region for which the subtraction is formulated.

With the rapidity regulator we use here these subtractions often lead to scaleless integrals, but not

for all diagrams we must consider.

Consider first the full QCD graphs shown in Fig. 18 which we number from a) to j). These

graphs are computed exactly and then expanded in the EFT limit with t ⌧ s. There are two

additional box-type graphs obtained by rotating Fig. 18a,b by 90�, but neither of these graphs

contributes at leading order in this limit. The proper cut structure is obtained with s = s+ i0 and

t = t + i0, where we note that for our kinematics s > 0 and t < 0. For brevity when giving our

results below, we quote the original QCD integrand and then the final expanded result for each

graph. The group theory and spinor factors come in one of four combinations which we denote
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where the ellipses indicate terms that are higher order in t/s. Similarly for the cross-box we have
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FIG. 19. SCET graphs for the matching calculation of quark-quark forward scattering at one-loop. We refer

to the graphs in the first row as a)-e). The first two graphs involve the Glauber potential. The next three

graphs involve soft gluon or soft quark loops. The second row of graphs we label f)-j), and the third row

as k)-n). The second and third rows involve collinear loops with either the quark-gluon Glauber scattering

operators or the quark-quark Glauber scattering operator.
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FIG. 20. Additional tadpole collinear loops graphs for forward scattering. These graphs do not contribute

to the matching calculation since they vanish due to their soft zero-bin subtractions.

NEED TO CHECK powers of ⌘ versus 2⌘ in results below.

Next consider the SCET forward scattering graphs shown in Fig. 19. The first two graphs involve

loops with Glauber loop momenta, the next three with soft loop momenta, and the remaining 9

with collinear loop momenta. We number these graphs from a) to n). Both notations for the

Glauber operators are used (with and without the dashed red lines), depending on what is most

convenient. Note that we do not draw wavefunction or vertex renormalization graphs involving a

soft gluon attached to a collinear quark, since these graphs vanish in Feynman gauge where they

are proportional to n2 = 0.

The two graphs with an iteration of the Glauber operator, Fig. 19a,b, were discussed above in

Sec. IID 1. These graphs require regulation by the rapidity regulator to yield well defined answers,

but their results are independent of ⌘ as ⌘ ! 0. In particular Fig. 19b vanishes (with or without
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FIG. 19. SCET graphs for the matching calculation of quark-quark forward scattering at one-loop. We refer

to the graphs in the first row as a)-e). The first two graphs involve the Glauber potential. The next three

graphs involve soft gluon or soft quark loops. The second row of graphs we label f)-j), and the third row

as k)-n). The second and third rows involve collinear loops with either the quark-gluon Glauber scattering

operators or the quark-quark Glauber scattering operator.
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FIG. 20. Additional tadpole collinear loops graphs for forward scattering. These graphs do not contribute

to the matching calculation since they vanish due to their soft zero-bin subtractions.

NEED TO CHECK powers of ⌘ versus 2⌘ in results below.

Next consider the SCET forward scattering graphs shown in Fig. 19. The first two graphs involve

loops with Glauber loop momenta, the next three with soft loop momenta, and the remaining 9

with collinear loop momenta. We number these graphs from a) to n). Both notations for the

Glauber operators are used (with and without the dashed red lines), depending on what is most

convenient. Note that we do not draw wavefunction or vertex renormalization graphs involving a

soft gluon attached to a collinear quark, since these graphs vanish in Feynman gauge where they

are proportional to n2 = 0.

The two graphs with an iteration of the Glauber operator, Fig. 19a,b, were discussed above in

Sec. IID 1. These graphs require regulation by the rapidity regulator to yield well defined answers,

but their results are independent of ⌘ as ⌘ ! 0. In particular Fig. 19b vanishes (with or without
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The sum of the three one-loop graphs with soft loops is
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Note that the 1/✏2 and ln(µ2/4⌫2)/✏ terms have canceled in this result, leaving only the 1/⌘

rapidity divergences and 1/✏ UV divergences. Since the bare soft operator OAB
s has a factor of
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s multiplying the fields, there is also Z↵ coupling counterterm contribution in the operator

Feynman rule. It gives the contribution
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This result exactly cancels the 1/✏ terms in Eq. (107), so with the counterterm the total sum of

all soft loop graphs is
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Thus the sum of graphs in the soft sector only has rapidity divergences. The logarithms from these

soft loops are minimized for µ ⇠ ⌫ ⇠ p
t (and for consistency our IR regulator m2 ⇠ t as well),

which is consistent with our power counting.

Finally we consider the remaining collinear diagrams, in Fig. 19f,g,k,l,m,n. The two V-graphs

both give the same contribution. The Ogq
nsn̄ Glauber operator only produces An? and n̄ ·An gluons,

Soft Total

Includes 
counter term 

for ↵Note: no UV poles

Collinear 
total

ln s/⌫2 = ln(n · p/⌫) + ln(n̄ · p/⌫)
combining collinear sectors

Total EFT   
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4⌫2
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Here the ln(4⌫2/s)/✏ terms have canceled, along with the 1/✏ terms. Thus the sum of collinear

graphs again only has rapidity divergences. The logarithms from these collinear loops are minimized

with µ ⇠ p
t and ⌫ ⇠ p

s (and for consistency our IR regulator m2 ⇠ t as well). This is consistent

with our power counting.

Finally, we can add up the Glauber, soft, and collinear SCET loop graphs from Eqs. (99,109,113).

In the sum of soft and collinear loops the 1/⌘ rapidity divergences cancel, as expected since they

arose from defining EFT modes that were sensitive to a single rapidity scale rather than logs

of ratios of such scales. Note that the soft and collinear Wilson line rapidity divergences cancel

independent from the rapidity divergence cancellation that occurs between the soft eye-graph and

collinear V-graph. We find
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This total SCET result agrees exactly with the full theory one-loop result in Eq. (98) for all color

structures. Since all IR divergences are correctly reproduced this provides a non-trivial test of our

EFT framework. The ln µ2

�t dependence is proportional to the one-loop beta function, and hence

exactly corresponds with the µ dependence in the ↵s(µ) of the tree level Glauber exchange diagram.

This logarithm shows that the scale µ2 ' �t is the preferred value for this potential. The various

ln m2

�t are infrared in origin. Finally, since s � �t there is one large logarithm, ln s
�t , which is

generated by the separation of rapidity singularites in the soft and collinear diagrams (as opposed

to invariant mass singularities). The resummation of these logarithms leads to Reggeization in the

EFT operators, which we discuss in more detail in the next section.

Finally, the fact that the SCET result in Eq. (114) agrees exactly with the full theory result in

Eq. (98) implies that there are no hard matching corrections to the Glauber operator at the scale

µ2 ⇠ s. (The analogous statement in the threshold expansion is that there are no contributions

to the forward scattering at leading power from hard loop momenta.) This is a general feature of

the EFT, so in fact the tree level results for all the operators given in Sec. II actually include the

complete Wilson coe�cients.
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This total SCET result agrees exactly with the full theory one-loop result in Eq. (98) for all color

structures. Since all IR divergences are correctly reproduced this provides a non-trivial test of our

EFT framework. The ln µ2

�t dependence is proportional to the one-loop beta function, and hence

exactly corresponds with the µ dependence in the ↵s(µ) of the tree level Glauber exchange diagram.

This logarithm shows that the scale µ2 ' �t is the preferred value for this potential. The various

ln m2

�t are infrared in origin. Finally, since s � �t there is one large logarithm, ln s
�t , which is

generated by the separation of rapidity singularites in the soft and collinear diagrams (as opposed

to invariant mass singularities). The resummation of these logarithms leads to Reggeization in the

EFT operators, which we discuss in more detail in the next section.

Finally, the fact that the SCET result in Eq. (114) agrees exactly with the full theory result in

Eq. (98) implies that there are no hard matching corrections to the Glauber operator at the scale

µ2 ⇠ s. (The analogous statement in the threshold expansion is that there are no contributions

to the forward scattering at leading power from hard loop momenta.) This is a general feature of

the EFT, so in fact the tree level results for all the operators given in Sec. II actually include the

complete Wilson coe�cients.
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Even though the rapidity divergences cancel we 
must renormalize the factorized operators 

distinctly
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A for the bare and renormalized operators. The same decomposition applies for the n̄-collinear

sector with n ! n̄ for all terms, which we write out just to be definite

~OBbare

n̄ = V̂On̄ · ~OB
n̄ (⌫, µ) , V̂On̄ =

0

B

@

1 + �V qq
n̄ �V qg
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B

@

OqB
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1

C

A

. (115)

The structure for the rapidity divergent soft sector is more complicated since we have operators

OqnA
s , OgnA

s , Oqn̄A
s , Ogn̄A

s , as well as OAB
s . Phrased in the language of mixing, the single color

index operators with Sn Wilson lines, OqnA
s and OgnA

s , will mix with themselves, but not with

Oqn̄A
s and Ogn̄A

s which have Sn̄ Wilson lines. This occurs because soft loops and emissions from a

soft operator alone do not generate Wilson lines. Thus for these single index operators we have

~OAbare

sn = V̂Osn
· ~OA

sn(⌫, µ) , V̂Osn
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@
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C

A

, (116)

plus a direct analog for Oqn̄A
s and Ogn̄A

s obtained with n ! n̄. For the double index operator

OAB
s we have self renormalization as well as mixing from time-ordered products (T-products) with

the same color structure, such as TOgnA
s (x)Ogn̄B

s (0). Since in OAB
s the index A couples to an

n-collinear sector and the index B couples to a n̄-collinear sector, we must maintain this same

structure on the T-product terms. Since OAB
s has a no-gluon Feynman rule, to mix into it one

must have the fields in the T-product annihilate each other. At O(↵s) this can only occur through

either a soft quark or gluon loop, which allows only certain products of operators to appear. The

full form of the mixing equation is

~OABbare

s = V̂Os · ~OAB
s (⌫, µ) , (117)
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Here the lower right 4⇥4 block in V̂Os is determined by the renormalization factor in Eq. (118) and

its analog with n ! n̄, since these terms just involve the renormalization of individual operators

appearing in the T-products. For example, the (2, 4) entry of V̂Os is �V qg
sn �V

qg
sn̄ . The 1⇥ 1 entry is

the self renormalization of OAB
s , and the four entries below it are due to mixing of the T-products

into OAB
s . The entries with 0s indicate that the operator OAB

s does not mix into the T-products.

At one-loop the non-zero entries are �Vs (from the soft subgraph in Fig. 19e), �V Tqq
s (from the soft

Collinear mixing:
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plus a direct analog for Oqn̄A
s and Ogn̄A

s obtained with n ! n̄. For the double index operator
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the same color structure, such as TOgnA
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s (0). Since in OAB
s the index A couples to an

n-collinear sector and the index B couples to a n̄-collinear sector, we must maintain this same

structure on the T-product terms. Since OAB
s has a no-gluon Feynman rule, to mix into it one

must have the fields in the T-product annihilate each other. At O(↵s) this can only occur through
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Here the lower right 4⇥4 block in V̂Os is determined by the renormalization factor in Eq. (118) and

its analog with n ! n̄, since these terms just involve the renormalization of individual operators

appearing in the T-products. For example, the (2, 4) entry of V̂Os is �V qg
sn �V

qg
sn̄ . The 1⇥ 1 entry is

the self renormalization of OAB
s , and the four entries below it are due to mixing of the T-products

into OAB
s . The entries with 0s indicate that the operator OAB

s does not mix into the T-products.

At one-loop the non-zero entries are �Vs (from the soft subgraph in Fig. 19e), �V Tqq
s (from the soft
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s has a no-gluon Feynman rule, to mix into it one
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Here the lower right 4⇥4 block in V̂Os is determined by the renormalization factor in Eq. (118) and

its analog with n ! n̄, since these terms just involve the renormalization of individual operators

appearing in the T-products. For example, the (2, 4) entry of V̂Os is �V qg
sn �V

qg
sn̄ . The 1⇥ 1 entry is

the self renormalization of OAB
s , and the four entries below it are due to mixing of the T-products

into OAB
s . The entries with 0s indicate that the operator OAB

s does not mix into the T-products.

At one-loop the non-zero entries are �Vs (from the soft subgraph in Fig. 19e), �V Tqq
s (from the soft
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2. Relations between Anomalous Dimensions

Having established notations for the anomalous dimensions, we next consider the constraints

imposed by the fact that there is no overall ⌫ or µ dependence for the scattering of soft and collinear

particles or the scattering of n-collinear and n̄-collinear particle, since there are no ⌫ or µ dependent

Wilson coe�cients in these Lagrangians. For simplicity we will work out these constraints at one-

loop order, which is the level needed for our analysis. First consider the scattering between two

neighboring rapidity sectors, n-soft scattering mediated by one or more Oij
ns operators. Here there

is no mixing of multiple insertions of LII(0)

G back into a single insertion. The only such diagram

involves the iteration Oik
nsO

kj
ns with a Glauber loop that has one soft and one collinear propagator,

and this loop diagram is identical to the box calculation in Sec. IID 1, and hence is finite. Therefore

we can look at the Oij
ns alone, giving

⌫
d

d⌫

X

ij=q,g

Oij
ns = ⌫

d

d⌫
(OqA

n +OgA
n )

1

P2

?
(OqnA

s +OgnA
s ) = 0 . (144)

This equation indicates that the one-loop rapidity divergences cancel between the soft and n-

collinear loop diagrams for this operator. The fact that there is no nontrivial Wilson coe�cient

between the quark and gluon operators in either the n-collinear or soft sectors also implies that

they must not mix into a di↵erent combination

⌫
d

d⌫
(OqA

n +OgA
n ) = �n⌫(OqA

n +OgA
n ) , ⌫

d

d⌫
(OqnA

s +OgnA
s ) = �s⌫(OqnA

s +OgnA
s ) . (145)

Eqs. (140) and (143) imply that these constants of proportionality are given by

�n⌫ ⌘ �qqn⌫ + �gqn⌫ = �ggn⌫ + �qgn⌫ , �sn⌫ ⌘ �qqsn⌫ + �gqsn⌫ = �ggsn⌫ + �qgsn⌫ . (146)

These results can also be derived starting only with Eq. (144) and setting to zero the linear

combinations of anomalous dimensions multiplying OiA
n (1/P2

?)OjnA
s for each choice of i and j.

The result in Eq. (146) constrains the sum of entries in the columns of �̂⌫On
to be equal. The fact

that only the combination (OqA
n + OgA

n ) appears also implies that �n⌫ is the only combination of

entries from �̂⌫On
that we need, with analogous results for the soft �̂⌫Osn

. The root of these results is

that the rapidity renormalization only depends on the presence of the octet color index A, and not

on the choice of fermion or gluon building blocks. Nevertheless we will see that mixing between

fermions and gluons operators still plays a crucial role in this universality.

Due to the connection between the rapidity cuto↵s in the neighbouring soft and n-collinear

sectors for Oij
ns as expressed by Eq. (144), we also have the additional relation

�qqn⌫ + �gqn⌫ = ��qqsn⌫ � �gqsn⌫ , or �n⌫ = ��sn⌫ . (147)

Thus the relevant rapidity anomalous dimensions in the n-collinear and soft sector are equal with

opposite signs. For the anomalous dimensions for operators appearing in Oij
n̄s analogous results to

Structure is Fixed

So all we need is �⌫
n

Which we can extract 
from matching calculation

M(⌫ =
p
s) ⇠ (s/t)�

Gluon Reggeization
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combinations of anomalous dimensions multiplying OiA
n (1/P2

?)OjnA
s for each choice of i and j.

The result in Eq. (146) constrains the sum of entries in the columns of �̂⌫On
to be equal. The fact

that only the combination (OqA
n + OgA

n ) appears also implies that �n⌫ is the only combination of

entries from �̂⌫On
that we need, with analogous results for the soft �̂⌫Osn

. The root of these results is

that the rapidity renormalization only depends on the presence of the octet color index A, and not

on the choice of fermion or gluon building blocks. Nevertheless we will see that mixing between

fermions and gluons operators still plays a crucial role in this universality.

Due to the connection between the rapidity cuto↵s in the neighbouring soft and n-collinear

sectors for Oij
ns as expressed by Eq. (144), we also have the additional relation

�qqn⌫ + �gqn⌫ = ��qqsn⌫ � �gqsn⌫ , or �n⌫ = ��sn⌫ . (147)

Thus the relevant rapidity anomalous dimensions in the n-collinear and soft sector are equal with

opposite signs. For the anomalous dimensions for operators appearing in Oij
n̄s analogous results to

mixing leads to 
universality

� =
↵sCA

2⇡
Log(�t/m

2)



Summing Logs in IR safe quantities
Consider observables for which the soft radiation is not 

measured. For this class the RRG equation will reduce to the 
BKFL equation

Consider the total cross section for hadron scattering try to 
capture s dependence
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Of course we can not count perturbative Glauber exchange to give the correct result when

t < ⇤, however we should be able to capture all of the large logs at any given order by running in

rapidity down to a scale of order a few GeV.

Schematically we may write the total proton-proton scattering cross section as

�pp =

Z

d�

dt
dt ⇠

Z

dt
X

Xs,Xn,Xn̄

hpnp̄n | Xs, Xn, Xn̄iO(t(Pn
?,P n̄

?))hXs, Xn, Xn̄ | pnp̄ni, (176)

with the operators Pn
?,P n̄

? only acting on the collinear part of the Hilbert space and

t =
X

i

| ~p i
n? | (177)

sums the transverse momenta of the n-collinear particles. Note that t is not physical in the sense

it is not measureable quantity for the reasons discussed above. It is simply there to facilitate the

resummation of the logs. Given that we are measuring the total cross section these logs are of the

form Log(s/⇤) whereas by running the collinear operators in the Glauber exchange operator from

⌫ = s to ⌫ = t
0

, the rapidity renormalization group will sum logs of the form Log(s/t
0

) where t
0

is some scale near ⇤ but still large enough to trust perturbation theory. This is also the scale are

which we must evaluate the low energy no-perturbative matrix element.

A. BFKL Equation for the Soft Function

In evaluating the matrix element of hte Lipatov operator, large rapidity logs arise due to the

tension between the the collinear modes whose natural rapidity scale is ⌫c ⇠
p
ŝ and the the soft

mode for which ⌫s ⇠ p| t |. For simplicity we will choose ⌫ = ⌫c so that all the large logs reside

in the soft part of the matrix element. These logs are summed by running the soft function in

rapidity space from ⌫s to ⌫c.

We will be working in the limit where t � ⇤QCD so that we may treat Glauber exchange

pertubratively. That is, at leading order the Lipatov operator e↵ectively acts like an external

current not as part of the action. We will discuss the more general case where we allow an

arbitrary number of insertions of the Lipatov operator below.

We label the soft piece of the Lipatov operator in terms of the incoming/outgoing by l0?/l? such

that the tree Feynman rule is given by

h0 | 1

l2?
Oab

s (l?, l0?)
1

l0?
2

| 0i = �8⇡↵

l2?
�ab�2(l? � l0?), (178)

where Oab
s (l?, l0?) is the two dimensional Fourier transform of (31). Thus at the level of the

Running the  soft function of Glauber operator
insert LII

G
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The soft function is

GABA0B0
(q?, q0?) =

X

X

⌦

0
�

�OAB
s(1,1)(q?, q

0
?)

�

�X
↵⌦

X
�

�OA0B0

s(1,1)(q?, q
0
?)

�

�0
↵

(176)

VI. BFKL AND THE RAPIDITY RENORMALIZATION GROUP

In the previous section we studied the running of the forward scattering operators. While

Reggeization gives us some physical insight, the calculation in itself is unphysical and IR divergent.

Now we would like to consider how the rapidity renormalization group can be used to sum logs

in physical observables. Thus we must either consider an IR safe inclusive obervable or a less

inclusive observabale which includes some non-pertubative function which encapsulates the infrared

divergences.

BFKL equation determines the rapidity running of a class of observables. This class is defined

by the measurement process. In particular the class of measurements for which s � t and the

soft radiation is not measured. The energetic particles in general, at least for hadron-hadron

scattering will in general undergo a measurement process which probes the change in the transverse

momentum of the collinear modes. This measurement is what e↵ectively defines t in a multi-body

(i.e. beyond two to two) scattering process.

In trying to distinguish between the collinear and soft fields in the measurement process will

will lead to non-IR-safe observables. For instance, suppose we wish to sum the total transverse

momenta in collinear lines. In principle this can be accomplished by putting a lower bound on the

energy of the measured particles. However, it is clear that such an action will lead to IR divergences

as a collinear splitting can lead to, at least, one of the two particles to be below the cut, while the

virtual contribution is still counted. This is not to say that this is not a physical observable, since

we could always factorize the rate and absorb the divergences into a well defined universal matrix

element, but the utility of such an observable is limited.

A simpler observable, which gets around this issue, would be to consider exclusive, or semi-

inclusive cross section. In this case t is simply defined in terms of the transverse momentum of the

observed particle. However, an even simpler testing ground for the BFKL equation comes from

calculating total cross section. A generic pradigm which has been established in the literatiure is

the onia-onia total scattering [? ] cross section. Traditionally onia are chosen so that the bound

state dyanmics remains pertrubative. Here do not wish to introduce any additional scales into

the EFT, namely the quark mass, so we will sacrifice this loss of perturbavitiy in order to keep

the power counting as simple as possible. In any case is it not our intent to give any predictions.

We simply wish to enumerate a class of observables for which the BFKL equation can be used to

capture all of the large logs in the cross section. Thus we consider the total scattering cross section

between any two hadrons at large
p
s � ⇤.
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where L(0)

nn̄s = L(0)

n +L(0)

n̄ +L(0)

s is the non-Glauber parts of the SCET Lagrangian, a, b indicate the

field boundary conditions at time t = �T,+T , and [D�] is a short hand to indicate the functional

integral over all relevant SCET soft and collinear fields. We will only be interested in the large T

limit, T ! 1(1� i0). All these terms are leading order in the power counting. In order to consider

the rapidity renormalization it is convenient to expand out the Glauber interactions

U(a, b;T ) =

Z

⇥D�
⇤

exp
h

i

Z

d4x L(0)

nn̄s(x)
i

⇥


1 + i

Z

d4x
1

LII

G(x1) +
i2

2!

Z

d4x
1

d4x
2

LII

G(x1)LII

G(x2) + . . .

�

. (172)

V. BFKL AND THE RAPIDITY RENORMALIZATION GROUP

In the previous section we studied the running of the forward scattering operators. While

Reggeization gives us some physical insight, the calculation in itself is unphysical and IR divergent.

Now we would like to consider how the rapidity renormalization group can be used to sum logs

in physical observalbes. Thus we must either consider an IR safe inclusive obervable or a less

inclusive observabale which includes some non-pertubative function which encapsulates the infrared

divergences.

A. Factorization with the Glauber Lagrangian

In this section we consider how to include the Glauber Lagrangian into a factorized analysis

for situations where the Glauber exchange is important and does not cancel out, such as forward

scattering. Since the Glauber Lagrangian couples together soft and collinear modes we can only

factorize it if we expand the Glauber Lagrangian insertions in a Taylor series. To organize this

factorization we expand the time evolution generated by the Glauber Lagrangian as

exp i

Z

d4xLII(0)

G (x) =



1 + i

Z

d4y
1

LII(0)

G (y
1

) +
i2

2!

Z

d4y
1

d4y
2

LII(0)

G (y
1

)LII(0)

G (y
2

) + . . .

�
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= 1 +
1
X

k=1

1
X

k0=1

1

k!

1

k0!

 k
Y

i=1

Z

d4xi(OqAi
n +OgAi

n )(xi)

�

⇥
 k0
Y

i0=1

Z

d4xi0(OqBi0
n̄ +OgBi0

n̄ )(xi0)

�

O
A1·Ak,B1···Bk0
s(k,k0) (x

1

, . . . , xk0) .

For the first nontrivial term where k = k0 = 1 the soft operator is

OAB
s(1,1)(x1, x10) = �4(x

1

� x
1

0)OAB
s (x

1

) +
⇥OqnA

s (x
1

) +OgnA
s (x

1

)
⇤⇥Oqn̄A

s (x
1

0) +Ogn̄A
s (x

1

0)
⇤

. (174)

In momentum space

OAB
s(1,1)(q?, q

0
?) = OAB

s (q?, q0?) +
Z

d4x T
⇥OqnA

s (q?) +OgnA
s (q?)

⇤⇥Oqn̄A
s (q0?) +Ogn̄A

s (q0?)
⇤

. (175)
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amplitude squared

q
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s | 0ih0 | Ocd
s =

✓

8⇡↵

l2?

◆

2

�ab�cd�2(l? � l0?) , (179)

The solid line denotes the cut. The normalization is such as to absorb the volume factor. From

here on out we will suppress the color indicies on G.

At one loop the real radiation correction is calculated using the Lipatov vertex given in (6)

q

q' SS
= (2)8↵3⇡2fabef cde�[⌘]

Z

[d2q?]
(q? � l?)2l2?q

2

?
�2(q? � l 0
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=
↵

⇡2

CA�[⌘]

Z

[d2q?]q2?
(q? � l?)2l2?

G(0)abcd(q?, l 0
?) , (180)

Note that in manipulating the color we have implicitly summed over space of color states upon

which the soft operator acts. The resulting group theory factor is independent of the representation

of this space. That is, the factor of CA is there whether or not this operator sits between collinear

quarks or gluons. The contribution coming from the soft Wilson line and the time ordered product

can be combined to give

S

q

q'
+

S

q

q'

= � ↵

2⇡2
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d2q?
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?
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(181)

To derive the canonical form of the BFKL equation we define

G̃(l?, l0?) = l2?G(l?, l0?)l
0
?
2 (182)

In terms of which we have

G̃bare(l?, ;0? ) = G̃(0)(l?, l0?) +
↵CA

⇡2

�[⌘]

Z

d2q?
(q? � l?)2

✓

G̃(0)(q?, l0?)�
l2?
2q2?

G̃(0)(l?, l0?)
◆

(183)

We then renormalize the operator via the convolution

G̃ren(~l?,~l0?) =
Z

d2q?Z(l?, q?)G̃bare(q?, l0?) (184)
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To derive the canonical form of the BFKL equation we define

G̃(l?, l0?) = l2?G(l?, l0?)l
0
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2 (182)
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We then renormalize the operator via the convolution
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Z
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Here used:
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where Oab
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To derive the canonical form of the BFKL equation we define
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We then renormalize the operator via the convolution
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The RRG equation then follows from

⌫
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d⌫
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where the anomalous dimension is given by
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which yields the BFKL equation. need to go back and put in the w”s

B. Arbitrary number of Insertions: Factorization with the Glauber Lagrangian

In this section we consider how to include the Glauber Lagrangian into a factorized analysis

for situations where the Glauber exchange is important and does not cancel out, such as forward

scattering. Since the Glauber Lagrangian couples together soft and collinear modes we can only

factorize it order by order in the number of insertions. To organize this factorization we expand

the time evolution generated by the Glauber Lagrangian as

exp iL(0)II

G =
1

k!

1

k0!

1
X

k=1

1
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k0=1

 k
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n )

� k0
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i0=1
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qBi0
n̄ +O

gBi0
n̄ )

�

O
A1·Ak,B1···Bk0
s(k,k0) (188)

VII. GLAUBER OPERATORS IN HARD SCATTERING

A. Glauber Exponentiation

Exponentiation with our rapidity regulator.

B. Glaubers Cancellations in Hard Scattering, Active-Active Factorization

The soft zero-bin subtraction from the Glauber region of phase space is equal to the Glauber

contribution for these diagrams, S(G) = G. Therefore one will never see these modes in hard

scattering computations. In a theory with Glauber gluon exchange, we can absorb these diagrams

into the soft function.

C. Spectator Glauber Interactions

Explain that they are not eikonal. Maybe show how they cancel at the 1-Glauber exchange

level for all diagrams (or the abelian level).

78

The RRG equation then follows from

⌫
d

d⌫
G̃bare(l?, l0?) = 0 = ⌫

d

d⌫

Z

d2q?Z�1(l?, q?)G̃ren(q?, l0?) (185)

Leaving

⌫
d

d⌫
Gren(q?, l0?) =

Z

d2q0?�(q?, q
0
?)G

ren(q0?, l
0
?) (186)

where the anomalous dimension is given by

�(q?, q0?) =
Z

d2k?Z(q?, k?)⌫
d

d⌫
Z�1(k?, l0?) =

↵sCA

⇡2

✓

1

(q? � q0?)
� �2(q? � q0?)

Z

d2l?
q2?

2l2?(l? � q?)2

◆

(187)

which yields the BFKL equation. need to go back and put in the w”s

B. Arbitrary number of Insertions: Factorization with the Glauber Lagrangian

In this section we consider how to include the Glauber Lagrangian into a factorized analysis

for situations where the Glauber exchange is important and does not cancel out, such as forward

scattering. Since the Glauber Lagrangian couples together soft and collinear modes we can only

factorize it order by order in the number of insertions. To organize this factorization we expand

the time evolution generated by the Glauber Lagrangian as

exp iL(0)II

G =
1

k!

1

k0!

1
X

k=1

1
X

k0=1

 k
Y

i=1

(OqAi
n +OgAi

n )

� k0
Y

i0=1

(O
qBi0
n̄ +O

gBi0
n̄ )

�

O
A1·Ak,B1···Bk0
s(k,k0) (188)

VII. GLAUBER OPERATORS IN HARD SCATTERING

A. Glauber Exponentiation

Exponentiation with our rapidity regulator.

B. Glaubers Cancellations in Hard Scattering, Active-Active Factorization

The soft zero-bin subtraction from the Glauber region of phase space is equal to the Glauber

contribution for these diagrams, S(G) = G. Therefore one will never see these modes in hard

scattering computations. In a theory with Glauber gluon exchange, we can absorb these diagrams

into the soft function.

C. Spectator Glauber Interactions

Explain that they are not eikonal. Maybe show how they cancel at the 1-Glauber exchange

level for all diagrams (or the abelian level).

BFKL equation

˜ ˜

Soft functions evolution is given by the  
BFKL equation 
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